<
From version < 161.1 >
edited by Dilisi S
on 2024/11/04 17:36
To version < 148.1 >
edited by Dilisi S
on 2024/10/31 22:30
>
Change comment: Uploaded new attachment "thingseye-io-step-4.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -217,7 +217,7 @@
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 -*
220 +*
221 221  ** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
... ... @@ -229,26 +229,19 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specifies manually** option as the input method.
232 +** Select the **Enter end device specified manually** option.
233 233  ** Select the **Frequency plan** that matches with your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 237  ** Select **Over the air activation (OTAA)** option under **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
239 239  
240 -[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 -
242 -
243 -* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 -* Enter **DevEUI** in the **DevEUI** field.
245 -* Enter **AppKey** in the **AppKey** field.
246 -* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 -* Under **After registration**, select the **View registered end device** option.
248 -
249 -[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 -
251 -
252 252  ==== Joining ====
253 253  
254 254  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -256,12 +256,12 @@
256 256  [[image:1653298044601-602.png||height="405" width="709"]]
257 257  
258 258  
259 -== 3.3 Uplink Payload formats ==
252 +== 3.3 Uplink Payload ==
260 260  
261 261  
262 -The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
255 +There are five working modes + one interrupt mode on LT for different type application:
263 263  
264 -* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
257 +* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 265  
266 266  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 267  
... ... @@ -277,7 +277,7 @@
277 277  
278 278  
279 279  (((
280 -The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
273 +The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
281 281  
282 282  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 283  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -295,23 +295,23 @@
295 295  )))
296 296  
297 297  (((
298 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
291 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 -|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
294 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 +|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
303 303  )))
304 304  
305 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 -* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
299 +* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
308 308  
309 -(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
302 +(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
310 310  
311 -For example, if the payload is: [[image:image-20220523175847-2.png]]
304 +For example if payload is: [[image:image-20220523175847-2.png]]
312 312  
313 313  
314 -**The interface values can be calculated as follows:  **
307 +**The value for the interface is:  **
315 315  
316 316  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
317 317  
... ... @@ -321,35 +321,35 @@
321 321  
322 322  ACI2 channel current is 0x1300/1000=4.864mA
323 323  
324 -The last byte 0xAA= 10101010(b) means,
317 +The last byte 0xAA= 10101010(B) means
325 325  
326 -* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 -* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 -* [1] DI3 - not used for LT-22222-L.
329 -* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 -* [1] DI1 channel input state:
331 -** DI1 is floating when there is no load between DI1 and V+.
332 -** DI1 is high when there is load between DI1 and V+.
333 -** DI1 LED is ON in both cases.
334 -* [0] DO3 channel output state:
335 -** DO3 is float in case no load between DO3 and V+.
319 +* [1] RO1 relay channel is close and the RO1 LED is ON.
320 +* [0] RO2 relay channel is open and RO2 LED is OFF;
321 +
322 +**LT22222-L:**
323 +
324 +* [1] DI2 channel is high input and DI2 LED is ON;
325 +* [0] DI1 channel is low input;
326 +
327 +* [0] DO3 channel output state
328 +** DO3 is float in case no load between DO3 and V+.;
336 336  ** DO3 is high in case there is load between DO3 and V+.
337 -** DO3 LED is OFF in both case
338 -* [1] DO2 channel output is low, and the DO2 LED is ON.
339 -* [0] DO1 channel output state:
340 -** DO1 is floating when there is no load between DO1 and V+.
341 -** DO1 is high when there is load between DO1 and V+.
342 -** DO1 LED is OFF in both case.
330 +** DO3 LED is off in both case
331 +* [1] DO2 channel output is low and DO2 LED is ON.
332 +* [0] DO1 channel output state
333 +** DO1 is float in case no load between DO1 and V+.;
334 +** DO1 is high in case there is load between DO1 and V+.
335 +** DO1 LED is off in both case
343 343  
344 344  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
345 345  
346 346  
347 347  (((
348 -**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
341 +**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
349 349  )))
350 350  
351 351  (((
352 -The uplink payload is 11 bytes long.
345 +Total : 11 bytes payload
353 353  
354 354  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
355 355  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -359,26 +359,26 @@
359 359  )))
360 360  
361 361  (((
362 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
355 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
363 363  
364 364  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
365 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
358 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
367 367  
368 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
369 369  )))
370 370  
371 -* FIRST: Indicates that this is the first packet after joining the network.
372 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
364 +* FIRST: Indicate this is the first packet after join network.
