<
From version < 163.1 >
edited by Dilisi S
on 2024/11/06 04:29
To version < 152.1 >
edited by Dilisi S
on 2024/10/31 23:13
>
Change comment: Oct 31 changes - part 1

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1. Introduction =
20 += 1.Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -40,9 +40,9 @@
40 40  
41 41  * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 -* Set up your own private LoRaWAN network.
43 +* Setup your own private LoRaWAN network.
44 44  
45 -> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degrees, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high-efficiency PA.
81 +* +14 dBm high efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remotely configure parameters via LoRaWAN Downlink
101 +* Remote configure parameters via LoRa Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering the LT-22222-L  ==
172 +== 2.3 Powering ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options are available:
208 +* Register LT-22222-L with that application. Two registration options available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches your device.
216 +** Select the **Frequency plan** that matches with your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 220  *
221 -** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -229,26 +229,19 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specifies manually** option as the input method.
233 -** Select the **Frequency plan** that matches your device.
232 +** Select the **Enter end device specified manually** option.
233 +** Select the **Frequency plan** that matches with your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 -** Select **Over the air activation (OTAA)** option under the **Activation mode**
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
239 239  
240 -[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 -
242 -
243 -* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 -* Enter **DevEUI** in the **DevEUI** field.
245 -* Enter **AppKey** in the **AppKey** field.
246 -* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 -* Under **After registration**, select the **View registered end device** option.
248 -
249 -[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 -
251 -
252 252  ==== Joining ====
253 253  
254 254  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -256,12 +256,12 @@
256 256  [[image:1653298044601-602.png||height="405" width="709"]]
257 257  
258 258  
259 -== 3.3 Uplink Payload formats ==
252 +== 3.3 Uplink Payload ==
260 260  
261 261  
262 -The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
255 +There are five working modes + one interrupt mode on LT for different type application:
263 263  
264 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
257 +* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 265  
266 266  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 267  
... ... @@ -277,7 +277,7 @@
277 277  
278 278  
279 279  (((
280 -The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
273 +The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
281 281  
282 282  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 283  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -295,23 +295,23 @@
295 295  )))
296 296  
297 297  (((
298 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
291 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 -|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
294 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 +|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
303 303  )))
304 304  
305 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 -* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
299 +* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
308 308  
309 -(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
302 +(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
310 310  
311 -For example, if the payload is: [[image:image-20220523175847-2.png]]
304 +For example if payload is: [[image:image-20220523175847-2.png]]
312 312  
313 313  
314 -**The interface values can be calculated as follows:  **
307 +**The value for the interface is:  **
315 315  
316 316  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317 317  
... ... @@ -321,32 +321,35 @@
321 321  
322 322  ACI2 channel current is 0x1300/1000=4.864mA
323 323  
324 -The last byte 0xAA= **10101010**(b) means,
317 +The last byte 0xAA= 10101010(B) means
325 325  
326 -* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 -* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 -* [1] DI3 - not used for LT-22222-L.
329 -* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 -* [1] DI1 channel input state:
331 -** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 -** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 -** DI1 LED is ON in both cases.
334 -* [0] DO3 - not used for LT-22222-L.
335 -* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 -* [0] DO1 channel output state:
337 -** DO1 is FLOATING when there is no load between DO1 and V+.
338 -** DO1 is HIGH when there is a load between DO1 and V+.
339 -** DO1 LED is OFF in both cases.
319 +* [1] RO1 relay channel is close and the RO1 LED is ON.
320 +* [0] RO2 relay channel is open and RO2 LED is OFF;
340 340  
322 +**LT22222-L:**
323 +
324 +* [1] DI2 channel is high input and DI2 LED is ON;
325 +* [0] DI1 channel is low input;
326 +
327 +* [0] DO3 channel output state
328 +** DO3 is float in case no load between DO3 and V+.;
329 +** DO3 is high in case there is load between DO3 and V+.
330 +** DO3 LED is off in both case
331 +* [1] DO2 channel output is low and DO2 LED is ON.
332 +* [0] DO1 channel output state
333 +** DO1 is float in case no load between DO1 and V+.;
334 +** DO1 is high in case there is load between DO1 and V+.
335 +** DO1 LED is off in both case
336 +
341 341  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
342 342  
343 343  
344 344  (((
345 -**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
341 +**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
346 346  )))
347 347  
348 348  (((
349 -The uplink payload is 11 bytes long.
