<
From version < 150.1 >
edited by Dilisi S
on 2024/10/31 22:47
To version < 163.1 >
edited by Dilisi S
on 2024/11/06 04:29
>
Change comment: minor edits set 1

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -40,9 +40,9 @@
40 40  
41 41  * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 -* Setup your own private LoRaWAN network.
43 +* Set up your own private LoRaWAN network.
44 44  
45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -169,9 +169,9 @@
169 169  |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 170  |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering ==
172 +== 2.3 Powering the LT-22222-L  ==
173 173  
174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 175  
176 176  
177 177  [[image:1653297104069-180.png]]
... ... @@ -181,9 +181,9 @@
181 181  
182 182  == 3.1 How does it work? ==
183 183  
184 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
185 185  
186 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
187 187  
188 188  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
189 189  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 207  * Create an application if you do not have one yet.
208 -* Register LT-22222-L with that application. Two registration options available:
208 +* Register LT-22222-L with that application. Two registration options are available:
209 209  
210 210  ==== Using the LoRaWAN Device Repository: ====
211 211  
... ... @@ -213,12 +213,12 @@
213 213  * On the **Register end device** page:
214 214  ** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 215  ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 -** Select the **Frequency plan** that matches with your device.
216 +** Select the **Frequency plan** that matches your device.
217 217  
218 218  [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
219 219  
220 -*
221 -** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 222  ** Enter the **DevEUI** in the **DevEUI** field.
223 223  ** Enter the **AppKey** in the **AppKey** field.
224 224  ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
... ... @@ -229,19 +229,26 @@
229 229  ==== Entering device information manually: ====
230 230  
231 231  * On the **Register end device** page:
232 -** Select the **Enter end device specified manually** option.
233 -** Select the **Frequency plan** that matches with your device.
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 234  ** Select the **LoRaWAN version**.
235 235  ** Select the **Regional Parameters version**.
236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 -** Select **Over the air activation (OTAA)** option under **Activation mode**
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 238  ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 -** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 -** Enter **DevEUI** in the **DevEUI** field.
241 -** Enter **AppKey** in the **AppKey** field.
242 -** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 -** Under **After registration**, select the **View registered end device** option.
244 244  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
241 +
242 +
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
248 +
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 +
251 +
245 245  ==== Joining ====
246 246  
247 247  Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
... ... @@ -249,12 +249,12 @@
249 249  [[image:1653298044601-602.png||height="405" width="709"]]
250 250  
251 251  
252 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
253 253  
254 254  
255 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
256 256  
257 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
258 258  
259 259  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
260 260  
... ... @@ -270,7 +270,7 @@
270 270  
271 271  
272 272  (((
273 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
274 274  
275 275  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
276 276  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -288,23 +288,23 @@
288 288  )))
289 289  
290 290  (((
291 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
292 292  
293 293  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
294 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
295 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
296 296  )))
297 297  
298 -* RO is for relay. ROx=1 : close, ROx=0 always open.
299 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
300 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
301 301  
302 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
303 303  
304 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
305 305  
306 306  
307 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
308 308  
309 309  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
310 310  
... ... @@ -314,35 +314,32 @@
314 314  
315 315  ACI2 channel current is 0x1300/1000=4.864mA
316 316  
317 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
318 318  
319 -* [1] RO1 relay channel is close and the RO1 LED is ON.
320 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
321 321  
322 -**LT22222-L:**
323 -
324 -* [1] DI2 channel is high input and DI2 LED is ON;
325 -* [0] DI1 channel is low input;
326 -
327 -* [0] DO3 channel output state
328 -** DO3 is float in case no load between DO3 and V+.;
329 -** DO3 is high in case there is load between DO3 and V+.
330 -** DO3 LED is off in both case
331 -* [1] DO2 channel output is low and DO2 LED is ON.
332 -* [0] DO1 channel output state
333 -** DO1 is float in case no load between DO1 and V+.;
334 -** DO1 is high in case there is load between DO1 and V+.
335 -** DO1 LED is off in both case
336 -
337 337  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
338 338  
339 339  
340 340  (((
341 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
342 342  )))
343 343  
344 344  (((
345 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
346 346  
347 347  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 348  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -352,26 +352,26 @@
352 352  )))
353 353  
354 354  (((
355 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
356 356  
357 357  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
358 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
359 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
360 360  
361 -RO is for relay. ROx=1 : close , ROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
362 362  )))
363 363  
364 -* FIRST: Indicate this is the first packet after join network.
