<
From version < 157.1 >
edited by Dilisi S
on 2024/11/01 04:54
To version < 179.1 >
edited by Dilisi S
on 2024/11/09 05:29
>
Change comment: Nov 8 edit FAQ and Troubleshooting sections

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -33,8 +33,6 @@
33 33  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 34  )))
35 35  
36 -> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37 -
38 38  (((
39 39  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40 40  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -59,16 +59,16 @@
59 59  * SX1276/78 Wireless Chip 
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 -** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 -* 2 x 0~~30V Analog Input (res:0.01v)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
72 72  * Power Input 7~~ 24V DC. 
73 73  
74 74  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high efficiency PA.
79 +* +14 dBm high-efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remote configure parameters via LoRa Downlink
99 +* Remotely configure parameters via LoRaWAN Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -136,10 +136,10 @@
136 136  
137 137  * 1 x LT-22222-L I/O Controller
138 138  * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 -* 1 x bracket for wall mounting
137 +* 1 x bracket for DIN rail mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering ==
170 +== 2.3 Powering the LT-22222-L ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,15 +181,15 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
190 190  == 3.2 Registering with a LoRaWAN network server ==
191 191  
192 -The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
193 193  
194 194  [[image:image-20220523172350-1.png||height="266" width="864"]]
195 195  
... ... @@ -205,20 +205,23 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options available:
206 +* Register LT-22222-L with that application. Two registration options are available:
209 209  
210 -==== Using the LoRaWAN Device Repository: ====
208 +==== ====
211 211  
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
211 +
212 212  * Go to your application and click on the **Register end device** button.
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches with your device.
216 +** Select the **Frequency plan** that matches your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 -*
221 -** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
220 +
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -226,36 +226,68 @@
226 226  
227 227  [[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
228 228  
229 -==== Entering device information manually: ====
230 +==== ====
230 230  
232 +==== 3.2.2.2 Entering device information manually ====
233 +
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specified manually** option.
233 -** Select the **Frequency plan** that matches with your device.
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 -** Select **Over the air activation (OTAA)** option under **Activation mode**
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 -** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
242 +
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
244 +
245 +
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
240 240  ** Enter **DevEUI** in the **DevEUI** field.
241 241  ** Enter **AppKey** in the **AppKey** field.
242 242  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 243  ** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
244 244  
245 -==== Joining ====
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
246 246  
247 -Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
248 248  
249 -[[image:1653298044601-602.png||height="405" width="709"]]
257 +You will be navigated to the **Device overview** page.
250 250  
251 251  
252 -== 3.3 Uplink Payload ==
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
253 253  
254 254  
255 -There are five working modes + one interrupt mode on LT for different type application:
263 +==== 3.2.2.3 Joining ====
256 256  
257 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
258 258  
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
259 259  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
260 260  
261 261  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -266,12 +266,15 @@
266 266  
267 267  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
268 268  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
269 269  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
270 270  
271 -
272 272  (((
273 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
274 274  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
275 275  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
276 276  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
277 277  |Value|(((
... ... @@ -282,29 +282,29 @@
282 282  ACI1 Current
283 283  )))|(((
284 284  ACI2 Current
285 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
286 286  Reserve
287 287  )))|MOD
288 288  )))
289 289  
290 290  (((
291 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
292 292  
293 293  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
294 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
296 296  )))
297 297  
298 -* RO is for relay. ROx=1 : close, ROx=0 always open.
299 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
301 301  
302 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
303 303  
304 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
305 305  
306 306  
307 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
308 308  
309 309  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
310 310  
... ... @@ -314,35 +314,32 @@
314 314  
315 315  ACI2 channel current is 0x1300/1000=4.864mA
316 316  
317 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
318 318  
319 -* [1] RO1 relay channel is close and the RO1 LED is ON.
320 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
321 321  
322 -**LT22222-L:**
323 -
324 -* [1] DI2 channel is high input and DI2 LED is ON;
325 -* [0] DI1 channel is low input;
326 -
327 -* [0] DO3 channel output state
328 -** DO3 is float in case no load between DO3 and V+.;
329 -** DO3 is high in case there is load between DO3 and V+.
