<
From version < 166.1 >
edited by Dilisi S
on 2024/11/07 05:43
To version < 152.1 >
edited by Dilisi S
on 2024/10/31 23:13
>
Change comment: Oct 31 changes - part 1

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1. Introduction =
20 += 1.Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degrees, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high-efficiency PA.
81 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remotely configure parameters via LoRaWAN Downlink
101 +* Remote configure parameters via LoRa Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering the LT-22222-L ==
172 +== 2.3 Powering ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options are available:
208 +* Register LT-22222-L with that application. Two registration options available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches your device.
216 +** Select the **Frequency plan** that matches with your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 220  *
221 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -229,26 +229,19 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specifies manually** option as the input method.
233 -** Select the **Frequency plan** that matches your device.
232 +** Select the **Enter end device specified manually** option.
233 +** Select the **Frequency plan** that matches with your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 -** Select **Over the air activation (OTAA)** option under the **Activation mode**
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
239 239  
240 -[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 -
242 -
243 -* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 -* Enter **DevEUI** in the **DevEUI** field.
245 -* Enter **AppKey** in the **AppKey** field.
246 -* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 -* Under **After registration**, select the **View registered end device** option.
248 -
249 -[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 -
251 -
252 252  ==== Joining ====
253 253  
254 254  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -256,12 +256,12 @@
256 256  [[image:1653298044601-602.png||height="405" width="709"]]
257 257  
258 258  
259 -== 3.3 Work Modes and their Uplink Payload formats ==
252 +== 3.3 Uplink Payload ==
260 260  
261 261  
262 -The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
255 +There are five working modes + one interrupt mode on LT for different type application:
263 263  
264 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
257 +* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 265  
266 266  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 267  
... ... @@ -275,8 +275,9 @@
275 275  
276 276  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
277 277  
271 +
278 278  (((
279 -The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
273 +The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 280  
281 281  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
282 282  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -288,29 +288,29 @@
288 288  ACI1 Current
289 289  )))|(((
290 290  ACI2 Current
291 -)))|**DIDORO***|(((
285 +)))|DIDORO*|(((
292 292  Reserve
293 293  )))|MOD
294 294  )))
295 295  
296 296  (((
297 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
291 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 298  
299 299  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
300 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 -|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
294 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 +|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
302 302  )))
303 303  
304 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 -* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
299 +* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
307 307  
308 -(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
302 +(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 309  
310 -For example, if the payload is: [[image:image-20220523175847-2.png]]
304 +For example if payload is: [[image:image-20220523175847-2.png]]
311 311  
312 312  
313 -**The interface values can be calculated as follows:  **
307 +**The value for the interface is:  **
314 314  
315 315  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
316 316  
... ... @@ -320,32 +320,35 @@
320 320  
321 321  ACI2 channel current is 0x1300/1000=4.864mA
322 322  
323 -The last byte 0xAA= **10101010**(b) means,
317 +The last byte 0xAA= 10101010(B) means
324 324  
325 -* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 -* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 -* [1] DI3 - not used for LT-22222-L.
328 -* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 -* [1] DI1 channel input state:
330 -** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 -** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 -** DI1 LED is ON in both cases.
333 -* [0] DO3 - not used for LT-22222-L.
334 -* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 -* [0] DO1 channel output state:
336 -** DO1 is FLOATING when there is no load between DO1 and V+.
337 -** DO1 is HIGH when there is a load between DO1 and V+.
338 -** DO1 LED is OFF in both cases.
319 +* [1] RO1 relay channel is close and the RO1 LED is ON.
320 +* [0] RO2 relay channel is open and RO2 LED is OFF;
339 339  
322 +**LT22222-L:**
323 +
324 +* [1] DI2 channel is high input and DI2 LED is ON;
325 +* [0] DI1 channel is low input;
326 +
327 +* [0] DO3 channel output state
328 +** DO3 is float in case no load between DO3 and V+.;
329 +** DO3 is high in case there is load between DO3 and V+.
