<
From version < 165.1 >
edited by Dilisi S
on 2024/11/06 22:47
To version < 154.1 >
edited by Dilisi S
on 2024/11/01 04:40
>
Change comment: Uploaded new attachment "lt-22222-l-manually-p2.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1. Introduction =
20 += 1.Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degrees, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high-efficiency PA.
81 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remotely configure parameters via LoRaWAN Downlink
101 +* Remote configure parameters via LoRa Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering the LT-22222-L ==
172 +== 2.3 Powering ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options are available:
208 +* Register LT-22222-L with that application. Two registration options available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches your device.
216 +** Select the **Frequency plan** that matches with your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 220  *
221 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -229,26 +229,19 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specifies manually** option as the input method.
233 -** Select the **Frequency plan** that matches your device.
232 +** Select the **Enter end device specified manually** option.
233 +** Select the **Frequency plan** that matches with your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 -** Select **Over the air activation (OTAA)** option under the **Activation mode**
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
239 239  
240 -[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 -
242 -
243 -* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 -* Enter **DevEUI** in the **DevEUI** field.
245 -* Enter **AppKey** in the **AppKey** field.
246 -* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 -* Under **After registration**, select the **View registered end device** option.
248 -
249 -[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 -
251 -
252 252  ==== Joining ====
253 253  
254 254  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -256,12 +256,12 @@
256 256  [[image:1653298044601-602.png||height="405" width="709"]]
257 257  
258 258  
259 -== 3.3 Uplink Payload formats ==
252 +== 3.3 Uplink Payload ==
260 260  
261 261  
262 -The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
255 +There are five working modes + one interrupt mode on LT for different type application:
263 263  
264 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
257 +* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 265  
266 266  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 267  
... ... @@ -277,7 +277,7 @@
277 277  
278 278  
279 279  (((
280 -The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
273 +The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
281 281  
282 282  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 283  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -295,23 +295,23 @@
295 295  )))
296 296  
297 297  (((
298 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
291 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 -|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
294 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 +|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
303 303  )))
304 304  
305 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 -* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
299 +* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
308 308  
309 -(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
302 +(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
310 310  
311 -For example, if the payload is: [[image:image-20220523175847-2.png]]
304 +For example if payload is: [[image:image-20220523175847-2.png]]
312 312  
313 313  
314 -**The interface values can be calculated as follows:  **
307 +**The value for the interface is:  **
315 315  
316 316  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317 317  
... ... @@ -321,32 +321,35 @@
321 321  
322 322  ACI2 channel current is 0x1300/1000=4.864mA
323 323  
324 -The last byte 0xAA= **10101010**(b) means,
317 +The last byte 0xAA= 10101010(B) means
325 325  
326 -* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 -* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 -* [1] DI3 - not used for LT-22222-L.
329 -* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 -* [1] DI1 channel input state:
331 -** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 -** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 -** DI1 LED is ON in both cases.
334 -* [0] DO3 - not used for LT-22222-L.
335 -* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 -* [0] DO1 channel output state:
337 -** DO1 is FLOATING when there is no load between DO1 and V+.
338 -** DO1 is HIGH when there is a load between DO1 and V+.
339 -** DO1 LED is OFF in both cases.
319 +* [1] RO1 relay channel is close and the RO1 LED is ON.
320 +* [0] RO2 relay channel is open and RO2 LED is OFF;
340 340  
322 +**LT22222-L:**
323 +
324 +* [1] DI2 channel is high input and DI2 LED is ON;
325 +* [0] DI1 channel is low input;
326 +
327 +* [0] DO3 channel output state
328 +** DO3 is float in case no load between DO3 and V+.;
329 +** DO3 is high in case there is load between DO3 and V+.
330 +** DO3 LED is off in both case
331 +* [1] DO2 channel output is low and DO2 LED is ON.
