<
From version < 160.1 >
edited by Dilisi S
on 2024/11/02 05:25
To version < 165.1 >
edited by Dilisi S
on 2024/11/06 22:47
>
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering ==
172 +== 2.3 Powering the LT-22222-L ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options available:
208 +* Register LT-22222-L with that application. Two registration options are available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches with your device.
216 +** Select the **Frequency plan** that matches your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 220  *
221 -** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -230,17 +230,17 @@
230 230  
231 231  * On the **Register end device** page:
232 232  ** Select the **Enter end device specifies manually** option as the input method.
233 -** Select the **Frequency plan** that matches with your device.
233 +** Select the **Frequency plan** that matches your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 236  ** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 -** Select **Over the air activation (OTAA)** option under **Activation mode**
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 239  
240 240  [[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 241  
242 242  
243 -* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 244  * Enter **DevEUI** in the **DevEUI** field.
245 245  * Enter **AppKey** in the **AppKey** field.
246 246  * In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -259,7 +259,7 @@
259 259  == 3.3 Uplink Payload formats ==
260 260  
261 261  
262 -The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
263 263  
264 264  * (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265 265  
... ... @@ -277,7 +277,7 @@
277 277  
278 278  
279 279  (((
280 -The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281 281  
282 282  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 283  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -295,7 +295,7 @@
295 295  )))
296 296  
297 297  (((
298 -(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
299 299  
300 300  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 301  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -302,7 +302,7 @@
302 302  |RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
303 303  )))
304 304  
305 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 306  * DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 307  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
308 308  
... ... @@ -321,25 +321,22 @@
321 321  
322 322  ACI2 channel current is 0x1300/1000=4.864mA
323 323  
324 -The last byte 0xAA= 10101010(b) means,
324 +The last byte 0xAA= **10101010**(b) means,
325 325  
326 -* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 -* [0] RO2 relay channel is open, and RO2 LED is OFF.
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 328  * [1] DI3 - not used for LT-22222-L.
329 -* [0] DI2 channel input is low, and the DI2 LED is OFF.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 330  * [1] DI1 channel input state:
331 -** DI1 is floating when there is no load between DI1 and V+.
332 -** DI1 is high when there is load between DI1 and V+.
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 333  ** DI1 LED is ON in both cases.
334 -* [0] DO3 channel output state:
335 -** DO3 is float in case no load between DO3 and V+.
336 -** DO3 is high in case there is load between DO3 and V+.
337 -** DO3 LED is OFF in both case
338 -* [1] DO2 channel output is low, and the DO2 LED is ON.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
339 339  * [0] DO1 channel output state:
340 -** DO1 is floating when there is no load between DO1 and V+.
341 -** DO1 is high when there is load between DO1 and V+.
342 -** DO1 LED is OFF in both case.
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
343 343  
344 344  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
345 345  
... ... @@ -359,13 +359,13 @@
359 359  )))
360 360  
361 361  (((
362 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
363 363  
364 364  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
365 365  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 366  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
367 367  
368 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
369 369  )))
370 370  
371 371  * FIRST: Indicates that this is the first packet after joining the network.
... ... @@ -378,7 +378,7 @@
378 378  )))
379 379  
380 380  (((
381 -**To activate this mode, please run the following AT command:**
378 +**To activate this mode, run the following AT commands:**
382 382  )))
383 383  
384 384  (((
... ... @@ -399,17 +399,17 @@
399 399  (((
400 400  **For LT22222-L:**
401 401  
402 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
403 403  
404 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
405 405  
406 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
407 407  
408 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
409 409  
410 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
411 411  
412 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
413 413  )))
414 414  
415 415  
... ... @@ -427,7 +427,7 @@
427 427  )))|DIDORO*|Reserve|MOD
428 428  
429 429  (((
430 -(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
431 431  
432 432  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
433 433  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -434,17 +434,17 @@
434 434  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
435 435  )))
436 436  
437 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
438 438  * FIRST: Indicates that this is the first packet after joining the network.
