Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Saxer Lin on 2025/04/15 17:24
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 9 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -17,7 +17,7 @@ 17 17 18 18 19 19 20 -= 1.Introduction = 20 += 1. Introduction = 21 21 22 22 == 1.1 What is the LT-22222-L I/O Controller? == 23 23 ... ... @@ -40,9 +40,9 @@ 40 40 41 41 * If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 42 * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 -* Setup your own private LoRaWAN network. 43 +* Set up your own private LoRaWAN network. 44 44 45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 46 46 ))) 47 47 48 48 ((( ... ... @@ -60,12 +60,12 @@ 60 60 * Power Consumption: 61 61 ** Idle: 4mA@12v 62 62 ** 20dB Transmit: 34mA@12v 63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 64 64 65 65 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 66 66 67 67 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 -* 2 x Digital Output (NPN output. Max pull 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 69 69 * 2 x Relay Output (5A@250VAC / 30VDC) 70 70 * 2 x 0~~20mA Analog Input (res:0.01mA) 71 71 * 2 x 0~~30V Analog Input (res:0.01v) ... ... @@ -78,7 +78,7 @@ 78 78 ** Band 2 (LF): 410 ~~ 528 Mhz 79 79 * 168 dB maximum link budget. 80 80 * +20 dBm - 100 mW constant RF output vs. 81 -* +14 dBm high 81 +* +14 dBm high-efficiency PA. 82 82 * Programmable bit rate up to 300 kbps. 83 83 * High sensitivity: down to -148 dBm. 84 84 * Bullet-proof front end: IIP3 = -12.5 dBm. ... ... @@ -98,7 +98,7 @@ 98 98 * Optional Customized LoRa Protocol 99 99 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 100 100 * AT Commands to change parameters 101 -* Remote configure parameters via LoRa Downlink 101 +* Remotely configure parameters via LoRaWAN Downlink 102 102 * Firmware upgradable via program port 103 103 * Counting 104 104 ... ... @@ -139,7 +139,7 @@ 139 139 * 1 x bracket for wall mounting 140 140 * 1 x programming cable 141 141 142 -Attach the LoRaWAN antenna to the connector labeled **ANT**(located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 143 143 144 144 == 2.2 Terminals == 145 145 ... ... @@ -169,9 +169,9 @@ 169 169 |(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 170 |(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 171 172 -== 2.3 Powering == 172 +== 2.3 Powering the LT-22222-L == 173 173 174 -The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 175 176 176 177 177 [[image:1653297104069-180.png]] ... ... @@ -181,9 +181,9 @@ 181 181 182 182 == 3.1 How does it work? == 183 183 184 - The LT-22222-L is configured to operate in LoRaWAN Class C modeby default. It supports OTAA (Over-the-Air Activation),which isthe most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 185 185 186 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green"%)**TX LED**(%%)will fast,LT-22222-L will enter working mode and start to JOIN LoRaWAN network.(% style="color:green"%)**TX LED**(%%)will be on for 5 seconds after joinedin network. When there is message from server, the RX LED will be on for 1 second.186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 187 187 188 188 In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 189 189 ... ... @@ -205,7 +205,7 @@ 205 205 206 206 * Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 207 * Create an application if you do not have one yet. 208 -* Register LT-22222-L with that application. Two registration options available: 208 +* Register LT-22222-L with that application. Two registration options are available: 209 209 210 210 ==== Using the LoRaWAN Device Repository: ==== 211 211 ... ... @@ -213,12 +213,12 @@ 213 213 * On the **Register end device** page: 214 214 ** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 215 ** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 -** Select the **Frequency plan** that matches withyour device.216 +** Select the **Frequency plan** that matches your device. 217 217 218 218 [[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 219 219 220 -* 221 -** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button. 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 222 ** Enter the **DevEUI** in the **DevEUI** field. 223 223 ** Enter the **AppKey** in the **AppKey** field. 224 224 ** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. ... ... @@ -229,19 +229,26 @@ 229 229 ==== Entering device information manually: ==== 230 230 231 231 * On the **Register end device** page: 232 -** Select the **Enter end device specifie dmanually** option.233 -** Select the **Frequency plan** that matches withyour device.232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 234 ** Select the **LoRaWAN version**. 235 235 ** Select the **Regional Parameters version**. 236 -** Click **Show advanced activation, LoRaWAN class and cluster settings** option. 237 -** Select **Over the air activation (OTAA)** option under **Activation mode** 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 238 ** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 239 -** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button. 240 -** Enter **DevEUI** in the **DevEUI** field. 241 -** Enter **AppKey** in the **AppKey** field. 242 -** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 243 -** Under **After registration**, select the **View registered end device** option. 