332 +* [0] DO1 channel output state
333 +** DO1 is float in case no load between DO1 and V+.;
334 +** DO1 is high in case there is load between DO1 and V+.
335 +** DO1 LED is off in both case
336 +
341 341  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342 342  
343 343  
344 344  (((
345 -**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
341 +**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
346 346  )))
347 347  
348 348  (((
349 -The uplink payload is 11 bytes long.
345 +Total : 11 bytes payload
350 350  
351 351  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 352  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -356,26 +356,26 @@
356 356  )))
357 357  
358 358  (((
359 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
355 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 360  
361 361  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
358 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
364 364  
365 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
366 366  )))
367 367  
368 -* FIRST: Indicates that this is the first packet after joining the network.
369 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
364 +* FIRST: Indicate this is the first packet after join network.
365 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
370 370  
371 371  (((
372 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
368 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
373 373  
374 374  
375 375  )))
376 376  
377 377  (((
378 -**To activate this mode, run the following AT commands:**
374 +**To use counting mode, please run:**
379 379  )))
380 380  
381 381  (((
... ... @@ -396,17 +396,17 @@
396 396  (((
397 397  **For LT22222-L:**
398 398  
399 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
395 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
400 400  
401 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
397 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
402 402  
403 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
404 404  
405 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
406 406  
407 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
403 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
408 408  
409 -(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
405 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
410 410  )))
411 411  
412 412  
... ... @@ -413,7 +413,7 @@
413 413  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
414 414  
415 415  
416 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
412 +**LT22222-L**: This mode the DI1 is used as a counting pin.
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 419  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -424,24 +424,24 @@
424 424  )))|DIDORO*|Reserve|MOD
425 425  
426 426  (((
427 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
423 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
428 428  
429 429  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
426 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
432 432  )))
433 433  
434 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 -* FIRST: Indicates that this is the first packet after joining the network.
436 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
431 +* FIRST: Indicate this is the first packet after join network.
432 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 437  
438 438  (((
439 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
435 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
440 440  )))
441 441  
442 442  
443 443  (((
444 -**To activate this mode, run the following AT commands:**
440 +**To use counting mode, please run:**
445 445  )))
446 446  
447 447  (((
... ... @@ -454,9 +454,7 @@
454 454  )))
455 455  
456 456  (((
457 -AT Commands for counting:
458 -
459 -The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
453 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 460  )))
461 461  
462 462  
... ... @@ -464,11 +464,11 @@
464 464  
465 465  
466 466  (((
467 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
461 +**LT22222-L**: This mode the DI1 is used as a counting pin.
468 468  )))
469 469  
470 470  (((
471 -The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
465 +The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
472 472  
473 473  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 474  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -478,25 +478,25 @@
478 478  )))
479 479  
480 480  (((
481 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
475 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
482 482  
483 483  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
478 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
486 486  )))
487 487  
488 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 -* FIRST: Indicates that this is the first packet after joining the network.
490 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
483 +* FIRST: Indicate this is the first packet after join network.
484 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 491  
492 492  (((
493 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
487 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
494 494  
495 495  
496 496  )))
497 497  
498 498  (((
499 -**To activate this mode, run the following AT commands:**
493 +**To use this mode, please run:**
500 500  )))
501 501  
502 502  (((
... ... @@ -509,19 +509,19 @@
509 509  )))
510 510  
511 511  (((
512 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
513 513  )))
514 514  
515 515  (((
516 -**In addition to that, below are the commands for AVI1 Counting:**
510 +**Plus below command for AVI1 Counting:**
517 517  
518 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
512 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
519 519  
520 520  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521 521  
522 522  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523 523  
524 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
518 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
525 525  )))
526 526  
527 527  
... ... @@ -528,7 +528,7 @@
528 528  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
529 529  
530 530  
531 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 +**LT22222-L**: This mode the DI1 is used as a counting pin.