439 439  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
440 440  
441 441  (((
442 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
443 443  )))
444 444  
445 445  
446 446  (((
447 -**To activate this mode, please run the following AT command:**
444 +**To activate this mode, run the following AT commands:**
448 448  )))
449 449  
450 450  (((
... ... @@ -459,7 +459,7 @@
459 459  (((
460 460  AT Commands for counting:
461 461  
462 -The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
463 463  )))
464 464  
465 465  
... ... @@ -481,7 +481,7 @@
481 481  )))
482 482  
483 483  (((
484 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
485 485  
486 486  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
487 487  |**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
... ... @@ -488,18 +488,18 @@
488 488  |RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
489 489  )))
490 490  
491 -* RO is for relay. ROx=1 : closed, ROx=0 always open.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
492 492  * FIRST: Indicates that this is the first packet after joining the network.
493 493  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
494 494  
495 495  (((
496 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
497 497  
498 498  
499 499  )))
500 500  
501 501  (((
502 -**To activate this mode, please run the following AT command:**
499 +**To activate this mode, run the following AT commands:**
503 503  )))
504 504  
505 505  (((
... ... @@ -512,19 +512,19 @@
512 512  )))
513 513  
514 514  (((
515 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
516 516  )))
517 517  
518 518  (((
519 519  **In addition to that, below are the commands for AVI1 Counting:**
520 520  
521 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
522 522  
523 523  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
524 524  
525 525  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
526 526  
527 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
528 528  )))
529 529  
530 530  
... ... @@ -531,7 +531,7 @@
531 531  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
532 532  
533 533  
534 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
535 535  
536 536  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
537 537  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -546,25 +546,25 @@
546 546  )))|MOD
547 547  
548 548  (((
549 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
550 550  
551 551  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
552 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
553 553  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
554 554  )))
555 555  
556 -* RO is for relay. ROx=1 : close, ROx=0 always open.
557 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
558 558  * (((
559 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
560 560  )))
561 561  
562 562  (((
563 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
564 564  )))
565 565  
566 566  (((
567 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
568 568  )))
569 569  
570 570  (((
... ... @@ -577,7 +577,7 @@
577 577  )))
578 578  
579 579  (((
580 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
581 581  )))
582 582  
583 583  
... ... @@ -584,49 +584,46 @@
584 584  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
585 585  
586 586  
587 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
588 588  
589 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
590 590  
591 591  * **AT+MOD=1 ** **~-~->**  The normal working mode
592 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
593 593  
594 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
595 595  
596 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
597 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
598 598  
599 599  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
600 600  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
601 601  
602 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
603 -
604 604  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
605 605  
606 606  
607 607  **Example:**
608 608  
609 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
610 610  
611 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
612 612  
613 613  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
614 614  
615 -(% style="color:#4f81bd" %)**Trigger base on current**:
616 -
617 617  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
618 618  
619 619  
620 620  **Example:**
621 621  
622 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
623 623  
624 624  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
625 625  
626 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
627 627  
628 -DI status trigger Flag.
629 -
630 630  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
631 631  
632 632  
... ... @@ -635,39 +635,38 @@
635 635  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
636 636  
637 637  
638 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
639 639  
640 640  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
641 641  
642 642  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
643 643  
644 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
645 645  
646 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
647 647  
648 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
649 649  
650 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
651 651  
652 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
653 653  
654 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
655 655  
656 656  
657 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
658 658  
659 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
660 660  
661 661  
662 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
663 663  
664 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
665 665  
666 666  
667 -
668 668  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
669 669  
670 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
671 671  
672 672  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
673 673  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -681,10 +681,10 @@
681 681  MOD(6)
682 682  )))
683 683  
684 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
685 685  
686 686  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
687 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
688 688  |(((
689 689  AV1_LOW
690 690  )))|(((
... ... @@ -703,17 +703,17 @@
703 703  AC2_HIGH
704 704  )))
705 705  
706 -* Each bits shows if the corresponding trigger has been configured.
699 +* Each bit shows if the corresponding trigger has been configured.
