<
From version < 142.1 >
edited by Dilisi S
on 2024/10/31 04:04
To version < 182.1 >
edited by Dilisi S
on 2024/11/10 05:24
>
Change comment: Uploaded new attachment "thingseye-json.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -33,8 +33,6 @@
33 33  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 34  )))
35 35  
36 -> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
37 -
38 38  (((
39 39  You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40 40  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -59,16 +59,16 @@
59 59  * SX1276/78 Wireless Chip 
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 -** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 -* 2 x 0~~30V Analog Input (res:0.01v)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
72 72  * Power Input 7~~ 24V DC. 
73 73  
74 74  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high efficiency PA.
79 +* +14 dBm high-efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remote configure parameters via LoRa Downlink
99 +* Remotely configure parameters via LoRaWAN Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -136,10 +136,10 @@
136 136  
137 137  * 1 x LT-22222-L I/O Controller
138 138  * 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 -* 1 x bracket for wall mounting
137 +* 1 x bracket for DIN rail mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -158,21 +158,20 @@
158 158  
159 159  (% style="width:633px" %)
160 160  |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 -|(% style="width:296px" %)RO1-2|(% style="width:334px" %)
162 -|(% style="width:296px" %)RO1-1|(% style="width:334px" %)
163 -|(% style="width:296px" %)RO2-2|(% style="width:334px" %)
164 -|(% style="width:296px" %)RO2-1|(% style="width:334px" %)
165 -|(% style="width:296px" %)DI2+|(% style="width:334px" %)
166 -|(% style="width:296px" %)DI2-|(% style="width:334px" %)
167 -|(% style="width:296px" %)DI1+|(% style="width:334px" %)
168 -|(% style="width:296px" %)DI1-|(% style="width:334px" %)
169 -|(% style="width:296px" %)DO2|(% style="width:334px" %)
170 -|(% style="width:296px" %)DO1|(% style="width:334px" %)
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering ==
170 +== 2.3 Powering the LT-22222-L ==
173 173  
174 -(% style="line-height:1.38" %)
175 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The LT-22222-L I/O Controller can be powered by a 7–24V DC power source.(%%) Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The power indicator (PWR) LED will turn on when the device is properly powered.
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
176 176  
177 177  
178 178  [[image:1653297104069-180.png]]
... ... @@ -182,73 +182,116 @@
182 182  
183 183  == 3.1 How does it work? ==
184 184  
185 -(((
186 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
187 187  
188 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
189 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
190 190  
191 -(((
192 192  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
193 -)))
194 194  
188 +== 3.2 Registering with a LoRaWAN network server ==
195 195  
196 -== 3.2 Joining the LoRaWAN network server ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
197 197  
198 -(((
199 -The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
200 200  
201 -
202 -)))
194 +=== 3.2.1 Prerequisites ===
203 203  
204 -[[image:image-20220523172350-1.png||height="266" width="864"]]
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
205 205  
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
206 206  
207 -(((
208 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
209 209  
210 -
211 -)))
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
212 212  
213 -(((
214 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
215 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
216 216  
217 -(((
218 -Each LT is shipped with a sticker with the default device EUI as below:
219 -)))
208 +==== ====
220 220  
221 -[[image:image-20230425173427-2.png||height="246" width="530"]]
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
222 222  
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
223 223  
224 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
225 225  
226 -**Add APP EUI in the application.**
227 227  
228 -[[image:1653297955910-247.png||height="321" width="716"]]
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
229 229  
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
230 230  
231 -**Add APP KEY and DEV EUI**
230 +==== ====
232 232  
233 -[[image:1653298023685-319.png]]
232 +==== 3.2.2.2 Entering device information manually ====
234 234  
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
235 235  
236 -(((
237 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
238 238  
239 -
240 -)))
241 241  
242 -[[image:1653298044601-602.png||height="405" width="709"]]
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
243 243  
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
244 244  
245 -== 3.3 Uplink Payload ==
246 246  
257 +You will be navigated to the **Device overview** page.
247 247  
248 -There are five working modes + one interrupt mode on LT for different type application:
249 249  
250 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
251 251  
262 +
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
252 252  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
253 253  
254 254  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -259,12 +259,15 @@
259 259  
260 260  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
261 261  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
262 262  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
263 263  
264 -
265 265  (((
266 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
267 267  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
268 268  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
269 269  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
270 270  |Value|(((
... ... @@ -275,29 +275,29 @@
275 275  ACI1 Current
276 276  )))|(((
277 277  ACI2 Current
278 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
279 279  Reserve
280 280  )))|MOD
281 281  )))
282 282  
283 283  (((
284 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
285 285  
286 286  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
287 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
288 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
289 289  )))
290 290  
291 -* RO is for relay. ROx=1 : close, ROx=0 always open.
292 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
293 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
294 294  
295 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
296 296  
297 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
298 298  
299 299  
300 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
301 301  
302 302  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
303 303  
... ... @@ -307,35 +307,32 @@
307 307  
308 308  ACI2 channel current is 0x1300/1000=4.864mA
309 309  
310 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
311 311  
312 -* [1] RO1 relay channel is close and the RO1 LED is ON.