365 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
366 366  
367 367  (((
368 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
369 369  
370 370  
371 371  )))
372 372  
373 373  (((
374 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
375 375  )))
376 376  
377 377  (((
... ... @@ -392,17 +392,17 @@
392 392  (((
393 393  **For LT22222-L:**
394 394  
395 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
396 396  
397 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
398 398  
399 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
400 400  
401 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
402 402  
403 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
404 404  
405 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
406 406  )))
407 407  
408 408  
... ... @@ -409,7 +409,7 @@
409 409  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
410 410  
411 411  
412 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 415  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -420,24 +420,24 @@
420 420  )))|DIDORO*|Reserve|MOD
421 421  
422 422  (((
423 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
424 424  
425 425  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
427 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
428 428  )))
429 429  
430 -* RO is for relay. ROx=1 : close, ROx=0 always open.
431 -* FIRST: Indicate this is the first packet after join network.
432 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
433 433  
434 434  (((
435 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
436 436  )))
437 437  
438 438  
439 439  (((
440 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
441 441  )))
442 442  
443 443  (((
... ... @@ -450,7 +450,9 @@
450 450  )))
451 451  
452 452  (((
453 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
454 454  )))
455 455  
456 456  
... ... @@ -458,11 +458,11 @@
458 458  
459 459  
460 460  (((
461 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
462 462  )))
463 463  
464 464  (((
465 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
466 466  
467 467  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
468 468  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,25 +472,25 @@
472 472  )))
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
488 488  
489 489  
490 490  )))
491 491  
492 492  (((
493 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
494 494  )))
495 495  
496 496  (((
... ... @@ -503,19 +503,19 @@
503 503  )))
504 504  
505 505  (((
506 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
507 507  )))
508 508  
509 509  (((
510 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
511 511  
512 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
513 513  
514 514  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
515 515  
516 516  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
517 517  
518 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
519 519  )))
520 520  
521 521  
... ... @@ -522,7 +522,7 @@
522 522  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
523 523  
524 524  
525 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
526 526  
527 527  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
528 528  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -537,25 +537,25 @@
537 537  )))|MOD
538 538  
539 539  (((
540 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
541 541  
542 542  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
543 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
544 544  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
545 545  )))
546 546  
547 -* RO is for relay. ROx=1 : close, ROx=0 always open.
548 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
549 549  * (((
550 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
551 551  )))
552 552  
553 553  (((
554 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
555 555  )))
556 556  
557 557  (((
558 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
559 559  )))
560 560  
561 561  (((
... ... @@ -568,7 +568,7 @@
568 568  )))
569 569  
570 570  (((
571 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
572 572  )))
573 573  
574 574  
... ... @@ -575,23 +575,23 @@
575 575  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
576 576  
577 577  
578 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
579 579  
580 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
581 581  
582 582  * **AT+MOD=1 ** **~-~->**  The normal working mode
583 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
584 584  
585 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
586 586  
587 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
588 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
589 589  
596 +
590 590  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
591 591  
599 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
592 592  
593 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
594 -
595 595  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
596 596  
597 597  
... ... @@ -602,9 +602,8 @@
602 602  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
603 603  
604 604  
611 +(% style="color:#4f81bd" %)**Trigger based on current**:
605 605  
606 -(% style="color:#4f81bd" %)**Trigger base on current**:
607 -
608 608  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
609 609  
610 610  
... ... @@ -613,7 +613,6 @@
613 613  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
614 614  
615 615  
616 -
617 617  (% style="color:#4f81bd" %)**Trigger base on DI status**:
618 618  
619 619  DI status trigger Flag.
... ... @@ -1346,74 +1346,91 @@
1346 1346  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1347 1347  
1348 1348  
1349 -== 3.5 Integrate with Mydevice ==
1353 +== 3.5 Integrating with ThingsEye.io ==
1350 1350  
1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1351 1351  
1352 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1357 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1353 1353  
1354 -(((
1355 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1356 -)))
1359 +* Go to your Application and select MQTT under Integrations.
1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1357 1357  
1358 -(((
1359 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1360 1360  
1361 -
1362 -)))
1365 +=== 3.5.2 Configuring ThingsEye.io ===
1363 1363  
1364 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1367 +* Login to your thingsEye.io account.
1368 +* Under the Integrations center, click Integrations.
1369 +* Click the Add integration button (the button with the + symbol).