330 +** DO3 LED is off in both case
331 +* [1] DO2 channel output is low and DO2 LED is ON.
332 +* [0] DO1 channel output state
333 +** DO1 is float in case no load between DO1 and V+.;
334 +** DO1 is high in case there is load between DO1 and V+.
335 +** DO1 LED is off in both case
336 +
340 340  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
341 341  
342 342  
343 343  (((
344 -**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
341 +**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 345  )))
346 346  
347 347  (((
348 -The uplink payload is 11 bytes long.
345 +Total : 11 bytes payload
349 349  
350 350  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 351  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -355,26 +355,26 @@
355 355  )))
356 356  
357 357  (((
358 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
355 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 359  
360 360  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
361 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
358 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
363 363  
364 -* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
365 365  )))
366 366  
367 -* FIRST: Indicates that this is the first packet after joining the network.
368 -* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
364 +* FIRST: Indicate this is the first packet after join network.
365 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
369 369  
370 370  (((
371 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
368 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 372  
373 373  
374 374  )))
375 375  
376 376  (((
377 -**To activate this mode, run the following AT commands:**
374 +**To use counting mode, please run:**
378 378  )))
379 379  
380 380  (((
... ... @@ -395,17 +395,17 @@
395 395  (((
396 396  **For LT22222-L:**
397 397  
398 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
395 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 399  
400 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
397 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 401  
402 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 403  
404 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 405  
406 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
403 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 407  
408 -(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
405 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 409  )))
410 410  
411 411  
... ... @@ -412,7 +412,7 @@
412 412  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
413 413  
414 414  
415 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
412 +**LT22222-L**: This mode the DI1 is used as a counting pin.
416 416  
417 417  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
418 418  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -423,24 +423,24 @@
423 423  )))|DIDORO*|Reserve|MOD
424 424  
425 425  (((
426 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
423 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 427  
428 428  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
429 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
426 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
431 431  )))
432 432  
433 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 -* FIRST: Indicates that this is the first packet after joining the network.
435 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
431 +* FIRST: Indicate this is the first packet after join network.
432 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
436 436  
437 437  (((
438 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
435 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 439  )))
440 440  
441 441  
442 442  (((
443 -**To activate this mode, run the following AT commands:**
440 +**To use counting mode, please run:**
444 444  )))
445 445  
446 446  (((
... ... @@ -453,9 +453,7 @@
453 453  )))
454 454  
455 455  (((
456 -AT Commands for counting:
457 -
458 -The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
453 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
459 459  )))
460 460  
461 461  
... ... @@ -463,11 +463,11 @@
463 463  
464 464  
465 465  (((
466 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
461 +**LT22222-L**: This mode the DI1 is used as a counting pin.
467 467  )))
468 468  
469 469  (((
470 -The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
465 +The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 471  
472 472  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
473 473  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -477,25 +477,25 @@
477 477  )))
478 478  
479 479  (((
480 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
475 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
478 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
485 485  )))
486 486  
487 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 -* FIRST: Indicates that this is the first packet after joining the network.
489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
483 +* FIRST: Indicate this is the first packet after join network.
484 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
490 490  
491 491  (((
492 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
487 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 493  
494 494  
495 495  )))
496 496  
497 497  (((
498 -**To activate this mode, run the following AT commands:**
493 +**To use this mode, please run:**
499 499  )))
500 500  
501 501  (((
... ... @@ -508,19 +508,19 @@
508 508  )))
509 509  
510 510  (((
511 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 512  )))
513 513  
514 514  (((
515 -**In addition to that, below are the commands for AVI1 Counting:**
510 +**Plus below command for AVI1 Counting:**
516 516  
517 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
512 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 518  
519 519  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
520 520  
521 521  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
522 522  
523 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
518 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 524  )))
525 525  
526 526  
... ... @@ -527,7 +527,7 @@
527 527  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
528 528  
529 529  
530 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 +**LT22222-L**: This mode the DI1 is used as a counting pin.