244 244 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 241 + 242 + 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 248 + 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 250 + 251 + 245 245 ==== Joining ==== 246 246 247 247 Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. ... ... @@ -249,12 +249,12 @@ 249 249 [[image:1653298044601-602.png||height="405" width="709"]] 250 250 251 251 252 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 253 253 254 254 255 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 256 256 257 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 258 258 259 259 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 260 260 ... ... @@ -270,7 +270,7 @@ 270 270 271 271 272 272 ((( 273 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 274 274 275 275 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 276 276 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -288,23 +288,23 @@ 288 288 ))) 289 289 290 290 ((( 291 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 292 292 293 293 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 294 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 295 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 296 296 ))) 297 297 298 -* RO is for relay. ROx=1 299 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 300 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 301 301 302 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 303 303 304 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 305 305 306 306 307 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 308 308 309 309 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 310 310 ... ... @@ -314,35 +314,32 @@ 314 314 315 315 ACI2 channel current is 0x1300/1000=4.864mA 316 316 317 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= **10101010**(b) means, 318 318 319 -* [1] RO1 relay channel is close and the RO1 LED is ON. 320 -* [0] RO2 relay channel is open and RO2 LED is OFF; 326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 - not used for LT-22222-L. 335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 336 +* [0] DO1 channel output state: 337 +** DO1 is FLOATING when there is no load between DO1 and V+. 338 +** DO1 is HIGH when there is a load between DO1 and V+. 339 +** DO1 LED is OFF in both cases. 321 321 322 -**LT22222-L:** 323 - 324 -* [1] DI2 channel is high input and DI2 LED is ON; 325 -* [0] DI1 channel is low input; 326 - 327 -* [0] DO3 channel output state 328 -** DO3 is float in case no load between DO3 and V+.; 329 -** DO3 is high in case there is load between DO3 and V+. 330 -** DO3 LED is off in both case 331 -* [1] DO2 channel output is low and DO2 LED is ON. 332 -* [0] DO1 channel output state 333 -** DO1 is float in case no load between DO1 and V+.; 334 -** DO1 is high in case there is load between DO1 and V+. 335 -** DO1 LED is off in both case 336 - 337 337 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 338 338 339 339 340 340 ((( 341 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 342 342 ))) 343 343 344 344 ((( 345 -T otal:11 bytespayload349 +The uplink payload is 11 bytes long. 346 346 347 347 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 348 348 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -352,26 +352,26 @@ 352 352 ))) 353 353 354 354 ((( 355 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 356 356 357 357 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 358 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 359 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 360 360 361 -RO is for relay. ROx=1 365 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 362 362 ))) 363 363 364 -* FIRST: Indicate this is the first packet after join network. 365 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 368 +* FIRST: Indicates that this is the first packet after joining the network. 369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 366 366 367 367 ((( 368 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 369 369 370 370 371 371 ))) 372 372 373 373 ((( 374 -**To usecountingmode,pleaserun:**378 +**To activate this mode, run the following AT commands:** 375 375 ))) 376 376 377 377 ((( ... ... @@ -392,17 +392,17 @@ 392 392 ((( 393 393 **For LT22222-L:** 394 394 395 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 396 396 397 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 398 398 399 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 400 400 401 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 402 402 403 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 404 404 405 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 406 406 ))) 407 407 408 408 ... ... @@ -409,7 +409,7 @@ 409 409 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 410 410 411 411 412 -**LT22222-L**: This mode the DI1 is used as a counting pin.416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 413 413 414 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 415 415 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -420,24 +420,24 @@ 420 420 )))|DIDORO*|Reserve|MOD 421 421 422 422 ((( 423 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 424 424 425 425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 426 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 427 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 428 428 ))) 429 429 430 -* RO is for relay. ROx=1 431 -* FIRST: Indicate this is the first packet after join network. 432 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 434 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 435 +* FIRST: Indicates that this is the first packet after joining the network. 