330 -** DO3 LED is off in both case
331 -* [1] DO2 channel output is low and DO2 LED is ON.
332 -* [0] DO1 channel output state
333 -** DO1 is float in case no load between DO1 and V+.;
334 -** DO1 is high in case there is load between DO1 and V+.
335 -** DO1 LED is off in both case
336 -
337 337  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
338 338  
339 339  
340 340  (((
341 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
342 342  )))
343 343  
344 344  (((
345 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
346 346  
347 347  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 348  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -352,26 +352,26 @@
352 352  )))
353 353  
354 354  (((
355 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
356 356  
357 357  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
358 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
360 360  
361 -RO is for relay. ROx=1 : close , ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
362 362  )))
363 363  
364 -* FIRST: Indicate this is the first packet after join network.
365 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
366 366  
367 367  (((
368 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
369 369  
370 370  
371 371  )))
372 372  
373 373  (((
374 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
375 375  )))
376 376  
377 377  (((
... ... @@ -392,17 +392,17 @@
392 392  (((
393 393  **For LT22222-L:**
394 394  
395 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
396 396  
397 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
398 398  
399 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
400 400  
401 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
402 402  
403 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
404 404  
405 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
406 406  )))
407 407  
408 408  
... ... @@ -409,7 +409,7 @@
409 409  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410 410  
411 411  
412 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 415  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -420,24 +420,24 @@
420 420  )))|DIDORO*|Reserve|MOD
421 421  
422 422  (((
423 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
424 424  
425 425  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
428 428  )))
429 429  
430 -* RO is for relay. ROx=1 : close, ROx=0 always open.
431 -* FIRST: Indicate this is the first packet after join network.
432 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
433 433  
434 434  (((
435 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
436 436  )))
437 437  
438 438  
439 439  (((
440 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
441 441  )))
442 442  
443 443  (((
... ... @@ -450,7 +450,9 @@
450 450  )))
451 451  
452 452  (((
453 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
454 454  )))
455 455  
456 456  
... ... @@ -458,11 +458,11 @@
458 458  
459 459  
460 460  (((
461 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
462 462  )))
463 463  
464 464  (((
465 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
466 466  
467 467  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
468 468  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,25 +472,25 @@
472 472  )))
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
488 488  
489 489  
490 490  )))
491 491  
492 492  (((
493 -**To use this mode, please run:**
528 +**To activate this mode, run the following AT commands:**
494 494  )))
495 495  
496 496  (((
... ... @@ -503,19 +503,19 @@
503 503  )))
504 504  
505 505  (((
506 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
507 507  )))
508 508  
509 509  (((
510 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
511 511  
512 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
513 513  
514 514  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
515 515  
516 516  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
517 517  
518 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
519 519  )))
520 520  
521 521  
... ... @@ -522,7 +522,7 @@
522 522  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523 523  
524 524  
525 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
526 526  
527 527  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
528 528  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -537,25 +537,25 @@
537 537  )))|MOD
538 538  
539 539  (((
540 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
541 541  
542 542  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
543 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
544 544  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
545 545  )))
546 546  
547 -* RO is for relay. ROx=1 : close, ROx=0 always open.
548 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
549 549  * (((
550 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
551 551  )))
552 552  
553 553  (((
554 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
555 555  )))
556 556  
557 557  (((
558 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
559 559  )))
560 560  
561 561  (((
... ... @@ -568,7 +568,7 @@
568 568  )))
569 569  
570 570  (((
571 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
572 572  )))
573 573  
574 574  
... ... @@ -575,49 +575,46 @@
575 575  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
576 576  
577 577  
578 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
579 579  
580 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
581 581  
582 582  * **AT+MOD=1 ** **~-~->**  The normal working mode
583 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
584 584  
585 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
586 586  
587 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
589 589  
590 590  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
591 591  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
592 592  
593 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 -
595 595  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
596 596  
597 597  
598 598  **Example:**
599 599  
600 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
601 601  
602 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
603 603  
604 604  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
605 605  
606 -(% style="color:#4f81bd" %)**Trigger base on current**:
607 -
608 608  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
609 609  
610 610  
611 611  **Example:**
612 612  
613 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
614 614  
615 615  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
616 616  
617 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
618 618  
619 -DI status trigger Flag.