531 531  
532 532  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
533 533  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -542,25 +542,25 @@
542 542  )))|MOD
543 543  
544 544  (((
545 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
540 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 546  
547 547  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
543 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 549  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
550 550  )))
551 551  
552 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 -* FIRST: Indicates that this is the first packet after joining the network.
547 +* RO is for relay. ROx=1 : close, ROx=0 always open.
548 +* FIRST: Indicate this is the first packet after join network.
554 554  * (((
555 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
550 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 556  )))
557 557  
558 558  (((
559 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
554 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 560  )))
561 561  
562 562  (((
563 -**To activate this mode, run the following AT commands:**
558 +**To use this mode, please run:**
564 564  )))
565 565  
566 566  (((
... ... @@ -573,7 +573,7 @@
573 573  )))
574 574  
575 575  (((
576 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
571 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 577  )))
578 578  
579 579  
... ... @@ -580,46 +580,49 @@
580 580  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
581 581  
582 582  
583 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
578 +(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 584  
585 -For example, if you configured the following commands:
580 +For example, if user has configured below commands:
586 586  
587 587  * **AT+MOD=1 ** **~-~->**  The normal working mode
588 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
583 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 589  
590 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
585 +LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 591  
592 -1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 -1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
587 +1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 +1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
594 594  
595 595  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
596 596  
597 -(% style="color:#4f81bd" %)**Trigger based on voltage**:
598 598  
593 +(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 +
599 599  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
600 600  
601 601  
602 602  **Example:**
603 603  
604 -AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
600 +AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 605  
606 -AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
602 +AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 607  
608 608  
609 -(% style="color:#4f81bd" %)**Trigger based on current**:
610 610  
606 +(% style="color:#4f81bd" %)**Trigger base on current**:
607 +
611 611  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
612 612  
613 613  
614 614  **Example:**
615 615  
616 -AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
613 +AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 617  
618 618  
619 -(% style="color:#4f81bd" %)**Trigger based on DI status**:
620 620  
621 -DI status triggers Flag.
617 +(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 622  
619 +DI status trigger Flag.
620 +
623 623  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
624 624  
625 625  
... ... @@ -628,38 +628,39 @@
628 628  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
629 629  
630 630  
631 -(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
629 +(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 632  
633 633  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
634 634  
635 635  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
636 636  
637 - AA: Type Code for this downlink Command:
635 + AA: Code for this downlink Command:
638 638  
639 - xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
637 + xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 640  
641 - yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
639 + yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 642  
643 - yy2 yy2: AC1 or AV1 HIGH limit.
641 + yy2 yy2: AC1 or AV1 high limit.
644 644  
645 - yy3 yy3: AC2 or AV2 LOW limit.
643 + yy3 yy3: AC2 or AV2 low limit.
646 646  
647 - Yy4 yy4: AC2 or AV2 HIGH limit.
645 + Yy4 yy4: AC2 or AV2 high limit.
648 648  
649 649  
650 -**Example 1**: AA 00 13 88 00 00 00 00 00 00
648 +**Example1**: AA 00 13 88 00 00 00 00 00 00
651 651  
652 -Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
650 +Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 653  
654 654  
655 -**Example 2**: AA 02 01 00
653 +**Example2**: AA 02 01 00
656 656  
657 -Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
655 +Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 658  
659 659  
658 +
660 660  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
661 661  
662 -MOD6 Payload: total of 11 bytes
661 +MOD6 Payload : total 11 bytes payload
663 663  
664 664  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 665  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -673,10 +673,10 @@
673 673  MOD(6)
674 674  )))
675 675  
676 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
675 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 677  
678 678  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
679 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
678 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 680  |(((
681 681  AV1_LOW
682 682  )))|(((
... ... @@ -695,17 +695,17 @@
695 695  AC2_HIGH
696 696  )))
697 697  
698 -* Each bit shows if the corresponding trigger has been configured.