532 532  
533 533  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 534  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -543,25 +543,25 @@
543 543  )))|MOD
544 544  
545 545  (((
546 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
540 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
547 547  
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
543 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
550 550  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
551 551  )))
552 552  
553 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 -* FIRST: Indicates that this is the first packet after joining the network.
547 +* RO is for relay. ROx=1 : close, ROx=0 always open.
548 +* FIRST: Indicate this is the first packet after join network.
555 555  * (((
556 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
550 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
557 557  )))
558 558  
559 559  (((
560 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
554 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
561 561  )))
562 562  
563 563  (((
564 -**To activate this mode, run the following AT commands:**
558 +**To use this mode, please run:**
565 565  )))
566 566  
567 567  (((
... ... @@ -574,7 +574,7 @@
574 574  )))
575 575  
576 576  (((
577 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
571 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
578 578  )))
579 579  
580 580  
... ... @@ -581,46 +581,49 @@
581 581  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
582 582  
583 583  
584 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
578 +(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
585 585  
586 -For example, if you configured the following commands:
580 +For example, if user has configured below commands:
587 587  
588 588  * **AT+MOD=1 ** **~-~->**  The normal working mode
589 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
583 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
590 590  
591 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
585 +LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
592 592  
593 -1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 -1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
587 +1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 +1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
595 595  
596 596  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
597 597  
598 -(% style="color:#4f81bd" %)**Trigger based on voltage**:
599 599  
593 +(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 +
600 600  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
601 601  
602 602  
603 603  **Example:**
604 604  
605 -AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
600 +AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
606 606  
607 -AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
602 +AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
608 608  
609 609  
610 -(% style="color:#4f81bd" %)**Trigger based on current**:
611 611  
606 +(% style="color:#4f81bd" %)**Trigger base on current**:
607 +
612 612  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
613 613  
614 614  
615 615  **Example:**
616 616  
617 -AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
613 +AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
618 618  
619 619  
620 -(% style="color:#4f81bd" %)**Trigger based on DI status**:
621 621  
622 -DI status triggers Flag.
617 +(% style="color:#4f81bd" %)**Trigger base on DI status**:
623 623  
619 +DI status trigger Flag.
620 +
624 624  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
625 625  
626 626  
... ... @@ -629,38 +629,39 @@
629 629  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
630 630  
631 631  
632 -(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
629 +(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
633 633  
634 634  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
635 635  
636 636  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
637 637  
638 - AA: Type Code for this downlink Command:
635 + AA: Code for this downlink Command:
639 639  
640 - xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
637 + xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
641 641  
642 - yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
639 + yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
643 643  
644 - yy2 yy2: AC1 or AV1 HIGH limit.
641 + yy2 yy2: AC1 or AV1 high limit.
645 645  
646 - yy3 yy3: AC2 or AV2 LOW limit.
643 + yy3 yy3: AC2 or AV2 low limit.
647 647  
648 - Yy4 yy4: AC2 or AV2 HIGH limit.
645 + Yy4 yy4: AC2 or AV2 high limit.
649 649  
650 650  
651 -**Example 1**: AA 00 13 88 00 00 00 00 00 00
648 +**Example1**: AA 00 13 88 00 00 00 00 00 00
652 652  
653 -Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
650 +Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
654 654  
655 655  
656 -**Example 2**: AA 02 01 00
653 +**Example2**: AA 02 01 00
657 657  
658 -Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
655 +Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
659 659  
660 660  
658 +
661 661  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
662 662  
663 -MOD6 Payload: total of 11 bytes
661 +MOD6 Payload : total 11 bytes payload
664 664  
665 665  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
666 666  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -674,10 +674,10 @@
674 674  MOD(6)
675 675  )))
676 676  
677 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
675 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
678 678  
679 679  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
680 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
678 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
681 681  |(((
682 682  AV1_LOW
683 683  )))|(((
... ... @@ -696,17 +696,17 @@
696 696  AC2_HIGH
697 697  )))
698 698  
699 -* Each bit shows if the corresponding trigger has been configured.