620 -
621 621  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
622 622  
623 623  
... ... @@ -626,39 +626,38 @@
626 626  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
627 627  
628 628  
629 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
630 630  
631 631  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
632 632  
633 633  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
634 634  
635 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
636 636  
637 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
638 638  
639 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
640 640  
641 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
642 642  
643 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
644 644  
645 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
646 646  
647 647  
648 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
649 649  
650 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
651 651  
652 652  
653 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
654 654  
655 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
656 656  
657 657  
658 -
659 659  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
660 660  
661 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
662 662  
663 663  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
664 664  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -672,10 +672,10 @@
672 672  MOD(6)
673 673  )))
674 674  
675 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
676 676  
677 677  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
678 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
679 679  |(((
680 680  AV1_LOW
681 681  )))|(((
... ... @@ -694,17 +694,17 @@
694 694  AC2_HIGH
695 695  )))
696 696  
697 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
698 698  
699 699  **Example:**
700 700  
701 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
702 702  
703 703  
704 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
705 705  
706 706  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
707 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
708 708  |(((
709 709  AV1_LOW
710 710  )))|(((
... ... @@ -723,11 +723,11 @@
723 723  AC2_HIGH
724 724  )))
725 725  
726 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
727 727  
728 728  **Example:**
729 729  
730 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
731 731  
732 732  
733 733  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -736,7 +736,7 @@
736 736  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
737 737  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
738 738  
739 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
740 740  
741 741  **Example:**
742 742  
... ... @@ -763,11 +763,11 @@
763 763  )))
764 764  
765 765  
766 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
767 767  
768 768  
769 769  (((
770 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
771 771  )))
772 772  
773 773  (((
... ... @@ -782,9 +782,8 @@
782 782  
783 783  === 3.4.1 Common Commands ===
784 784  
785 -
786 786  (((
787 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
788 788  )))
789 789  
790 790  
... ... @@ -792,34 +792,37 @@
792 792  
793 793  ==== 3.4.2.1 Set Transmit Interval ====
794 794  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
795 795  
796 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
797 797  
798 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
799 799  
800 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
801 801  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
802 802  
803 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
804 804  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
805 805  
806 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
807 -
808 808  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
809 809  
810 810  
811 811  
812 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
813 813  
814 814  
815 -Set work mode.
845 +Sets the work mode.
816 816  
817 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
818 818  
819 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
820 820  
821 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
822 822  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
823 823  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
824 824  
825 825  
... ... @@ -827,10 +827,12 @@
827 827  ==== 3.4.2.3 Poll an uplink ====
828 828  
829 829  
830 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
831 831  
832 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
833 833  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
834 834  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
835 835  
836 836  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -837,16 +837,16 @@
837 837  
838 838  
839 839  
840 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
841 841  
842 842  
843 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
844 844  
845 845  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
846 846  
847 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
848 848  
849 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
850 850  
851 851  
852 852  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -858,7 +858,7 @@
858 858  ==== 3.4.2.5 Poll trigger settings ====
859 859  
860 860  
861 -Poll trigger settings
896 +Polls the trigger settings
862 862  
863 863  * (% style="color:#037691" %)**AT Command:**
864 864  
... ... @@ -866,7 +866,7 @@
866 866  
867 867  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
868 868  
869 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
870 870  
871 871  
872 872  
... ... @@ -873,11 +873,11 @@
873 873  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
874 874  
875 875  
876 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
877 877  
878 878  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
879 879  
880 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
881 881  
882 882  
883 883  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -909,15 +909,15 @@
909 909  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
910 910  
911 911  
912 -Set DI2 trigger.
947 +Sets DI2 trigger.
913 913  
914 914  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
915 915  
916 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
917 917  
918 918  (% style="color:red" %)**b :** (%%)delay timing.