1365 1365  
1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1366 1366  
1367 1367  
1368 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1374 +On the Add integration page configure the following:
1369 1369  
1376 +Basic settings:
1370 1370  
1371 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1378 +* Select The Things Stack Community from the Integration type list.
1379 +* Enter a suitable name for your integration in the Name box or keep the default name.
1380 +* Click the Next button.
1372 1372  
1373 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1374 1374  
1375 -Search under The things network
1384 +Uplink Data converter:
1376 1376  
1377 -[[image:1653356838789-523.png||height="337" width="740"]]
1386 +* Click the Create New button if it is not selected by default.
1387 +* Click the JavaScript button.
1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1389 +* Click the Next button.
1378 1378  
1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1379 1379  
1380 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1393 +Downlink Data converter (this is an optional step):
1381 1381  
1382 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1395 +* Click the Create new button if it is not selected by default.
1396 +* Click the JavaScript button.
1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1398 +* Click the Next button.
1383 1383  
1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1384 1384  
1385 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1402 +Connection:
1386 1386  
1404 +* Choose Region from the Host type.
1405 +* Enter the cluster of your The Things Stack in the Region textbox.
1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1408 +* Click the Add button.
1387 1387  
1388 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1389 1389  
1390 1390  
1391 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1413 +Your integration is added to the integrations list and it will display on the Integrations page.
1392 1392  
1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1393 1393  
1394 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1395 1395  
1418 +== 3.6 Interface Details ==
1396 1396  
1397 -== 3.6 Interface Detail ==
1398 -
1399 1399  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1400 1400  
1401 1401  
1402 -Support NPN Type sensor
1423 +Support NPN-type sensor
1403 1403  
1404 1404  [[image:1653356991268-289.png]]
1405 1405  
1406 1406  
1407 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1408 1408  
1409 1409  
1410 1410  (((
1411 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1412 1412  )))
1413 1413  
1414 1414  (((
1415 1415  (((
1416 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1417 1417  
1418 1418  
1419 1419  )))
... ... @@ -1423,7 +1423,7 @@
1423 1423  
1424 1424  (((
1425 1425  (((
1426 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1427 1427  )))
1428 1428  )))
1429 1429  
... ... @@ -1432,22 +1432,22 @@
1432 1432  )))
1433 1433  
1434 1434  (((
1435 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1436 1436  )))
1437 1437  
1438 1438  (((
1439 -This type of sensor will output a low signal GND when active.
1460 +This type of sensor outputs a low (GND) signal when active.
1440 1440  )))
1441 1441  
1442 1442  * (((
1443 -Connect sensor's output to DI1-
1464 +Connect the sensor's output to DI1-
1444 1444  )))
1445 1445  * (((
1446 -Connect sensor's VCC to DI1+.
1467 +Connect the sensor's VCC to DI1+.
1447 1447  )))
1448 1448  
1449 1449  (((
1450 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1451 1451  )))
1452 1452  
1453 1453  (((
... ... @@ -1455,7 +1455,7 @@
1455 1455  )))
1456 1456  
1457 1457  (((
1458 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1459 1459  )))
1460 1460  
1461 1461  (((
... ... @@ -1463,22 +1463,22 @@
1463 1463  )))
1464 1464  
1465 1465  (((
1466 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1467 1467  )))
1468 1468  
1469 1469  (((
1470 -This type of sensor will output a high signal (example 24v) when active.
1491 +This type of sensor outputs a high signal (e.g., 24V) when active.
1471 1471  )))
1472 1472  
1473 1473  * (((
1474 -Connect sensor's output to DI1+
1495 +Connect the sensor's output to DI1+
1475 1475  )))
1476 1476  * (((
1477 -Connect sensor's GND DI1-.
1498 +Connect the sensor's GND DI1-.
1478 1478  )))
1479 1479  
1480 1480  (((
1481 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1482 1482  )))
1483 1483  
1484 1484  (((
... ... @@ -1486,7 +1486,7 @@
1486 1486  )))
1487 1487  
1488 1488  (((
1489 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1490 1490  )))
1491 1491  
1492 1492  (((
... ... @@ -1494,22 +1494,22 @@
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1498 1498  )))
1499 1499  
1500 1500  (((
1501 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1502 1502  )))
1503 1503  
1504 1504  * (((
1505 -Connect sensor's output to DI1+ with a serial 50K resistor
1526 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1506 1506  )))
1507 1507  * (((
1508 -Connect sensor's GND DI1-.