436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 433 433 434 434 ((( 435 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 436 436 ))) 437 437 438 438 439 439 ((( 440 -**To usecountingmode,pleaserun:**444 +**To activate this mode, run the following AT commands:** 441 441 ))) 442 442 443 443 ((( ... ... @@ -450,7 +450,9 @@ 450 450 ))) 451 451 452 452 ((( 453 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 457 +AT Commands for counting: 458 + 459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 454 454 ))) 455 455 456 456 ... ... @@ -458,11 +458,11 @@ 458 458 459 459 460 460 ((( 461 -**LT22222-L**: This mode the DI1 is used as a counting pin.467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 462 462 ))) 463 463 464 464 ((( 465 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 466 466 467 467 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 468 468 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -472,25 +472,25 @@ 472 472 ))) 473 473 474 474 ((( 475 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 476 476 477 477 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 480 480 ))) 481 481 482 -* RO is for relay. ROx=1 483 -* FIRST: Indicate this is the first packet after join network. 484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 488 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 489 +* FIRST: Indicates that this is the first packet after joining the network. 490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 485 485 486 486 ((( 487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 488 488 489 489 490 490 ))) 491 491 492 492 ((( 493 -**To use this mode,pleaserun:**499 +**To activate this mode, run the following AT commands:** 494 494 ))) 495 495 496 496 ((( ... ... @@ -503,19 +503,19 @@ 503 503 ))) 504 504 505 505 ((( 506 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 507 507 ))) 508 508 509 509 ((( 510 -** Plusbelow command for AVI1 Counting:**516 +**In addition to that, below are the commands for AVI1 Counting:** 511 511 512 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 513 513 514 514 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 515 515 516 516 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 517 517 518 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 519 519 ))) 520 520 521 521 ... ... @@ -522,7 +522,7 @@ 522 522 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 523 523 524 524 525 -**LT22222-L**: This mode the DI1 is used as a counting pin.531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 526 526 527 527 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 528 528 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -537,25 +537,25 @@ 537 537 )))|MOD 538 538 539 539 ((( 540 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 541 541 542 542 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 543 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 544 544 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 545 545 ))) 546 546 547 -* RO is for relay. ROx=1 548 -* FIRST: Indicate this is the first packet after join network. 553 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 554 +* FIRST: Indicates that this is the first packet after joining the network. 549 549 * ((( 550 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 551 551 ))) 552 552 553 553 ((( 554 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 555 555 ))) 556 556 557 557 ((( 558 -**To use this mode,pleaserun:**564 +**To activate this mode, run the following AT commands:** 559 559 ))) 560 560 561 561 ((( ... ... @@ -568,7 +568,7 @@ 568 568 ))) 569 569 570 570 ((( 571 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 572 572 ))) 573 573 574 574 ... ... @@ -575,23 +575,23 @@ 575 575 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 576 576 577 577 578 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 579 579 580 -For example, if u serhasconfiguredbelow commands:586 +For example, if you configured the following commands: 581 581 582 582 * **AT+MOD=1 ** **~-~->** The normal working mode 583 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 589 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 584 584 585 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 586 586 587 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type588 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 589 589 596 + 590 590 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 591 591 599 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 592 592 593 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 594 - 595 595 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 596 596 597 597 ... ... @@ -602,9 +602,8 @@ 602 602 AT+AVLIM=5000,0,0,0 (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore) 603 603 604 604 611 +(% style="color:#4f81bd" %)**Trigger based on current**: 605 605 606 -(% style="color:#4f81bd" %)**Trigger base on current**: 607 - 608 608 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 609 609 610 610 ... ... @@ -613,7 +613,6 @@ 613 613 AT+ACLIM=10000,15000,0,0 (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink) 614 614 615 615 616 - 617 617 (% style="color:#4f81bd" %)**Trigger base on DI status**: 618 618 619 619 DI status trigger Flag. ... ... @@ -1346,74 +1346,91 @@ 1346 1346 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1347 1347 1348 1348 1349 -== 3.5 Integrat ewithMydevice==1353 +== 3.5 Integrating with ThingsEye.io == 1350 1350 1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1351 1351 1352 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1357 +=== 3.5.1 Configuring The Things Stack Sandbox === 1353 1353 1354 - (((1355 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1356 - )))1359 +* Go to your Application and select MQTT under Integrations. 