919 919  
920 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
921 921  
922 922  
923 923  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -955,7 +955,7 @@
955 955  ==== 3.4.2.11 Trigger – Set minimum interval ====
956 956  
957 957  
958 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
959 959  
960 960  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
961 961  
... ... @@ -1103,7 +1103,7 @@
1103 1103  )))
1104 1104  
1105 1105  (((
1106 -00: Close ,  01: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1109 1109  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1225,7 +1225,7 @@
1225 1225  
1226 1226  
1227 1227  
1228 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1229 1229  
1230 1230  
1231 1231  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1348,89 +1348,142 @@
1348 1348  
1349 1349  == 3.5 Integrating with ThingsEye.io ==
1350 1350  
1351 -If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1352 1352  
1353 -=== 3.5.1 Configuring The Things Stack Sandbox ===
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1354 1354  
1355 -* Go to your Application and select MQTT under Integrations.
1356 -* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1357 -* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1358 1358  
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1396 +
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1398 +
1359 1359  [[image:tts-mqtt-integration.png||height="625" width="1000"]]
1360 1360  
1361 1361  === 3.5.2 Configuring ThingsEye.io ===
1362 1362  
1363 -* Login to your thingsEye.io account.
1364 -* Under the Integrations center, click Integrations.
1365 -* Click the Add integration button (the button with the + symbol).
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1366 1366  
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1408 +
1367 1367  [[image:thingseye-io-step-1.png||height="625" width="1000"]]
1368 1368  
1369 1369  
1370 -On the Add integration page configure the following:
1412 +On the **Add integration** window, configure the following:
1371 1371  
1372 -Basic settings:
1414 +**Basic settings:**
1373 1373  
1374 -* Select The Things Stack Community from the Integration type list.
1375 -* Enter a suitable name for your integration in the Name box or keep the default name.
1376 -* Click the Next button.
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1377 1377  
1378 1378  [[image:thingseye-io-step-2.png||height="625" width="1000"]]
1379 1379  
1380 -Uplink Data converter:
1381 1381  
1382 -* Click the Create New button if it is not selected by default.
1383 -* Click the JavaScript button.
1384 -* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1385 -* Click the Next button.
1427 +**Uplink data converter:**
1386 1386  
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1434 +
1387 1387  [[image:thingseye-io-step-3.png||height="625" width="1000"]]
1388 1388  
1389 -Downlink Data converter (this is an optional step):
1390 1390  
1391 -* Click the Create new button if it is not selected by default.
1392 -* Click the JavaScript button.
1393 -* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 -* Click the Next button.
1438 +**Downlink data converter (this is an optional step):**
1395 1395  
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1445 +
1396 1396  [[image:thingseye-io-step-4.png||height="625" width="1000"]]
1397 1397  
1398 -Connection:
1399 1399  
1400 -* Choose Region from the Host type.
1401 -* Enter the cluster of your The Things Stack in the Region textbox.
1402 -* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1403 -* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1404 -* Click the Add button.
1449 +**Connection:**
1405 1405  
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1455 +
1456 +[[image:message-1.png]]
1457 +
1458 +
1459 +* Click the **Add** button.
1460 +
1406 1406  [[image:thingseye-io-step-5.png||height="625" width="1000"]]
1407 1407  
1408 1408  
1409 -Your integration is added to the integrations list and it will display on the Integrations page.