707 707  
708 708  **Example:**
709 709  
710 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
711 711  
712 712  
713 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
714 714  
715 715  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
717 717  |(((
718 718  AV1_LOW
719 719  )))|(((
... ... @@ -732,11 +732,11 @@
732 732  AC2_HIGH
733 733  )))
734 734  
735 -* Each bits shows which status has been trigger on this uplink.
728 +* Each bit shows which status has been triggered on this uplink.
736 736  
737 737  **Example:**
738 738  
739 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
740 740  
741 741  
742 742  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -745,7 +745,7 @@
745 745  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
746 746  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
747 747  
748 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
749 749  
750 750  **Example:**
751 751  
... ... @@ -802,33 +802,37 @@
802 802  ==== 3.4.2.1 Set Transmit Interval ====
803 803  
804 804  
805 -Set device uplink interval.
798 +Sets the uplink interval of the device.
806 806  
807 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
808 808  
809 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
810 810  
804 +where N is the time in milliseconds.
811 811  
812 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
813 813  
814 814  
815 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
816 816  
817 817  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
818 818  
819 819  
820 820  
821 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
822 822  
823 823  
824 -Set work mode.
818 +Sets the work mode.
825 825  
826 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
827 827  
828 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
822 +Where N is the work mode.
829 829  
830 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
831 831  
826 +
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
828 +
832 832  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
833 833  
834 834  
... ... @@ -836,10 +836,12 @@
836 836  ==== 3.4.2.3 Poll an uplink ====
837 837  
838 838  
839 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
836 +Asks the device to send an uplink.
840 840  
841 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
842 842  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
841 +
843 843  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
844 844  
845 845  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -846,16 +846,16 @@
846 846  
847 847  
848 848  
849 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
850 850  
851 851  
852 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
853 853  
854 854  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
855 855  
856 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
857 857  
858 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
859 859  
860 860  
861 861  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -867,7 +867,7 @@
867 867  ==== 3.4.2.5 Poll trigger settings ====
868 868  
869 869  
870 -Poll trigger settings
869 +Polls the trigger settings
871 871  
872 872  * (% style="color:#037691" %)**AT Command:**
873 873  
... ... @@ -875,7 +875,7 @@
875 875  
876 876  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
877 877  
878 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
879 879  
880 880  
881 881  
... ... @@ -882,11 +882,11 @@
882 882  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
883 883  
884 884  
885 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
886 886  
887 887  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
888 888  
889 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
890 890  
891 891  
892 892  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -918,15 +918,15 @@
918 918  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
919 919  
920 920  
921 -Set DI2 trigger.
920 +Sets DI2 trigger.
922 922  
923 923  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
924 924  
925 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
926 926  
927 927  (% style="color:red" %)**b :** (%%)delay timing.
928 928  
929 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
930 930  
931 931  
932 932  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -964,7 +964,7 @@
964 964  ==== 3.4.2.11 Trigger – Set minimum interval ====
965 965  
966 966  
967 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
968 968  
969 969  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
970 970  
... ... @@ -1112,7 +1112,7 @@
1112 1112  )))
1113 1113  
1114 1114  (((
1115 -00: Close ,  01: Open , 11: No action
1114 +00: Closed ,  01: Open , 11: No action
1116 1116  
1117 1117  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1118 1118  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1234,7 +1234,7 @@
1234 1234  
1235 1235  
1236 1236  
1237 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1238 1238  
1239 1239  
1240 1240  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1420,26 +1420,26 @@
1420 1420  [[image:thingseye-io-step-6.png||height="625" width="1000"]]
1421 1421  
1422 1422  
1423 -== 3.6 Interface Detail ==