1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1357 1357 1358 -((( 1359 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1360 1360 1361 - 1362 -))) 1365 +=== 3.5.2 Configuring ThingsEye.io === 1363 1363 1364 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1367 +* Login to your thingsEye.io account. 1368 +* Under the Integrations center, click Integrations. 1369 +* Click the Add integration button (the button with the + symbol). 1365 1365 1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1366 1366 1367 1367 1368 - [[image:image-20220719110247-2.png||height="388"width="683"]]1374 +On the Add integration page configure the following: 1369 1369 1376 +Basic settings: 1370 1370 1371 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1378 +* Select The Things Stack Community from the Integration type list. 1379 +* Enter a suitable name for your integration in the Name box or keep the default name. 1380 +* Click the Next button. 1372 1372 1373 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1374 1374 1375 - Search underThethingsnetwork1384 +Uplink Data converter: 1376 1376 1377 -[[image:1653356838789-523.png||height="337" width="740"]] 1386 +* Click the Create New button if it is not selected by default. 1387 +* Click the JavaScript button. 1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1389 +* Click the Next button. 1378 1378 1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1379 1379 1380 - After added, the sensordataarriveTTN, itwill alsoarriveandshowinMydevices.1393 +Downlink Data converter (this is an optional step): 1381 1381 1382 -[[image:image-20220524094909-1.png||height="335" width="729"]] 1395 +* Click the Create new button if it is not selected by default. 1396 +* Click the JavaScript button. 1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1398 +* Click the Next button. 1383 1383 1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1384 1384 1385 - [[image:image-20220524094909-2.png||height="337" width="729"]]1402 +Connection: 1386 1386 1404 +* Choose Region from the Host type. 1405 +* Enter the cluster of your The Things Stack in the Region textbox. 1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1408 +* Click the Add button. 1387 1387 1388 -[[image:i mage-20220524094909-3.png||height="338" width="727"]]1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1389 1389 1390 1390 1391 - [[image:image-20220524094909-4.png||height="339"width="728"]](%style="display:none"%)1413 +Your integration is added to the integrations list and it will display on the Integrations page. 1392 1392 1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1393 1393 1394 -[[image:image-20220524094909-5.png||height="341" width="734"]] 1395 1395 1418 +== 3.6 Interface Details == 1396 1396 1397 -== 3.6 Interface Detail == 1398 - 1399 1399 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1400 1400 1401 1401 1402 -Support NPN Type sensor1423 +Support NPN-type sensor 1403 1403 1404 1404 [[image:1653356991268-289.png]] 1405 1405 1406 1406 1407 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1408 1408 1409 1409 1410 1410 ((( 1411 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1412 1412 ))) 1413 1413 1414 1414 ((( 1415 1415 ((( 1416 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1417 1417 1418 1418 1419 1419 ))) ... ... @@ -1423,7 +1423,7 @@ 1423 1423 1424 1424 ((( 1425 1425 ((( 1426 - When use need1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1427 1427 ))) 1428 1428 ))) 1429 1429 ... ... @@ -1432,22 +1432,22 @@ 1432 1432 ))) 1433 1433 1434 1434 ((( 1435 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1436 1436 ))) 1437 1437 1438 1438 ((( 1439 -This type of sensor willoutput a low signalGNDwhen active.1460 +This type of sensor outputs a low (GND) signal when active. 1440 1440 ))) 1441 1441 1442 1442 * ((( 1443 -Connect sensor's output to DI1- 1464 +Connect the sensor's output to DI1- 1444 1444 ))) 1445 1445 * ((( 1446 -Connect sensor's VCC to DI1+. 1467 +Connect the sensor's VCC to DI1+. 1447 1447 ))) 1448 1448 1449 1449 ((( 1450 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1451 1451 ))) 1452 1452 1453 1453 ((( ... ... @@ -1455,7 +1455,7 @@ 1455 1455 ))) 1456 1456 1457 1457 ((( 1458 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1459 1459 ))) 1460 1460 1461 1461 ((( ... ... @@ -1463,22 +1463,22 @@ 1463 1463 ))) 1464 1464 1465 1465 ((( 1466 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1467 1467 ))) 1468 1468 1469 1469 ((( 1470 -This type of sensor willoutput a high signal (example24v) when active.1491 +This type of sensor outputs a high signal (e.g., 24V) when active. 1471 1471 ))) 1472 1472 1473 1473 * ((( 1474 -Connect sensor's output to DI1+ 1495 +Connect the sensor's output to DI1+ 1475 1475 ))) 1476 1476 * ((( 1477 -Connect sensor's GND DI1-. 1498 +Connect the sensor's GND DI1-. 