345 +Total : 11 bytes payload
350 350  
351 351  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 352  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -356,26 +356,26 @@
356 356  )))
357 357  
358 358  (((
359 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
355 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
360 360  
361 361  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
358 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
364 364  
365 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
366 366  )))
367 367  
368 -* FIRST: Indicates that this is the first packet after joining the network.
369 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
364 +* FIRST: Indicate this is the first packet after join network.
365 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
370 370  
371 371  (((
372 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
368 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
373 373  
374 374  
375 375  )))
376 376  
377 377  (((
378 -**To activate this mode, run the following AT commands:**
374 +**To use counting mode, please run:**
379 379  )))
380 380  
381 381  (((
... ... @@ -396,17 +396,17 @@
396 396  (((
397 397  **For LT22222-L:**
398 398  
399 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
395 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
400 400  
401 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
397 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
402 402  
403 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
404 404  
405 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
406 406  
407 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
403 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
408 408  
409 -(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
405 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
410 410  )))
411 411  
412 412  
... ... @@ -413,7 +413,7 @@
413 413  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
414 414  
415 415  
416 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
412 +**LT22222-L**: This mode the DI1 is used as a counting pin.
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 419  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -424,24 +424,24 @@
424 424  )))|DIDORO*|Reserve|MOD
425 425  
426 426  (((
427 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
423 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
428 428  
429 429  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
426 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
432 432  )))
433 433  
434 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 -* FIRST: Indicates that this is the first packet after joining the network.
436 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
431 +* FIRST: Indicate this is the first packet after join network.
432 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 437  
438 438  (((
439 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
435 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
440 440  )))
441 441  
442 442  
443 443  (((
444 -**To activate this mode, run the following AT commands:**
440 +**To use counting mode, please run:**
445 445  )))
446 446  
447 447  (((
... ... @@ -454,9 +454,7 @@
454 454  )))
455 455  
456 456  (((
457 -AT Commands for counting:
458 -
459 -The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
453 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 460  )))
461 461  
462 462  
... ... @@ -464,11 +464,11 @@
464 464  
465 465  
466 466  (((
467 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
461 +**LT22222-L**: This mode the DI1 is used as a counting pin.
468 468  )))
469 469  
470 470  (((
471 -The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
465 +The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
472 472  
473 473  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 474  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -478,25 +478,25 @@
478 478  )))
479 479  
480 480  (((
481 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
475 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
482 482  
483 483  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
478 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
486 486  )))
487 487  
488 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 -* FIRST: Indicates that this is the first packet after joining the network.
490 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
483 +* FIRST: Indicate this is the first packet after join network.
484 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 491  
492 492  (((
493 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
487 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
494 494  
495 495  
496 496  )))
497 497  
498 498  (((
499 -**To activate this mode, run the following AT commands:**
493 +**To use this mode, please run:**
500 500  )))
501 501  
502 502  (((
... ... @@ -509,19 +509,19 @@
509 509  )))
510 510  
511 511  (((
512 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
513 513  )))
514 514  
515 515  (((
516 -**In addition to that, below are the commands for AVI1 Counting:**
510 +**Plus below command for AVI1 Counting:**
517 517  
518 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
512 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
519 519  
520 520  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
521 521  
522 522  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
523 523  
524 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
518 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
525 525  )))
526 526  
527 527  
... ... @@ -528,7 +528,7 @@
528 528  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
529 529  
530 530  
531 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 +**LT22222-L**: This mode the DI1 is used as a counting pin.
532 532  
533 533  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 534  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -543,25 +543,25 @@
543 543  )))|MOD
544 544  
545 545  (((
546 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
540 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
547 547  
548 548  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
543 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
550 550  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
551 551  )))
552 552  
553 -* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 -* FIRST: Indicates that this is the first packet after joining the network.
547 +* RO is for relay. ROx=1 : close, ROx=0 always open.
548 +* FIRST: Indicate this is the first packet after join network.