697 +* Each bits shows if the corresponding trigger has been configured.
700 700  
701 701  **Example:**
702 702  
703 -10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
701 +10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
704 704  
705 705  
706 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
704 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
707 707  
708 708  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
707 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
710 710  |(((
711 711  AV1_LOW
712 712  )))|(((
... ... @@ -725,11 +725,11 @@
725 725  AC2_HIGH
726 726  )))
727 727  
728 -* Each bit shows which status has been triggered on this uplink.
726 +* Each bits shows which status has been trigger on this uplink.
729 729  
730 730  **Example:**
731 731  
732 -10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
730 +10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
733 733  
734 734  
735 735  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -738,7 +738,7 @@
738 738  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
739 739  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
740 740  
741 -* Each bits shows which status has been triggered on this uplink.
739 +* Each bits shows which status has been trigger on this uplink.
742 742  
743 743  **Example:**
744 744  
... ... @@ -795,37 +795,33 @@
795 795  ==== 3.4.2.1 Set Transmit Interval ====
796 796  
797 797  
798 -Sets the uplink interval of the device.
796 +Set device uplink interval.
799 799  
800 -* (% style="color:#037691" %)**AT command:**
798 +* (% style="color:#037691" %)**AT Command:**
801 801  
802 -(% style="color:blue" %)**AT+TDC=N**
800 +(% style="color:blue" %)**AT+TDC=N **
803 803  
804 -where N is the time in milliseconds.
805 805  
806 -**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
803 +**Example: **AT+TDC=30000. Means set interval to 30 seconds
807 807  
808 808  
809 -* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
806 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
810 810  
811 811  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
812 812  
813 813  
814 814  
815 -==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set Work Mode (AT+MOD) ====
816 816  
817 817  
818 -Sets the work mode.
815 +Set work mode.
819 819  
820 -* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
821 821  
822 -Where N is the work mode.
819 +**Example**: AT+MOD=2. Set work mode to Double DI counting mode
823 823  
824 -**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
821 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
825 825  
826 -
827 -* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
828 -
829 829  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
830 830  
831 831  
... ... @@ -833,12 +833,10 @@
833 833  ==== 3.4.2.3 Poll an uplink ====
834 834  
835 835  
836 -Asks the device to send an uplink.
830 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
837 837  
838 -* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
832 +* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
839 839  
840 -* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
841 -
842 842  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
843 843  
844 844  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -845,16 +845,16 @@
845 845  
846 846  
847 847  
848 -==== 3.4.2.4 Enable/Disable Trigger Mode ====
840 +==== 3.4.2.4 Enable Trigger Mode ====
849 849  
850 850  
851 -Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
843 +Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
852 852  
853 853  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
854 854  
855 -(% style="color:red" %)**1:** (%%)Enable the trigger mode
847 +(% style="color:red" %)**1:** (%%)Enable Trigger Mode
856 856  
857 -(% style="color:red" %)**0: **(%%)Disable the trigger mode
849 +(% style="color:red" %)**0: **(%%)Disable Trigger Mode
858 858  
859 859  
860 860  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -866,7 +866,7 @@
866 866  ==== 3.4.2.5 Poll trigger settings ====
867 867  
868 868  
869 -Polls the trigger settings
861 +Poll trigger settings
870 870  
871 871  * (% style="color:#037691" %)**AT Command:**
872 872  
... ... @@ -874,7 +874,7 @@
874 874  
875 875  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
876 876  
877 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
869 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
878 878  
879 879  
880 880  
... ... @@ -881,11 +881,11 @@
881 881  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
882 882  
883 883  
884 -Enable or Disable DI1/DI2/DI2 as trigger,
876 +Enable Disable DI1/DI2/DI2 as trigger,
885 885  
886 886  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
887 887  
888 -**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
880 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
889 889  
890 890  
891 891  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -917,15 +917,15 @@
917 917  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
918 918  
919 919  
920 -Sets DI2 trigger.