1422 +== 3.6 Interface Details ==
1424 1424  
1425 1425  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1426 1426  
1427 1427  
1428 -Support NPN Type sensor
1427 +Support NPN-type sensor
1429 1429  
1430 1430  [[image:1653356991268-289.png]]
1431 1431  
1432 1432  
1433 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1434 1434  
1435 1435  
1436 1436  (((
1437 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1438 1438  )))
1439 1439  
1440 1440  (((
1441 1441  (((
1442 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1443 1443  
1444 1444  
1445 1445  )))
... ... @@ -1449,7 +1449,7 @@
1449 1449  
1450 1450  (((
1451 1451  (((
1452 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1453 1453  )))
1454 1454  )))
1455 1455  
... ... @@ -1458,22 +1458,22 @@
1458 1458  )))
1459 1459  
1460 1460  (((
1461 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1462 1462  )))
1463 1463  
1464 1464  (((
1465 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1466 1466  )))
1467 1467  
1468 1468  * (((
1469 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1470 1470  )))
1471 1471  * (((
1472 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1473 1473  )))
1474 1474  
1475 1475  (((
1476 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1477 1477  )))
1478 1478  
1479 1479  (((
... ... @@ -1481,7 +1481,7 @@
1481 1481  )))
1482 1482  
1483 1483  (((
1484 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1485 1485  )))
1486 1486  
1487 1487  (((
... ... @@ -1489,22 +1489,22 @@
1489 1489  )))
1490 1490  
1491 1491  (((
1492 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1493 1493  )))
1494 1494  
1495 1495  (((
1496 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1497 1497  )))
1498 1498  
1499 1499  * (((
1500 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1501 1501  )))
1502 1502  * (((
1503 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1504 1504  )))
1505 1505  
1506 1506  (((
1507 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1508 1508  )))
1509 1509  
1510 1510  (((
... ... @@ -1512,7 +1512,7 @@
1512 1512  )))
1513 1513  
1514 1514  (((
1515 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1516 1516  )))
1517 1517  
1518 1518  (((
... ... @@ -1520,22 +1520,22 @@
1520 1520  )))
1521 1521  
1522 1522  (((
1523 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1524 1524  )))
1525 1525  
1526 1526  (((
1527 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1528 1528  )))
1529 1529  
1530 1530  * (((
1531 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1532 1532  )))
1533 1533  * (((
1534 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1535 1535  )))
1536 1536  
1537 1537  (((
1538 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1539 1539  )))
1540 1540  
1541 1541  (((
... ... @@ -1543,37 +1543,37 @@
1543 1543  )))
1544 1544  
1545 1545  (((
1546 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1547 1547  )))
1548 1548  
1549 1549  
1550 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1551 1551  
1552 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1553 1553  
1554 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1555 1555  
1556 1556  [[image:image-20230616235145-1.png]]
1557 1557  
1558 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1559 1559  
1560 1560  [[image:image-20240219115718-1.png]]
1561 1561  
1562 1562  
1563 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1564 1564  
1565 1565  
1566 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1567 1567  
1568 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1569 1569  
1570 1570  [[image:1653357531600-905.png]]
1571 1571  
1572 1572  
1573 -=== 3.6.4 Analog Input Interface ===
1572 +=== 3.6.4 Analog Input Interfaces ===
1574 1574  
1575 1575  
1576 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1577 1577  
1578 1578  
1579 1579  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1580,14 +1580,14 @@
1580 1580  
1581 1581  [[image:1653357592296-182.png]]
1582 1582  
1583 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1584 1584  
1585 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1586 1586  
1587 1587  
1588 1588  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1589 1589  
1590 -(% style="color:red" %)**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1591 1591  
1592 1592  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1593 1593  
... ... @@ -1600,7 +1600,7 @@
1600 1600  [[image:1653357648330-671.png||height="155" width="733"]]
1601 1601  
1602 1602  
1603 -Example connected to a regulated power supply to measure voltage
1602 +Example: Connecting to a regulated power supply to measure voltage
1604 1604  
1605 1605  [[image:image-20230608101532-1.png||height="606" width="447"]]
1606 1606  
... ... @@ -1609,7 +1609,7 @@
1609 1609  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1610 1610  
1611 1611  
1612 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1613 1613  
1614 1614  (% style="color:red" %)**Red:  12~~24v**
1615 1615  
... ... @@ -1620,9 +1620,9 @@
1620 1620  
1621 1621  
1622 1622  (((
1623 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1624 1624  
1625 -**Note**: RO pins go to Open(NO) when device is power off.