1478 1478 ))) 1479 1479 1480 1480 ((( 1481 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1482 1482 ))) 1483 1483 1484 1484 ((( ... ... @@ -1486,7 +1486,7 @@ 1486 1486 ))) 1487 1487 1488 1488 ((( 1489 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1490 1490 ))) 1491 1491 1492 1492 ((( ... ... @@ -1494,22 +1494,22 @@ 1494 1494 ))) 1495 1495 1496 1496 ((( 1497 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1498 1498 ))) 1499 1499 1500 1500 ((( 1501 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1502 1502 ))) 1503 1503 1504 1504 * ((( 1505 -Connect sensor's output to DI1+ with a serial50K resistor1526 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1506 1506 ))) 1507 1507 * ((( 1508 -Connect sensor's GND DI1-. 1529 +Connect the sensor's GND DI1-. 1509 1509 ))) 1510 1510 1511 1511 ((( 1512 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1513 1513 ))) 1514 1514 1515 1515 ((( ... ... @@ -1517,37 +1517,37 @@ 1517 1517 ))) 1518 1518 1519 1519 ((( 1520 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1541 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1521 1521 ))) 1522 1522 1523 1523 1524 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1525 1525 1526 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1527 1527 1528 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1529 1529 1530 1530 [[image:image-20230616235145-1.png]] 1531 1531 1532 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colle actor1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1533 1533 1534 1534 [[image:image-20240219115718-1.png]] 1535 1535 1536 1536 1537 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1538 1538 1539 1539 1540 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can applyto output pin is 36v.1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1541 1541 1542 -(% style="color:red" %)**Note: DO pins gotofloat when device is power off.**1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1543 1543 1544 1544 [[image:1653357531600-905.png]] 1545 1545 1546 1546 1547 -=== 3.6.4 Analog Input Interface === 1568 +=== 3.6.4 Analog Input Interfaces === 1548 1548 1549 1549 1550 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1551 1551 1552 1552 1553 1553 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1554,14 +1554,14 @@ 1554 1554 1555 1555 [[image:1653357592296-182.png]] 1556 1556 1557 -Example toconnect a 4~~20mA sensor1578 +Example: Connecting a 4~~20mA sensor 1558 1558 1559 -We take the wind speed sensor as an example for reference only.1580 +We will use the wind speed sensor as an example for reference only. 1560 1560 1561 1561 1562 1562 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1563 1563 1564 -(% style="color:red" %)**Red: 12~~24 v**1585 +(% style="color:red" %)**Red: 12~~24V** 1565 1565 1566 1566 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1567 1567 ... ... @@ -1574,7 +1574,7 @@ 1574 1574 [[image:1653357648330-671.png||height="155" width="733"]] 1575 1575 1576 1576 1577 -Example connectedto a regulated power supply to measure voltage1598 +Example: Connecting to a regulated power supply to measure voltage 1578 1578 1579 1579 [[image:image-20230608101532-1.png||height="606" width="447"]] 1580 1580 ... ... @@ -1583,7 +1583,7 @@ 1583 1583 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1584 1584 1585 1585 1586 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1587 1587 1588 1588 (% style="color:red" %)**Red: 12~~24v** 1589 1589 ... ... @@ -1594,9 +1594,9 @@ 1594 1594 1595 1595 1596 1596 ((( 1597 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1598 1598 1599 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1600 1600 ))) 1601 1601 1602 1602 [[image:image-20220524100215-9.png]] ... ... @@ -1624,25 +1624,25 @@ 1624 1624 Transmit a LoRa packet: TX blinks once 1625 1625 ))) 1626 1626 ))) 1627 -|**RX**|RX blinks once when receiv ea packet.1628 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOWwhen DO1 is high1629 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOWwhen DO2 is high1648 +|**RX**|RX blinks once when receiving a packet. 1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1630 1630 |**DI1**|((( 1631 -For LT-22222-L: ON when DI1 is high, LOWwhen DI1 is low1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1632 1632 ))) 1633 1633 |**DI2**|((( 1634 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1635 1635 ))) 1636 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOWwhen RO1 is open1637 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOWwhen RO2 is open1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1638 1638 1639 -= 4. Us eAT Command =1660 += 4. Using AT Command = 1640 1640 1641 -== 4.1 AccessATCommand==1662 +== 4.1 Connecting the LT-22222-L to a computer == 1642 1642 1643 1643 1644 1644 ((( 1645 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1646 1646 ))) 1647 1647 1648 1648 [[image:1653358238933-385.png]] ... ... @@ -1649,7 +1649,7 @@ 1649 1649 1650 1650 1651 1651 ((( 1652 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1653 1653 ))) 1654 1654 1655 1655 [[image:1653358355238-883.png]] ... ... @@ -1656,10 +1656,12 @@ 1656 1656 1657 1657 1658 1658 ((( 1659 - More detailAT Commandmanual can be found at1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1660 1660 ))) 1661 1661 1662 1662 ((( 1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1685 + 1663 1663 AT+<CMD>? : Help on <CMD> 1664 1664 ))) 1665 1665 ... ... @@ -2001,7 +2001,7 @@ 2001 2001 * For bug fix 2002 2002 * Change LoRaWAN bands. 2003 2003 2004 -Below s howsthe hardware connection for how to upload an image to the LT:2027 +Below is the hardware connection for how to upload an image to the LT: 2005 2005 2006 2006 [[image:1653359603330-121.png]] 2007 2007
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content