555 555  * (((
556 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
550 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
557 557  )))
558 558  
559 559  (((
560 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
554 +(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
561 561  )))
562 562  
563 563  (((
564 -**To activate this mode, run the following AT commands:**
558 +**To use this mode, please run:**
565 565  )))
566 566  
567 567  (((
... ... @@ -574,7 +574,7 @@
574 574  )))
575 575  
576 576  (((
577 -Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
571 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
578 578  )))
579 579  
580 580  
... ... @@ -581,23 +581,23 @@
581 581  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
582 582  
583 583  
584 -(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
578 +(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
585 585  
586 -For example, if you configured the following commands:
580 +For example, if user has configured below commands:
587 587  
588 588  * **AT+MOD=1 ** **~-~->**  The normal working mode
589 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
583 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
590 590  
591 -The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
585 +LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
592 592  
593 -1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 -1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
587 +1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 +1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
595 595  
596 -
597 597  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
598 598  
599 -(% style="color:#4f81bd" %)**Trigger based on voltage**:
600 600  
593 +(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 +
601 601  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
602 602  
603 603  
... ... @@ -608,8 +608,9 @@
608 608  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
609 609  
610 610  
611 -(% style="color:#4f81bd" %)**Trigger based on current**:
612 612  
606 +(% style="color:#4f81bd" %)**Trigger base on current**:
607 +
613 613  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
614 614  
615 615  
... ... @@ -618,6 +618,7 @@
618 618  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
619 619  
620 620  
616 +
621 621  (% style="color:#4f81bd" %)**Trigger base on DI status**:
622 622  
623 623  DI status trigger Flag.
... ... @@ -1415,26 +1415,26 @@
1415 1415  [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1416 1416  
1417 1417  
1418 -== 3.6 Interface Details ==
1414 +== 3.6 Interface Detail ==
1419 1419  
1420 1420  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1421 1421  
1422 1422  
1423 -Support NPN-type sensor
1419 +Support NPN Type sensor
1424 1424  
1425 1425  [[image:1653356991268-289.png]]
1426 1426  
1427 1427  
1428 -=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 +=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1429 1429  
1430 1430  
1431 1431  (((
1432 -The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 +The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1433 1433  )))
1434 1434  
1435 1435  (((
1436 1436  (((
1437 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 +Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1438 1438  
1439 1439  
1440 1440  )))
... ... @@ -1444,7 +1444,7 @@
1444 1444  
1445 1445  (((
1446 1446  (((
1447 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 +When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1448 1448  )))
1449 1449  )))
1450 1450  
... ... @@ -1453,22 +1453,22 @@
1453 1453  )))
1454 1454  
1455 1455  (((
1456 -(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 +(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1457 1457  )))
1458 1458  
1459 1459  (((
1460 -This type of sensor outputs a low (GND) signal when active.
1456 +This type of sensor will output a low signal GND when active.
1461 1461  )))
1462 1462  
1463 1463  * (((
1464 -Connect the sensor's output to DI1-
1460 +Connect sensor's output to DI1-
1465 1465  )))
1466 1466  * (((
1467 -Connect the sensor's VCC to DI1+.
1463 +Connect sensor's VCC to DI1+.
1468 1468  )))
1469 1469  
1470 1470  (((
1471 -When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 +So when sensor active, the current between NEC2501 pin1 and pin2 is
1472 1472  )))
1473 1473  
1474 1474  (((
... ... @@ -1476,7 +1476,7 @@
1476 1476  )))
1477 1477  
1478 1478  (((
1479 -For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 +If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1480 1480  )))
1481 1481  
1482 1482  (((
... ... @@ -1484,22 +1484,22 @@
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 +(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -This type of sensor outputs a high signal (e.g., 24V) when active.
1487 +This type of sensor will output a high signal (example 24v) when active.
1492 1492  )))
1493 1493  
1494 1494  * (((
1495 -Connect the sensor's output to DI1+
1491 +Connect sensor's output to DI1+
1496 1496  )))
1497 1497  * (((
1498 -Connect the sensor's GND DI1-.
1494 +Connect sensor's GND DI1-.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1503 1503  )))
1504 1504  
1505 1505  (((
... ... @@ -1507,7 +1507,7 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 +If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,22 +1515,22 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 +(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 +Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1523 1523  )))
1524 1524  
1525 1525  * (((
1526 -Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 +Connect sensor's output to DI1+ with a serial 50K resistor
1527 1527  )))
1528 1528  * (((
1529 -Connect the sensor's GND DI1-.