697 +* Each bits shows if the corresponding trigger has been configured.
699 699  
700 700  **Example:**
701 701  
702 -10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
701 +10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 703  
704 704  
705 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
704 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 706  
707 707  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
708 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
707 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 709  |(((
710 710  AV1_LOW
711 711  )))|(((
... ... @@ -724,11 +724,11 @@
724 724  AC2_HIGH
725 725  )))
726 726  
727 -* Each bit shows which status has been triggered on this uplink.
726 +* Each bits shows which status has been trigger on this uplink.
728 728  
729 729  **Example:**
730 730  
731 -10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
730 +10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 732  
733 733  
734 734  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -737,7 +737,7 @@
737 737  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 738  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
739 739  
740 -* Each bits shows which status has been triggered on this uplink.
739 +* Each bits shows which status has been trigger on this uplink.
741 741  
742 742  **Example:**
743 743  
... ... @@ -764,11 +764,11 @@
764 764  )))
765 765  
766 766  
767 -== 3.4 ​Configure LT via AT Commands or Downlinks ==
766 +== 3.4 ​Configure LT via AT or Downlink ==
768 768  
769 769  
770 770  (((
771 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
770 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
772 772  )))
773 773  
774 774  (((
... ... @@ -794,37 +794,33 @@
794 794  ==== 3.4.2.1 Set Transmit Interval ====
795 795  
796 796  
797 -Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
796 +Set device uplink interval.
798 798  
799 -* (% style="color:#037691" %)**AT command:**
798 +* (% style="color:#037691" %)**AT Command:**
800 800  
801 -(% style="color:blue" %)**AT+TDC=N**
800 +(% style="color:blue" %)**AT+TDC=N **
802 802  
803 -where N is the time in milliseconds.
804 804  
805 -**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
803 +**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 806  
807 807  
808 -* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
806 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 809  
810 810  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
811 811  
812 812  
813 813  
814 -==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 815  
816 816  
817 -Sets the work mode.
815 +Set work mode.
818 818  
819 -* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 820  
821 -Where N is the work mode.
819 +**Example**: AT+MOD=2. Set work mode to Double DI counting mode
822 822  
823 -**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
821 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824 824  
825 -
826 -* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
827 -
828 828  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
829 829  
830 830  
... ... @@ -832,12 +832,10 @@
832 832  ==== 3.4.2.3 Poll an uplink ====
833 833  
834 834  
835 -Asks the device to send an uplink.
830 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
836 836  
837 -* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
832 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
838 838  
839 -* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
840 -
841 841  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
842 842  
843 843  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -844,16 +844,16 @@
844 844  
845 845  
846 846  
847 -==== 3.4.2.4 Enable/Disable Trigger Mode ====
840 +==== 3.4.2.4 Enable Trigger Mode ====
848 848  
849 849  
850 -Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
843 +Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 851  
852 852  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
853 853  
854 -(% style="color:red" %)**1:** (%%)Enable the trigger mode
847 +(% style="color:red" %)**1:** (%%)Enable Trigger Mode
855 855  
856 -(% style="color:red" %)**0: **(%%)Disable the trigger mode
849 +(% style="color:red" %)**0: **(%%)Disable Trigger Mode
857 857  
858 858  
859 859  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -865,7 +865,7 @@
865 865  ==== 3.4.2.5 Poll trigger settings ====
866 866  
867 867  
868 -Polls the trigger settings
861 +Poll trigger settings
869 869  
870 870  * (% style="color:#037691" %)**AT Command:**
871 871  
... ... @@ -873,7 +873,7 @@
873 873  
874 874  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
875 875  
876 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
869 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 877  
878 878  
879 879  
... ... @@ -880,11 +880,11 @@
880 880  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
881 881  
882 882  
883 -Enable or Disable DI1/DI2/DI2 as trigger,
876 +Enable Disable DI1/DI2/DI2 as trigger,
884 884  
885 885  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
886 886  
887 -**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
880 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 888  
889 889  
890 890  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -916,15 +916,15 @@
916 916  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
917 917  
918 918  
919 -Sets DI2 trigger.