365 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
373 373  
374 374  (((
375 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
368 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
376 376  
377 377  
378 378  )))
379 379  
380 380  (((
381 -**To activate this mode, please run the following AT command:**
374 +**To use counting mode, please run:**
382 382  )))
383 383  
384 384  (((
... ... @@ -399,17 +399,17 @@
399 399  (((
400 400  **For LT22222-L:**
401 401  
402 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
395 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
403 403  
404 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
397 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
405 405  
406 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
407 407  
408 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
409 409  
410 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
403 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
411 411  
412 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
405 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
413 413  )))
414 414  
415 415  
... ... @@ -416,7 +416,7 @@
416 416  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
417 417  
418 418  
419 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
412 +**LT22222-L**: This mode the DI1 is used as a counting pin.
420 420  
421 421  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
422 422  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -427,16 +427,16 @@
427 427  )))|DIDORO*|Reserve|MOD
428 428  
429 429  (((
430 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
423 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
431 431  
432 432  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
426 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
435 435  )))
436 436  
437 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 -* FIRST: Indicates that this is the first packet after joining the network.
439 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
431 +* FIRST: Indicate this is the first packet after join network.
432 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
440 440  
441 441  (((
442 442  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -444,7 +444,7 @@
444 444  
445 445  
446 446  (((
447 -**To activate this mode, please run the following AT command:**
440 +**To use counting mode, please run:**
448 448  )))
449 449  
450 450  (((
... ... @@ -457,9 +457,7 @@
457 457  )))
458 458  
459 459  (((
460 -AT Commands for counting:
461 -
462 -The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
453 +Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
463 463  )))
464 464  
465 465  
... ... @@ -467,11 +467,11 @@
467 467  
468 468  
469 469  (((
470 -**LT22222-L**: In this mode, the DI1 is used as a counting pin.
461 +**LT22222-L**: This mode the DI1 is used as a counting pin.
471 471  )))
472 472  
473 473  (((
474 -The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
465 +The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
475 475  
476 476  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
477 477  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -481,16 +481,16 @@
481 481  )))
482 482  
483 483  (((
484 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
475 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
485 485  
486 486  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
487 -|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 -|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
478 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
489 489  )))
490 490  
491 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 -* FIRST: Indicates that this is the first packet after joining the network.
493 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
483 +* FIRST: Indicate this is the first packet after join network.
484 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
494 494  
495 495  (((
496 496  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -499,7 +499,7 @@
499 499  )))
500 500  
501 501  (((
502 -**To activate this mode, please run the following AT command:**
493 +**To use this mode, please run:**
503 503  )))
504 504  
505 505  (((
... ... @@ -516,9 +516,9 @@
516 516  )))
517 517  
518 518  (((
519 -**In addition to that, below are the commands for AVI1 Counting:**
510 +**Plus below command for AVI1 Counting:**
520 520  
521 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
512 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
522 522  
523 523  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524 524  
... ... @@ -1355,73 +1355,56 @@
1355 1355  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1356 1356  
1357 1357  
1358 -== 3.5 Integrating with ThingsEye.io ==
1349 +== 3.5 Integrate with Mydevice ==
1359 1359  
1360 -If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1361 1361  
1362 -=== 3.5.1 Configuring The Things Stack Sandbox ===
1352 +Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1363 1363  
1364 -* Go to your Application and select MQTT under Integrations.
1365 -* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 -* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1354 +(((
1355 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1356 +)))
1367 1367  
1368 -[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1358 +(((
1359 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1369 1369  
1370 -=== 3.5.2 Configuring ThingsEye.io ===
1361 +
1362 +)))
1371 1371  
1372 -* Login to your thingsEye.io account.
1373 -* Under the Integrations center, click Integrations.
1374 -* Click the Add integration button (the button with the + symbol).
1364 +[[image:image-20220719105525-1.png||height="377" width="677"]]
1375 1375  
1376 -[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1377 1377  
1378 1378  
1379 -On the Add integration page configure the following:
1368 +[[image:image-20220719110247-2.png||height="388" width="683"]]
1380 1380  
1381 -Basic settings:
1382 1382  
1383 -* Select The Things Stack Community from the Integration type list.
1384 -* Enter a suitable name for your integration in the Name box or keep the default name.
1385 -* Click the Next button.
1371 +(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1386 1386  
1387 -[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1373 +(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1388 1388  
1389 -Uplink Data converter:
1375 +Search under The things network
1390 1390  
1391 -* Click the Create New button if it is not selected by default.
1392 -* Click the JavaScript button.
1393 -* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 -* Click the Next button.
1377 +[[image:1653356838789-523.png||height="337" width="740"]]
1395 1395  
1396 -[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1397 1397  
1398 -Downlink Data converter (this is an optional step):
1380 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 1399  
1400 -* Click the Create new button if it is not selected by default.
1401 -* Click the JavaScript button.
1402 -* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 -* Click the Next button.
1382 +[[image:image-20220524094909-1.png||height="335" width="729"]]
1404 1404  
1405 -[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1406 1406  
1407 -Connection:
1385 +[[image:image-20220524094909-2.png||height="337" width="729"]]
1408 1408  
1409 -* Choose Region from the Host type.