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1410 1410  
1411 -[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1412 1412  
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1413 1413  
1414 -== 3.6 Interface Detail ==
1415 1415  
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1416 1416  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1417 1417  
1418 1418  
1419 -Support NPN Type sensor
1507 +Support NPN-type sensor
1420 1420  
1421 1421  [[image:1653356991268-289.png]]
1422 1422  
1423 1423  
1424 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1425 1425  
1426 1426  
1427 1427  (((
1428 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1429 1429  )))
1430 1430  
1431 1431  (((
1432 1432  (((
1433 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1434 1434  
1435 1435  
1436 1436  )))
... ... @@ -1440,7 +1440,7 @@
1440 1440  
1441 1441  (((
1442 1442  (((
1443 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1444 1444  )))
1445 1445  )))
1446 1446  
... ... @@ -1449,22 +1449,22 @@
1449 1449  )))
1450 1450  
1451 1451  (((
1452 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1453 1453  )))
1454 1454  
1455 1455  (((
1456 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1457 1457  )))
1458 1458  
1459 1459  * (((
1460 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1461 1461  )))
1462 1462  * (((
1463 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1464 1464  )))
1465 1465  
1466 1466  (((
1467 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1468 1468  )))
1469 1469  
1470 1470  (((
... ... @@ -1472,7 +1472,7 @@
1472 1472  )))
1473 1473  
1474 1474  (((
1475 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1476 1476  )))
1477 1477  
1478 1478  (((
... ... @@ -1480,22 +1480,22 @@
1480 1480  )))
1481 1481  
1482 1482  (((
1483 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1488 1488  )))
1489 1489  
1490 1490  * (((
1491 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1492 1492  )))
1493 1493  * (((
1494 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1495 1495  )))
1496 1496  
1497 1497  (((
1498 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1499 1499  )))
1500 1500  
1501 1501  (((
... ... @@ -1503,7 +1503,7 @@
1503 1503  )))
1504 1504  
1505 1505  (((
1506 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1507 1507  )))
1508 1508  
1509 1509  (((
... ... @@ -1511,22 +1511,22 @@
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1519 1519  )))
1520 1520  
1521 1521  * (((
1522 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1523 1523  )))
1524 1524  * (((
1525 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1526 1526  )))
1527 1527  
1528 1528  (((
1529 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1530 1530  )))
1531 1531  
1532 1532  (((
... ... @@ -1534,37 +1534,37 @@
1534 1534  )))
1535 1535  
1536 1536  (((
1537 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1538 1538  )))
1539 1539  
1540 1540  
1541 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1542 1542  
1543 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1544 1544  
1545 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1546 1546  
1547 1547  [[image:image-20230616235145-1.png]]
1548 1548  
1549 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1550 1550  
1551 1551  [[image:image-20240219115718-1.png]]
1552 1552  
1553 1553  
1554 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1555 1555  
1556 1556  
1557 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1558 1558  
1559 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1560 1560  
1561 1561  [[image:1653357531600-905.png]]
1562 1562  
1563 1563  
1564 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1565 1565  
1566 1566  
1567 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1568 1568  
1569 1569  
1570 1570  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1571,14 +1571,14 @@
1571 1571  
1572 1572  [[image:1653357592296-182.png]]
1573 1573  
1574 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1575 1575  
1576 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1577 1577  
1578 1578  
1579 1579  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1580 1580  
1581 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1582 1582  
1583 1583  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1584 1584  
... ... @@ -1591,7 +1591,7 @@
1591 1591  [[image:1653357648330-671.png||height="155" width="733"]]
1592 1592  
1593 1593  
1594 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1595 1595  
1596 1596  [[image:image-20230608101532-1.png||height="606" width="447"]]
1597 1597  
... ... @@ -1600,7 +1600,7 @@
1600 1600  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1601 1601  
1602 1602  
1603 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1604 1604  
1605 1605  (% style="color:red" %)**Red:  12~~24v**
1606 1606  
... ... @@ -1611,9 +1611,9 @@
1611 1611  
1612 1612  
1613 1613  (((
1614 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1615 1615  
1616 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1617 1617  )))
1618 1618  
1619 1619  [[image:image-20220524100215-9.png]]
... ... @@ -1641,25 +1641,25 @@
1641 1641  Transmit a LoRa packet: TX blinks once
1642 1642  )))
1643 1643  )))
1644 -|**RX**|RX blinks once when receive a packet.