912 +Set DI2 trigger.
920 920  
921 921  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
922 922  
923 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
916 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924 924  
925 925  (% style="color:red" %)**b :** (%%)delay timing.
926 926  
927 -**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
920 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928 928  
929 929  
930 930  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -962,7 +962,7 @@
962 962  ==== 3.4.2.11 Trigger – Set minimum interval ====
963 963  
964 964  
965 -Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
958 +Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 966  
967 967  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
968 968  
... ... @@ -1110,7 +1110,7 @@
1110 1110  )))
1111 1111  
1112 1112  (((
1113 -00: Closed ,  01: Open , 11: No action
1106 +00: Close ,  01: Open , 11: No action
1114 1114  
1115 1115  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1116 1116  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1232,7 +1232,7 @@
1232 1232  
1233 1233  
1234 1234  
1235 -==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1228 +==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 1236  
1237 1237  
1238 1238  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1418,26 +1418,26 @@
1418 1418  [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1419 1419  
1420 1420  
1421 -== 3.6 Interface Details ==
1414 +== 3.6 Interface Detail ==
1422 1422  
1423 1423  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1424 1424  
1425 1425  
1426 -Support NPN-type sensor
1419 +Support NPN Type sensor
1427 1427  
1428 1428  [[image:1653356991268-289.png]]
1429 1429  
1430 1430  
1431 -=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 +=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 1432  
1433 1433  
1434 1434  (((
1435 -The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 +The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 1436  )))
1437 1437  
1438 1438  (((
1439 1439  (((
1440 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 +Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441 1441  
1442 1442  
1443 1443  )))
... ... @@ -1447,7 +1447,7 @@
1447 1447  
1448 1448  (((
1449 1449  (((
1450 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 +When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 1451  )))
1452 1452  )))
1453 1453  
... ... @@ -1456,22 +1456,22 @@
1456 1456  )))
1457 1457  
1458 1458  (((
1459 -(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 +(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 1460  )))
1461 1461  
1462 1462  (((
1463 -This type of sensor outputs a low (GND) signal when active.
1456 +This type of sensor will output a low signal GND when active.
1464 1464  )))
1465 1465  
1466 1466  * (((
1467 -Connect the sensor's output to DI1-
1460 +Connect sensor's output to DI1-
1468 1468  )))
1469 1469  * (((
1470 -Connect the sensor's VCC to DI1+.
1463 +Connect sensor's VCC to DI1+.
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 +So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 1475  )))
1476 1476  
1477 1477  (((
... ... @@ -1479,7 +1479,7 @@
1479 1479  )))
1480 1480  
1481 1481  (((
1482 -For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 +If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 1483  )))
1484 1484  
1485 1485  (((
... ... @@ -1487,22 +1487,22 @@
1487 1487  )))
1488 1488  
1489 1489  (((
1490 -(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 +(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 1491  )))
1492 1492  
1493 1493  (((
1494 -This type of sensor outputs a high signal (e.g., 24V) when active.
1487 +This type of sensor will output a high signal (example 24v) when active.
1495 1495  )))
1496 1496  
1497 1497  * (((
1498 -Connect the sensor's output to DI1+
1491 +Connect sensor's output to DI1+
1499 1499  )))
1500 1500  * (((
1501 -Connect the sensor's GND DI1-.
1494 +Connect sensor's GND DI1-.