1410 -* Enter the cluster of your The Things Stack in the Region textbox.
1411 -* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 -* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 -* Click the Add button.
1414 1414  
1415 -[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1388 +[[image:image-20220524094909-3.png||height="338" width="727"]]
1416 1416  
1417 1417  
1418 -Your integration is added to the integrations list and it will display on the Integrations page.
1391 +[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1419 1419  
1420 -[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1421 1421  
1394 +[[image:image-20220524094909-5.png||height="341" width="734"]]
1422 1422  
1423 -== 3.6 Interface Details ==
1424 1424  
1397 +== 3.6 Interface Detail ==
1398 +
1425 1425  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1426 1426  
1427 1427  
... ... @@ -1434,12 +1434,12 @@
1434 1434  
1435 1435  
1436 1436  (((
1437 -The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1411 +The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1438 1438  )))
1439 1439  
1440 1440  (((
1441 1441  (((
1442 -The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1416 +Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1443 1443  
1444 1444  
1445 1445  )))
... ... @@ -1449,7 +1449,7 @@
1449 1449  
1450 1450  (((
1451 1451  (((
1452 -(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1426 +When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1453 1453  )))
1454 1454  )))
1455 1455  
... ... @@ -1458,22 +1458,22 @@
1458 1458  )))
1459 1459  
1460 1460  (((
1461 -(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1435 +(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1462 1462  )))
1463 1463  
1464 1464  (((
1465 -This type of sensors outputs a low (GND) signal when active.
1439 +This type of sensor will output a low signal GND when active.
1466 1466  )))
1467 1467  
1468 1468  * (((
1469 -Connect the sensor's output to DI1-
1443 +Connect sensor's output to DI1-
1470 1470  )))
1471 1471  * (((
1472 -Connect the sensor's VCC to DI1+.
1446 +Connect sensor's VCC to DI1+.
1473 1473  )))
1474 1474  
1475 1475  (((
1476 -When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1450 +So when sensor active, the current between NEC2501 pin1 and pin2 is
1477 1477  )))
1478 1478  
1479 1479  (((
... ... @@ -1481,7 +1481,7 @@
1481 1481  )))
1482 1482  
1483 1483  (((
1484 -For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1458 +If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1485 1485  )))
1486 1486  
1487 1487  (((
... ... @@ -1489,22 +1489,22 @@
1489 1489  )))
1490 1490  
1491 1491  (((
1492 -(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1466 +(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1493 1493  )))
1494 1494  
1495 1495  (((
1496 -This type of sensors outputs a high signal (e.g., 24V) when active.
1470 +This type of sensor will output a high signal (example 24v) when active.
1497 1497  )))
1498 1498  
1499 1499  * (((
1500 -Connect the sensor's output to DI1+
1474 +Connect sensor's output to DI1+
1501 1501  )))
1502 1502  * (((
1503 -Connect the sensor's GND DI1-.
1477 +Connect sensor's GND DI1-.
1504 1504  )))
1505 1505  
1506 1506  (((
1507 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1481 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1508 1508  )))
1509 1509  
1510 1510  (((
... ... @@ -1512,7 +1512,7 @@
1512 1512  )))
1513 1513  
1514 1514  (((
1515 -If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1489 +If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1516 1516  )))
1517 1517  
1518 1518  (((
... ... @@ -1520,22 +1520,22 @@
1520 1520  )))
1521 1521  
1522 1522  (((
1523 -(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1497 +(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1524 1524  )))
1525 1525  
1526 1526  (((
1527 -Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1501 +Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1528 1528  )))
1529 1529  
1530 1530  * (((
1531 -Connect the sensor's output to DI1+ with a 50K resistor in series.
1505 +Connect sensor's output to DI1+ with a serial 50K resistor
1532 1532  )))
1533 1533  * (((
1534 -Connect the sensor's GND DI1-.
1508 +Connect sensor's GND DI1-.
1535 1535  )))
1536 1536  
1537 1537  (((
1538 -When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1512 +So when sensor active, the current between NEC2501 pin1 and pin2 is:
1539 1539  )))
1540 1540  
1541 1541  (((
... ... @@ -1543,19 +1543,19 @@
1543 1543  )))
1544 1544  
1545 1545  (((
1546 -If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1520 +If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1547 1547  )))
1548 1548  
1549 1549  
1550 -(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1524 +(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1551 1551  
1552 -From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1526 +From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1553 1553  
1554 -To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1528 +To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1555 1555  
1556 1556  [[image:image-20230616235145-1.png]]
1557 1557  
1558 -(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1532 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1559 1559  
1560 1560  [[image:image-20240219115718-1.png]]
1561 1561  
lt-22222-l-manually-p1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -279.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.pradeeka
Size
... ... @@ -1,1 +1,0 @@
1 -306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0