1529 +Connect the sensor's GND DI1-.
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1513 1513  )))
1514 1514  
1515 1515  (((
... ... @@ -1517,37 +1517,37 @@
1517 1517  )))
1518 1518  
1519 1519  (((
1520 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1541 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1521 1521  )))
1522 1522  
1523 1523  
1524 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1525 1525  
1526 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1527 1527  
1528 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1529 1529  
1530 1530  [[image:image-20230616235145-1.png]]
1531 1531  
1532 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1533 1533  
1534 1534  [[image:image-20240219115718-1.png]]
1535 1535  
1536 1536  
1537 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1538 1538  
1539 1539  
1540 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1541 1541  
1542 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1543 1543  
1544 1544  [[image:1653357531600-905.png]]
1545 1545  
1546 1546  
1547 -=== 3.6.4 Analog Input Interface ===
1568 +=== 3.6.4 Analog Input Interfaces ===
1548 1548  
1549 1549  
1550 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1551 1551  
1552 1552  
1553 1553  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1554,14 +1554,14 @@
1554 1554  
1555 1555  [[image:1653357592296-182.png]]
1556 1556  
1557 -Example to connect a 4~~20mA sensor
1578 +Example: Connecting a 4~~20mA sensor
1558 1558  
1559 -We take the wind speed sensor as an example for reference only.
1580 +We will use the wind speed sensor as an example for reference only.
1560 1560  
1561 1561  
1562 1562  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1563 1563  
1564 -(% style="color:red" %)**Red:  12~~24v**
1585 +(% style="color:red" %)**Red:  12~~24V**
1565 1565  
1566 1566  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1567 1567  
... ... @@ -1574,7 +1574,7 @@
1574 1574  [[image:1653357648330-671.png||height="155" width="733"]]
1575 1575  
1576 1576  
1577 -Example connected to a regulated power supply to measure voltage
1598 +Example: Connecting to a regulated power supply to measure voltage
1578 1578  
1579 1579  [[image:image-20230608101532-1.png||height="606" width="447"]]
1580 1580  
... ... @@ -1583,7 +1583,7 @@
1583 1583  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1584 1584  
1585 1585  
1586 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1587 1587  
1588 1588  (% style="color:red" %)**Red:  12~~24v**
1589 1589  
... ... @@ -1594,9 +1594,9 @@
1594 1594  
1595 1595  
1596 1596  (((
1597 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1598 1598  
1599 -**Note**: RO pins go to Open(NO) when device is power off.
1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1600 1600  )))
1601 1601  
1602 1602  [[image:image-20220524100215-9.png]]
... ... @@ -1624,25 +1624,25 @@
1624 1624  Transmit a LoRa packet: TX blinks once
1625 1625  )))
1626 1626  )))
1627 -|**RX**|RX blinks once when receive a packet.
1628 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1629 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1648 +|**RX**|RX blinks once when receiving a packet.
1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1630 1630  |**DI1**|(((
1631 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1632 1632  )))
1633 1633  |**DI2**|(((
1634 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1635 1635  )))
1636 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1637 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1638 1638  
1639 -= 4. Use AT Command =
1660 += 4. Using AT Command =
1640 1640  
1641 -== 4.1 Access AT Command ==
1662 +== 4.1 Connecting the LT-22222-L to a computer ==
1642 1642  
1643 1643  
1644 1644  (((
1645 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1646 1646  )))
1647 1647  
1648 1648  [[image:1653358238933-385.png]]
... ... @@ -1649,7 +1649,7 @@
1649 1649  
1650 1650  
1651 1651  (((
1652 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1653 1653  )))
1654 1654  
1655 1655  [[image:1653358355238-883.png]]
... ... @@ -1656,10 +1656,12 @@
1656 1656  
1657 1657  
1658 1658  (((
1659 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1660 1660  )))
1661 1661  
1662 1662  (((
1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685 +
1663 1663  AT+<CMD>?        : Help on <CMD>
1664 1664  )))
1665 1665  
... ... @@ -2001,7 +2001,7 @@
2001 2001  * For bug fix
2002 2002  * Change LoRaWAN bands.
2003 2003  
2004 -Below shows the hardware connection for how to upload an image to the LT:
2027 +Below is the hardware connection for how to upload an image to the LT:
2005 2005  
2006 2006  [[image:1653359603330-121.png]]
2007 2007  
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0