1502 1502  )))
1503 1503  
1504 1504  (((
1505 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 1506  )))
1507 1507  
1508 1508  (((
... ... @@ -1510,7 +1510,7 @@
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 +If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 1514  )))
1515 1515  
1516 1516  (((
... ... @@ -1518,22 +1518,22 @@
1518 1518  )))
1519 1519  
1520 1520  (((
1521 -(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 +(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 1522  )))
1523 1523  
1524 1524  (((
1525 -Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 +Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 1526  )))
1527 1527  
1528 1528  * (((
1529 -Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 +Connect sensor's output to DI1+ with a serial 50K resistor
1530 1530  )))
1531 1531  * (((
1532 -Connect the sensor's GND DI1-.
1525 +Connect sensor's GND DI1-.
1533 1533  )))
1534 1534  
1535 1535  (((
1536 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 1537  )))
1538 1538  
1539 1539  (((
... ... @@ -1541,37 +1541,37 @@
1541 1541  )))
1542 1542  
1543 1543  (((
1544 -If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 +If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 1545  )))
1546 1546  
1547 1547  
1548 -(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 +(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549 1549  
1550 -From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1543 +From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551 1551  
1552 -To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1545 +To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553 1553  
1554 1554  [[image:image-20230616235145-1.png]]
1555 1555  
1556 -(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1549 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1557 1557  
1558 1558  [[image:image-20240219115718-1.png]]
1559 1559  
1560 1560  
1561 -=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1554 +=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1562 1562  
1563 1563  
1564 -(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1557 +(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1565 1565  
1566 -(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1559 +(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1567 1567  
1568 1568  [[image:1653357531600-905.png]]
1569 1569  
1570 1570  
1571 -=== 3.6.4 Analog Input Interfaces ===
1564 +=== 3.6.4 Analog Input Interface ===
1572 1572  
1573 1573  
1574 -The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1567 +The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 1575  
1576 1576  
1577 1577  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1578,14 +1578,14 @@
1578 1578  
1579 1579  [[image:1653357592296-182.png]]
1580 1580  
1581 -Example: Connecting a 4~~20mA sensor
1574 +Example to connect a 4~~20mA sensor
1582 1582  
1583 -We will use the wind speed sensor as an example for reference only.
1576 +We take the wind speed sensor as an example for reference only.
1584 1584  
1585 1585  
1586 1586  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1587 1587  
1588 -(% style="color:red" %)**Red:  12~~24V**
1581 +(% style="color:red" %)**Red:  12~~24v**
1589 1589  
1590 1590  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1591 1591  
... ... @@ -1598,7 +1598,7 @@
1598 1598  [[image:1653357648330-671.png||height="155" width="733"]]
1599 1599  
1600 1600  
1601 -Example: Connecting to a regulated power supply to measure voltage
1594 +Example connected to a regulated power supply to measure voltage
1602 1602  
1603 1603  [[image:image-20230608101532-1.png||height="606" width="447"]]
1604 1604  
... ... @@ -1607,7 +1607,7 @@
1607 1607  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1608 1608  
1609 1609  
1610 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1603 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611 1611  
1612 1612  (% style="color:red" %)**Red:  12~~24v**
1613 1613  
... ... @@ -1618,9 +1618,9 @@
1618 1618  
1619 1619  
1620 1620  (((
1621 -The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1614 +The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 1622  
1623 -**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1616 +**Note**: RO pins go to Open(NO) when device is power off.
1624 1624  )))
1625 1625  
1626 1626  [[image:image-20220524100215-9.png]]
... ... @@ -1648,25 +1648,25 @@
1648 1648  Transmit a LoRa packet: TX blinks once
1649 1649  )))
1650 1650  )))
1651 -|**RX**|RX blinks once when receiving a packet.
1652 -|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1653 -|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1644 +|**RX**|RX blinks once when receive a packet.