912 +Set DI2 trigger.
921 921  
922 922  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
923 923  
924 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
916 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
925 925  
926 926  (% style="color:red" %)**b :** (%%)delay timing.
927 927  
928 -**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
920 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
929 929  
930 930  
931 931  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -963,7 +963,7 @@
963 963  ==== 3.4.2.11 Trigger – Set minimum interval ====
964 964  
965 965  
966 -Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
958 +Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
967 967  
968 968  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
969 969  
... ... @@ -1111,7 +1111,7 @@
1111 1111  )))
1112 1112  
1113 1113  (((
1114 -00: Closed ,  01: Open , 11: No action
1106 +00: Close ,  01: Open , 11: No action
1115 1115  
1116 1116  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1117 1117  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1233,7 +1233,7 @@
1233 1233  
1234 1234  
1235 1235  
1236 -==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1228 +==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1237 1237  
1238 1238  
1239 1239  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1419,26 +1419,26 @@
1419 1419  [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1420 1420  
1421 1421  
1422 -== 3.6 Interface Details ==
1414 +== 3.6 Interface Detail ==
1423 1423  
1424 1424  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1425 1425  
1426 1426  
1427 -Support NPN-type sensor
1419 +Support NPN Type sensor
1428 1428  
1429 1429  [[image:1653356991268-289.png]]
1430 1430  
1431 1431  
1432 -=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 +=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1433 1433  
1434 1434  
1435 1435  (((
1436 -The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 +The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 1437  )))
1438 1438  
1439 1439  (((
1440 1440  (((
1441 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 +Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 1442  
1443 1443  
1444 1444  )))
... ... @@ -1448,7 +1448,7 @@
1448 1448  
1449 1449  (((
1450 1450  (((
1451 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 +When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 1452  )))
1453 1453  )))
1454 1454  
... ... @@ -1457,22 +1457,22 @@
1457 1457  )))
1458 1458  
1459 1459  (((
1460 -(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 +(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 1461  )))
1462 1462  
1463 1463  (((
1464 -This type of sensor outputs a low (GND) signal when active.
1456 +This type of sensor will output a low signal GND when active.
1465 1465  )))
1466 1466  
1467 1467  * (((
1468 -Connect the sensor's output to DI1-
1460 +Connect sensor's output to DI1-
1469 1469  )))
1470 1470  * (((
1471 -Connect the sensor's VCC to DI1+.
1463 +Connect sensor's VCC to DI1+.
1472 1472  )))
1473 1473  
1474 1474  (((
1475 -When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 +So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 1476  )))
1477 1477  
1478 1478  (((
... ... @@ -1480,7 +1480,7 @@
1480 1480  )))
1481 1481  
1482 1482  (((
1483 -For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 +If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 1484  )))
1485 1485  
1486 1486  (((
... ... @@ -1488,22 +1488,22 @@
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 +(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 1492  )))
1493 1493  
1494 1494  (((
1495 -This type of sensor outputs a high signal (e.g., 24V) when active.
1487 +This type of sensor will output a high signal (example 24v) when active.
1496 1496  )))
1497 1497  
1498 1498  * (((
1499 -Connect the sensor's output to DI1+
1491 +Connect sensor's output to DI1+
1500 1500  )))
1501 1501  * (((
1502 -Connect the sensor's GND DI1-.
1494 +Connect sensor's GND DI1-.
1503 1503  )))
1504 1504  
1505 1505  (((
1506 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 1507  )))
1508 1508  
1509 1509  (((
... ... @@ -1511,7 +1511,7 @@
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 +If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 1515  )))
1516 1516  
1517 1517  (((
... ... @@ -1519,22 +1519,22 @@
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 +(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 +Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 1527  )))
1528 1528  
1529 1529  * (((
1530 -Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 +Connect sensor's output to DI1+ with a serial 50K resistor
1531 1531  )))
1532 1532  * (((
1533 -Connect the sensor's GND DI1-.