1525 +Connect sensor's GND DI1-.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,37 +1538,37 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 +If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1542 1542  )))
1543 1543  
1544 1544  
1545 -(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 +(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1546 1546  
1547 -From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1543 +From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1548 1548  
1549 -To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1545 +To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1550 1550  
1551 1551  [[image:image-20230616235145-1.png]]
1552 1552  
1553 -(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1549 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1554 1554  
1555 1555  [[image:image-20240219115718-1.png]]
1556 1556  
1557 1557  
1558 -=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1554 +=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1559 1559  
1560 1560  
1561 -(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1557 +(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1562 1562  
1563 -(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1559 +(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1564 1564  
1565 1565  [[image:1653357531600-905.png]]
1566 1566  
1567 1567  
1568 -=== 3.6.4 Analog Input Interfaces ===
1564 +=== 3.6.4 Analog Input Interface ===
1569 1569  
1570 1570  
1571 -The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1567 +The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1572 1572  
1573 1573  
1574 1574  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1575,14 +1575,14 @@
1575 1575  
1576 1576  [[image:1653357592296-182.png]]
1577 1577  
1578 -Example: Connecting a 4~~20mA sensor
1574 +Example to connect a 4~~20mA sensor
1579 1579  
1580 -We will use the wind speed sensor as an example for reference only.
1576 +We take the wind speed sensor as an example for reference only.
1581 1581  
1582 1582  
1583 1583  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1584 1584  
1585 -(% style="color:red" %)**Red:  12~~24V**
1581 +(% style="color:red" %)**Red:  12~~24v**
1586 1586  
1587 1587  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1588 1588  
... ... @@ -1595,7 +1595,7 @@
1595 1595  [[image:1653357648330-671.png||height="155" width="733"]]
1596 1596  
1597 1597  
1598 -Example: Connecting to a regulated power supply to measure voltage
1594 +Example connected to a regulated power supply to measure voltage
1599 1599  
1600 1600  [[image:image-20230608101532-1.png||height="606" width="447"]]
1601 1601  
... ... @@ -1604,7 +1604,7 @@
1604 1604  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1605 1605  
1606 1606  
1607 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1603 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1608 1608  
1609 1609  (% style="color:red" %)**Red:  12~~24v**
1610 1610  
... ... @@ -1615,9 +1615,9 @@
1615 1615  
1616 1616  
1617 1617  (((
1618 -The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1614 +The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1619 1619  
1620 -**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1616 +**Note**: RO pins go to Open(NO) when device is power off.
1621 1621  )))
1622 1622  
1623 1623  [[image:image-20220524100215-9.png]]
... ... @@ -1645,25 +1645,25 @@
1645 1645  Transmit a LoRa packet: TX blinks once
1646 1646  )))
1647 1647  )))
1648 -|**RX**|RX blinks once when receiving a packet.
1649 -|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 -|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1644 +|**RX**|RX blinks once when receive a packet.
1645 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1651 1651  |**DI1**|(((
1652 -For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1648 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1653 1653  )))
1654 1654  |**DI2**|(((
1655 -For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1651 +For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1656 1656  )))
1657 -|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 -|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1653 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1659 1659  
1660 -= 4. Using AT Command =
1656 += 4. Use AT Command =
1661 1661  
1662 -== 4.1 Connecting the LT-22222-L to a computer ==
1658 +== 4.1 Access AT Command ==
1663 1663  
1664 1664  
1665 1665  (((
1666 -The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1662 +LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1667 1667  )))
1668 1668  
1669 1669  [[image:1653358238933-385.png]]
... ... @@ -1670,7 +1670,7 @@
1670 1670  
1671 1671  
1672 1672  (((
1673 -On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1669 +In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1674 1674  )))
1675 1675  
1676 1676  [[image:1653358355238-883.png]]
... ... @@ -1677,12 +1677,10 @@
1677 1677  
1678 1678  
1679 1679  (((
1680 -You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1676 +More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1681 1681  )))
1682 1682  
1683 1683  (((
1684 -The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685 -
1686 1686  AT+<CMD>?        : Help on <CMD>
1687 1687  )))
1688 1688  
... ... @@ -2024,7 +2024,7 @@
2024 2024  * For bug fix
2025 2025  * Change LoRaWAN bands.
2026 2026  
2027 -Below is the hardware connection for how to upload an image to the LT:
2021 +Below shows the hardware connection for how to upload an image to the LT:
2028 2028  
2029 2029  [[image:1653359603330-121.png]]
2030 2030  
lt-22222-l-manually-p1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -279.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0