1645 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1647 1647  |**DI1**|(((
1648 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1649 1649  )))
1650 1650  |**DI2**|(((
1651 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1652 1652  )))
1653 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1655 1655  
1656 -= 4. Use AT Command =
1744 += 4. Using AT Command =
1657 1657  
1658 -== 4.1 Access AT Command ==
1746 +== 4.1 Connecting the LT-22222-L to a computer ==
1659 1659  
1660 1660  
1661 1661  (((
1662 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1750 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1663 1663  )))
1664 1664  
1665 1665  [[image:1653358238933-385.png]]
... ... @@ -1666,7 +1666,7 @@
1666 1666  
1667 1667  
1668 1668  (((
1669 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1757 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1670 1670  )))
1671 1671  
1672 1672  [[image:1653358355238-883.png]]
... ... @@ -1673,10 +1673,12 @@
1673 1673  
1674 1674  
1675 1675  (((
1676 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1764 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1677 1677  )))
1678 1678  
1679 1679  (((
1768 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1769 +
1680 1680  AT+<CMD>?        : Help on <CMD>
1681 1681  )))
1682 1682  
... ... @@ -2001,37 +2001,49 @@
2001 2001  
2002 2002  = 5. Case Study =
2003 2003  
2004 -== 5.1 Counting how many objects pass in Flow Line ==
2094 +== 5.1 Counting how many objects pass through the flow Line ==
2005 2005  
2006 2006  
2007 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2097 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2008 2008  
2009 2009  
2010 2010  = 6. FAQ =
2011 2011  
2012 -== 6.1 How to upgrade the image? ==
2102 +== 6.1 How to update the firmware? ==
2013 2013  
2014 2014  
2015 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2105 +Dragino frequently releases firmware updates for the LT-22222-L.
2016 2016  
2107 +Updating your LT-22222-L with the latest firmware version helps to:
2108 +
2017 2017  * Support new features
2018 -* For bug fix
2019 -* Change LoRaWAN bands.
2110 +* Fix bugs
2111 +* Change LoRaWAN frequency bands
2020 2020  
2021 -Below shows the hardware connection for how to upload an image to the LT:
2113 +You will need the following things before proceeding:
2022 2022  
2115 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2116 +* USB to TTL adapter
2117 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2118 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2119 +
2120 +{{info}}
2121 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2122 +{{/info}}
2123 +
2124 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2125 +
2126 +
2023 2023  [[image:1653359603330-121.png]]
2024 2024  
2025 2025  
2026 -(((
2027 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2028 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2029 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2030 -
2130 +Start the STM32 Flash Loader and choose the correct COM port to update.
2031 2031  
2032 2032  (((
2133 +(((
2033 2033  (% style="color:blue" %)**For LT-22222-L**(%%):
2034 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2135 +
2136 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2035 2035  )))
2036 2036  
2037 2037  
... ... @@ -2046,7 +2046,7 @@
2046 2046  [[image:image-20220524104033-15.png]]
2047 2047  
2048 2048  
2049 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2151 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2050 2050  
2051 2051  [[image:1653360054704-518.png||height="186" width="745"]]
2052 2052  
... ... @@ -2053,7 +2053,7 @@
2053 2053  
2054 2054  (((
2055 2055  (((
2056 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2158 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2057 2057  
2058 2058  
2059 2059  )))
... ... @@ -2060,13 +2060,13 @@
2060 2060  )))
2061 2061  
2062 2062  (((
2063 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2165 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2064 2064  )))
2065 2065  
2066 2066  (((
2067 2067  
2068 2068  
2069 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2171 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2070 2070  
2071 2071  
2072 2072  )))
... ... @@ -2073,13 +2073,13 @@
2073 2073  
2074 2074  (((
2075 2075  (((
2076 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2178 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2077 2077  )))
2078 2078  )))
2079 2079  
2080 2080  (((
2081 2081  (((
2082 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2184 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2083 2083  
2084 2084  
2085 2085  )))
... ... @@ -2086,7 +2086,7 @@
2086 2086  )))
2087 2087  
2088 2088  (((
2089 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2191 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2090 2090  
2091 2091  
2092 2092  )))
... ... @@ -2143,61 +2143,56 @@
2143 2143  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2144 2144  
2145 2145  
2146 -== 6.5 Can I see counting event in Serial? ==
2248 +== 6.5 Can I see the counting event in the serial output? ==
2147 2147  
2148 2148  
2149 2149  (((
2150 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2252 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2151 2151  
2152 2152  
2153 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2255 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2154 2154  
2155 2155  
2156 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2157 -
2158 -
2258 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2159 2159  )))
2160 2160  
2161 2161  (((
2162 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2262 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2163 2163  
2164 2164  
2165 -If the device is not shut down, but directly powered off.