1525 +Connect sensor's GND DI1-.
1534 1534  )))
1535 1535  
1536 1536  (((
1537 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 1538  )))
1539 1539  
1540 1540  (((
... ... @@ -1542,37 +1542,37 @@
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 +If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 1546  )))
1547 1547  
1548 1548  
1549 -(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 +(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 1550  
1551 -From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1543 +From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 1552  
1553 -To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1545 +To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 1554  
1555 1555  [[image:image-20230616235145-1.png]]
1556 1556  
1557 -(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1549 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1558 1558  
1559 1559  [[image:image-20240219115718-1.png]]
1560 1560  
1561 1561  
1562 -=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1554 +=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1563 1563  
1564 1564  
1565 -(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1557 +(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1566 1566  
1567 -(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1559 +(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1568 1568  
1569 1569  [[image:1653357531600-905.png]]
1570 1570  
1571 1571  
1572 -=== 3.6.4 Analog Input Interfaces ===
1564 +=== 3.6.4 Analog Input Interface ===
1573 1573  
1574 1574  
1575 -The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1567 +The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576 1576  
1577 1577  
1578 1578  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1579,14 +1579,14 @@
1579 1579  
1580 1580  [[image:1653357592296-182.png]]
1581 1581  
1582 -Example: Connecting a 4~~20mA sensor
1574 +Example to connect a 4~~20mA sensor
1583 1583  
1584 -We will use the wind speed sensor as an example for reference only.
1576 +We take the wind speed sensor as an example for reference only.
1585 1585  
1586 1586  
1587 1587  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1588 1588  
1589 -(% style="color:red" %)**Red:  12~~24V**
1581 +(% style="color:red" %)**Red:  12~~24v**
1590 1590  
1591 1591  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1592 1592  
... ... @@ -1599,7 +1599,7 @@
1599 1599  [[image:1653357648330-671.png||height="155" width="733"]]
1600 1600  
1601 1601  
1602 -Example: Connecting to a regulated power supply to measure voltage
1594 +Example connected to a regulated power supply to measure voltage
1603 1603  
1604 1604  [[image:image-20230608101532-1.png||height="606" width="447"]]
1605 1605  
... ... @@ -1608,7 +1608,7 @@
1608 1608  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1609 1609  
1610 1610  
1611 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1603 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1612 1612  
1613 1613  (% style="color:red" %)**Red:  12~~24v**
1614 1614  
... ... @@ -1619,9 +1619,9 @@
1619 1619  
1620 1620  
1621 1621  (((
1622 -The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1614 +The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1623 1623  
1624 -**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1616 +**Note**: RO pins go to Open(NO) when device is power off.
1625 1625  )))
1626 1626  
1627 1627  [[image:image-20220524100215-9.png]]
... ... @@ -1649,25 +1649,25 @@
1649 1649  Transmit a LoRa packet: TX blinks once
1650 1650  )))
1651 1651  )))
1652 -|**RX**|RX blinks once when receiving a packet.
1653 -|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 -|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1644 +|**RX**|RX blinks once when receive a packet.