1645 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1654 1654  |**DI1**|(((
1655 -For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1648 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1656 1656  )))
1657 1657  |**DI2**|(((
1658 -For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1651 +For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1659 1659  )))
1660 -|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1661 -|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1653 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1662 1662  
1663 -= 4. Using AT Command =
1656 += 4. Use AT Command =
1664 1664  
1665 -== 4.1 Connecting the LT-22222-L to a computer ==
1658 +== 4.1 Access AT Command ==
1666 1666  
1667 1667  
1668 1668  (((
1669 -The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1662 +LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 1670  )))
1671 1671  
1672 1672  [[image:1653358238933-385.png]]
... ... @@ -1673,7 +1673,7 @@
1673 1673  
1674 1674  
1675 1675  (((
1676 -On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1669 +In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 1677  )))
1678 1678  
1679 1679  [[image:1653358355238-883.png]]
... ... @@ -1680,12 +1680,10 @@
1680 1680  
1681 1681  
1682 1682  (((
1683 -You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1676 +More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 1684  )))
1685 1685  
1686 1686  (((
1687 -The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1688 -
1689 1689  AT+<CMD>?        : Help on <CMD>
1690 1690  )))
1691 1691  
... ... @@ -2010,10 +2010,10 @@
2010 2010  
2011 2011  = 5. Case Study =
2012 2012  
2013 -== 5.1 Counting how many objects pass through the flow Line ==
2004 +== 5.1 Counting how many objects pass in Flow Line ==
2014 2014  
2015 2015  
2016 -Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2007 +Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 2017  
2018 2018  
2019 2019  = 6. FAQ =
... ... @@ -2021,26 +2021,26 @@
2021 2021  == 6.1 How to upgrade the image? ==
2022 2022  
2023 2023  
2024 -The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2015 +The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 2025  
2026 -* Support new features.
2027 -* Fix bugs.
2017 +* Support new features
2018 +* For bug fix
2028 2028  * Change LoRaWAN bands.
2029 2029  
2030 -Below is the hardware connection setup for uploading an image to the LT:
2021 +Below shows the hardware connection for how to upload an image to the LT:
2031 2031  
2032 2032  [[image:1653359603330-121.png]]
2033 2033  
2034 2034  
2035 2035  (((
2036 -(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2037 -(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2038 -(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2027 +(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2028 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2029 +(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2039 2039  
2040 2040  
2041 2041  (((
2042 2042  (% style="color:blue" %)**For LT-22222-L**(%%):
2043 -Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2034 +Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 2044  )))
2045 2045  
2046 2046  
... ... @@ -2055,7 +2055,7 @@
2055 2055  [[image:image-20220524104033-15.png]]
2056 2056  
2057 2057  
2058 -(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2049 +(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 2059  
2060 2060  [[image:1653360054704-518.png||height="186" width="745"]]
2061 2061  
... ... @@ -2069,13 +2069,13 @@
2069 2069  )))
2070 2070  
2071 2071  (((
2072 -You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2063 +User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 2073  )))
2074 2074  
2075 2075  (((
2076 2076  
2077 2077  
2078 -== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2069 +== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 2079  
2080 2080  
2081 2081  )))
... ... @@ -2082,13 +2082,13 @@
2082 2082  
2083 2083  (((
2084 2084  (((
2085 -In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2076 +In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 2086  )))
2087 2087  )))
2088 2088  
2089 2089  (((
2090 2090  (((
2091 -Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2082 +Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 2092  
2093 2093  
2094 2094  )))
... ... @@ -2095,7 +2095,7 @@
2095 2095  )))
2096 2096  
2097 2097  (((
2098 -(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2089 +(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 2099  
2100 2100  
2101 2101  )))
... ... @@ -2152,7 +2152,7 @@
2152 2152  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2153 2153  
2154 2154  
2155 -== 6.5 Can I see the counting event in Serial? ==
2146 +== 6.5 Can I see counting event in Serial? ==
2156 2156  
2157 2157  
2158 2158  (((
... ... @@ -2159,10 +2159,10 @@
2159 2159  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2160 2160  
2161 2161  
2162 -== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2153 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2163 2163  
2164 2164  
2165 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2156 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 2166  
2167 2167  
2168 2168  )))
lt-22222-l-manually-p1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -279.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0