2265 +* If the device is not properly shut down and is directly powered off.
2266 +* It will default to a power-off state.
2267 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2268 +* After a restart, the status before the power failure will be read from flash.
2166 2166  
2167 -It will default that this is a power-off state.
2168 2168  
2169 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2271 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2170 2170  
2171 -After restart, the status before power failure will be read from flash.
2172 2172  
2274 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2173 2173  
2174 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2175 2175  
2176 -
2177 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2178 -
2179 -
2180 2180  [[image:image-20221006170630-1.png||height="610" width="945"]]
2181 2181  
2182 2182  
2183 -== 6.9 Can LT22222-L save RO state? ==
2280 +== 6.9 Can the LT-22222-L save the RO state? ==
2184 2184  
2185 2185  
2186 -Firmware version needs to be no less than 1.6.0.
2283 +The firmware version must be at least 1.6.0.
2187 2187  
2188 2188  
2189 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2286 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2190 2190  
2191 2191  
2192 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2289 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2193 2193  
2194 2194  
2195 -= 7. Trouble Shooting =
2292 += 7. Troubleshooting =
2196 2196  )))
2197 2197  
2198 2198  (((
2199 2199  (((
2200 -== 7.1 Downlink doesn't work, how to solve it? ==
2297 +== 7.1 Downlink isn't working. How can I solve this? ==
2201 2201  
2202 2202  
2203 2203  )))
... ... @@ -2204,42 +2204,42 @@
2204 2204  )))
2205 2205  
2206 2206  (((
2207 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2304 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2208 2208  )))
2209 2209  
2210 2210  (((
2211 2211  
2212 2212  
2213 -== 7.2 Have trouble to upload image. ==
2310 +== 7.2 Having trouble uploading an image? ==
2214 2214  
2215 2215  
2216 2216  )))
2217 2217  
2218 2218  (((
2219 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2316 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2220 2220  )))
2221 2221  
2222 2222  (((
2223 2223  
2224 2224  
2225 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2322 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2226 2226  
2227 2227  
2228 2228  )))
2229 2229  
2230 2230  (((
2231 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2328 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2232 2232  )))
2233 2233  
2234 2234  
2235 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2332 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2236 2236  
2237 2237  
2238 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2239 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2335 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2336 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2240 2240  
2241 2241  
2242 -= 8. Order Info =
2339 += 8. Ordering information =
2243 2243  
2244 2244  
2245 2245  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2246,43 +2246,44 @@
2246 2246  
2247 2247  (% style="color:#4f81bd" %)**XXX:**
2248 2248  
2249 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2250 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2251 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2252 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2253 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2254 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2255 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2256 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2257 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2346 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2347 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2348 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2349 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2350 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2351 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2352 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2353 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2354 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2258 2258  
2259 -= 9. Packing Info =
2260 2260  
2357 += 9. Packing information =
2261 2261  
2262 -**Package Includes**:
2263 2263  
2360 +**Package includes**:
2361 +
2264 2264  * LT-22222-L I/O Controller x 1
2265 2265  * Stick Antenna for LoRa RF part x 1
2266 2266  * Bracket for controller x1
2267 -* Program cable x 1
2365 +* 3.5mm Programming cable x 1
2268 2268  
2269 2269  **Dimension and weight**:
2270 2270  
2271 2271  * Device Size: 13.5 x 7 x 3 cm
2272 -* Device Weight: 105g
2370 +* Device Weight: 105 g
2273 2273  * Package Size / pcs : 14.5 x 8 x 5 cm
2274 -* Weight / pcs : 170g
2372 +* Weight / pcs : 170 g
2275 2275  
2374 +
2276 2276  = 10. Support =
2277 2277  
2278 2278  
2279 2279  * (((
2280 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2379 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2281 2281  )))
2282 2282  * (((
2283 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2382 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2284 2284  
2285 -
2286 2286  
2287 2287  )))
2288 2288  
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0