1645 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1655 1655  |**DI1**|(((
1656 -For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1648 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1657 1657  )))
1658 1658  |**DI2**|(((
1659 -For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1651 +For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1660 1660  )))
1661 -|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 -|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1653 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1663 1663  
1664 -= 4. Using AT Command =
1656 += 4. Use AT Command =
1665 1665  
1666 -== 4.1 Connecting the LT-22222-L to a computer ==
1658 +== 4.1 Access AT Command ==
1667 1667  
1668 1668  
1669 1669  (((
1670 -The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1662 +LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1671 1671  )))
1672 1672  
1673 1673  [[image:1653358238933-385.png]]
... ... @@ -1674,7 +1674,7 @@
1674 1674  
1675 1675  
1676 1676  (((
1677 -On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1669 +In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1678 1678  )))
1679 1679  
1680 1680  [[image:1653358355238-883.png]]
... ... @@ -1681,12 +1681,10 @@
1681 1681  
1682 1682  
1683 1683  (((
1684 -You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1676 +More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1685 1685  )))
1686 1686  
1687 1687  (((
1688 -The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 -
1690 1690  AT+<CMD>?        : Help on <CMD>
1691 1691  )))
1692 1692  
... ... @@ -2011,10 +2011,10 @@
2011 2011  
2012 2012  = 5. Case Study =
2013 2013  
2014 -== 5.1 Counting how many objects pass through the flow Line ==
2004 +== 5.1 Counting how many objects pass in Flow Line ==
2015 2015  
2016 2016  
2017 -Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2007 +Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2018 2018  
2019 2019  
2020 2020  = 6. FAQ =
... ... @@ -2022,26 +2022,26 @@
2022 2022  == 6.1 How to upgrade the image? ==
2023 2023  
2024 2024  
2025 -The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2015 +The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2026 2026  
2027 -* Support new features.
2028 -* Fix bugs.
2017 +* Support new features
2018 +* For bug fix
2029 2029  * Change LoRaWAN bands.
2030 2030  
2031 -Below is the hardware connection setup for uploading an image to the LT:
2021 +Below shows the hardware connection for how to upload an image to the LT:
2032 2032  
2033 2033  [[image:1653359603330-121.png]]
2034 2034  
2035 2035  
2036 2036  (((
2037 -(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 -(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 -(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2027 +(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2028 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2029 +(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2040 2040  
2041 2041  
2042 2042  (((
2043 2043  (% style="color:blue" %)**For LT-22222-L**(%%):
2044 -Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2034 +Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2045 2045  )))
2046 2046  
2047 2047  
... ... @@ -2056,7 +2056,7 @@
2056 2056  [[image:image-20220524104033-15.png]]
2057 2057  
2058 2058  
2059 -(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2049 +(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2060 2060  
2061 2061  [[image:1653360054704-518.png||height="186" width="745"]]
2062 2062  
... ... @@ -2070,13 +2070,13 @@
2070 2070  )))
2071 2071  
2072 2072  (((
2073 -You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2063 +User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2074 2074  )))
2075 2075  
2076 2076  (((
2077 2077  
2078 2078  
2079 -== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2069 +== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2080 2080  
2081 2081  
2082 2082  )))
... ... @@ -2083,13 +2083,13 @@
2083 2083  
2084 2084  (((
2085 2085  (((
2086 -In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2076 +In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2087 2087  )))
2088 2088  )))
2089 2089  
2090 2090  (((
2091 2091  (((
2092 -Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2082 +Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2093 2093  
2094 2094  
2095 2095  )))
... ... @@ -2096,7 +2096,7 @@
2096 2096  )))
2097 2097  
2098 2098  (((
2099 -(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2089 +(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2100 2100  
2101 2101  
2102 2102  )))
... ... @@ -2153,7 +2153,7 @@
2153 2153  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2154 2154  
2155 2155  
2156 -== 6.5 Can I see the counting event in Serial? ==
2146 +== 6.5 Can I see counting event in Serial? ==
2157 2157  
2158 2158  
2159 2159  (((
... ... @@ -2160,10 +2160,10 @@
2160 2160  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2161 2161  
2162 2162  
2163 -== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2153 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2164 2164  
2165 2165  
2166 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2156 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2167 2167  
2168 2168  
2169 2169  )))
lt-22222-l-manually-p1.png
Size
... ... @@ -1,1 +1,1 @@
1 -306.6 KB
1 +310.3 KB
Content
lt-22222-l-manually-p2.png
Size
... ... @@ -1,1 +1,1 @@
1 -279.1 KB
1 +301.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0