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1626 1626  )))
1627 1627  
1628 1628  [[image:image-20220524100215-9.png]]
... ... @@ -1650,25 +1650,25 @@
1650 1650  Transmit a LoRa packet: TX blinks once
1651 1651  )))
1652 1652  )))
1653 -|**RX**|RX blinks once when receive a packet.
1654 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1656 1656  |**DI1**|(((
1657 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1658 1658  )))
1659 1659  |**DI2**|(((
1660 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1661 1661  )))
1662 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1664 1664  
1665 -= 4. Use AT Command =
1664 += 4. Using AT Command =
1666 1666  
1667 -== 4.1 Access AT Command ==
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1668 1668  
1669 1669  
1670 1670  (((
1671 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1672 1672  )))
1673 1673  
1674 1674  [[image:1653358238933-385.png]]
... ... @@ -1675,7 +1675,7 @@
1675 1675  
1676 1676  
1677 1677  (((
1678 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1679 1679  )))
1680 1680  
1681 1681  [[image:1653358355238-883.png]]
... ... @@ -1682,10 +1682,12 @@
1682 1682  
1683 1683  
1684 1684  (((
1685 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1686 1686  )))
1687 1687  
1688 1688  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1689 1689  AT+<CMD>?        : Help on <CMD>
1690 1690  )))
1691 1691  
... ... @@ -2010,10 +2010,10 @@
2010 2010  
2011 2011  = 5. Case Study =
2012 2012  
2013 -== 5.1 Counting how many objects pass in Flow Line ==
2014 +== 5.1 Counting how many objects pass through the flow Line ==
2014 2014  
2015 2015  
2016 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2017 2017  
2018 2018  
2019 2019  = 6. FAQ =
... ... @@ -2021,26 +2021,26 @@
2021 2021  == 6.1 How to upgrade the image? ==
2022 2022  
2023 2023  
2024 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2025 2025  
2026 -* Support new features
2027 -* For bug fix
2027 +* Support new features.
2028 +* Fix bugs.
2028 2028  * Change LoRaWAN bands.
2029 2029  
2030 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
2031 2031  
2032 2032  [[image:1653359603330-121.png]]
2033 2033  
2034 2034  
2035 2035  (((
2036 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2037 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2038 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2039 2039  
2040 2040  
2041 2041  (((
2042 2042  (% style="color:blue" %)**For LT-22222-L**(%%):
2043 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2044 2044  )))
2045 2045  
2046 2046  
... ... @@ -2055,7 +2055,7 @@
2055 2055  [[image:image-20220524104033-15.png]]
2056 2056  
2057 2057  
2058 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2059 2059  
2060 2060  [[image:1653360054704-518.png||height="186" width="745"]]
2061 2061  
... ... @@ -2069,13 +2069,13 @@
2069 2069  )))
2070 2070  
2071 2071  (((
2072 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2073 2073  )))
2074 2074  
2075 2075  (((
2076 2076  
2077 2077  
2078 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2079 2079  
2080 2080  
2081 2081  )))
... ... @@ -2082,13 +2082,13 @@
2082 2082  
2083 2083  (((
2084 2084  (((
2085 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2086 2086  )))
2087 2087  )))
2088 2088  
2089 2089  (((
2090 2090  (((
2091 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2092 2092  
2093 2093  
2094 2094  )))
... ... @@ -2095,7 +2095,7 @@
2095 2095  )))
2096 2096  
2097 2097  (((
2098 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2099 2099  
2100 2100  
2101 2101  )))
... ... @@ -2152,7 +2152,7 @@
2152 2152  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2153 2153  
2154 2154  
2155 -== 6.5 Can I see counting event in Serial? ==
2156 +== 6.5 Can I see the counting event in Serial? ==
2156 2156  
2157 2157  
2158 2158  (((
... ... @@ -2159,10 +2159,10 @@
2159 2159  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2160 2160  
2161 2161  
2162 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2163 2163  
2164 2164  
2165 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 2166  
2167 2167  
2168 2168  )))
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0