313 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
314 314  
315 -**LT22222-L:**
316 -
317 -* [1] DI2 channel is high input and DI2 LED is ON;
318 -* [0] DI1 channel is low input;
319 -
320 -* [0] DO3 channel output state
321 -** DO3 is float in case no load between DO3 and V+.;
322 -** DO3 is high in case there is load between DO3 and V+.
323 -** DO3 LED is off in both case
324 -* [1] DO2 channel output is low and DO2 LED is ON.
325 -* [0] DO1 channel output state
326 -** DO1 is float in case no load between DO1 and V+.;
327 -** DO1 is high in case there is load between DO1 and V+.
328 -** DO1 LED is off in both case
329 -
330 330  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
331 331  
332 332  
333 333  (((
334 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
335 335  )))
336 336  
337 337  (((
338 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
339 339  
340 340  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
341 341  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -345,26 +345,26 @@
345 345  )))
346 346  
347 347  (((
348 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
349 349  
350 350  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
352 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
353 353  
354 -RO is for relay. ROx=1 : close , ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
355 355  )))
356 356  
357 -* FIRST: Indicate this is the first packet after join network.
358 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
359 359  
360 360  (((
361 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
362 362  
363 363  
364 364  )))
365 365  
366 366  (((
367 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
368 368  )))
369 369  
370 370  (((
... ... @@ -385,17 +385,17 @@
385 385  (((
386 386  **For LT22222-L:**
387 387  
388 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
389 389  
390 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
391 391  
392 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
393 393  
394 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
395 395  
396 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
397 397  
398 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
399 399  )))
400 400  
401 401  
... ... @@ -402,7 +402,7 @@
402 402  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
403 403  
404 404  
405 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
406 406  
407 407  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
408 408  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -413,24 +413,24 @@
413 413  )))|DIDORO*|Reserve|MOD
414 414  
415 415  (((
416 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
420 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
421 421  )))
422 422  
423 -* RO is for relay. ROx=1 : close, ROx=0 always open.
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 429  )))
430 430  
431 431  
432 432  (((
433 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
434 434  )))
435 435  
436 436  (((
... ... @@ -443,7 +443,9 @@
443 443  )))
444 444  
445 445  (((
446 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
447 447  )))
448 448  
449 449  
... ... @@ -451,11 +451,11 @@
451 451  
452 452  
453 453  (((
454 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
455 455  )))
456 456  
457 457  (((
458 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
459 459  
460 460  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
461 461  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -465,25 +465,25 @@
465 465  )))
466 466  
467 467  (((
468 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
472 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
473 473  )))
474 474  
475 -* RO is for relay. ROx=1 : close, ROx=0 always open.
476 -* FIRST: Indicate this is the first packet after join network.
477 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
478 478  
479 479  (((
480 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
481 481  
482 482  
483 483  )))
484 484  
485 485  (((
486 -**To use this mode, please run:**
528 +**To activate this mode, run the following AT commands:**
487 487  )))
488 488  
489 489  (((
... ... @@ -496,19 +496,19 @@
496 496  )))
497 497  
498 498  (((
499 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
500 500  )))
501 501  
502 502  (((
503 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
504 504  
505 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
506 506  
507 507  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
508 508  
509 509  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
510 510  
511 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
512 512  )))
513 513  
514 514  
... ... @@ -515,7 +515,7 @@
515 515  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
516 516  
517 517  
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  
520 520  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
521 521  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -530,25 +530,25 @@
530 530  )))|MOD
531 531  
532 532  (((
533 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
534 534  
535 535  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
536 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
537 537  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
538 538  )))
539 539  
540 -* RO is for relay. ROx=1 : close, ROx=0 always open.
541 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
542 542  * (((
543 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
544 544  )))
545 545  
546 546  (((
547 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
548 548  )))
549 549  
550 550  (((
551 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
552 552  )))
553 553  
554 554  (((
... ... @@ -561,7 +561,7 @@
561 561  )))
562 562  
563 563  (((
564 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
565 565  )))
566 566  
567 567  
... ... @@ -568,49 +568,46 @@
568 568  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
569 569  
570 570  
571 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
572 572  
573 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
574 574  
575 575  * **AT+MOD=1 ** **~-~->**  The normal working mode
576 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
577 577  
578 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
579 579  
580 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
581 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
582 582  
583 583  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
584 584  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
585 585  
586 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
587 -
588 588  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
589 589  
590 590  
591 591  **Example:**
592 592  
593 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
594 594  
595 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
596 596  
597 597  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
598 598  
599 -(% style="color:#4f81bd" %)**Trigger base on current**:
600 -
601 601  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
602 602  
603 603  
604 604  **Example:**
605 605  
606 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
607 607  
608 608  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
609 609  
610 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
611 611  
612 -DI status trigger Flag.
613 -
614 614  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
615 615  
616 616  
... ... @@ -619,39 +619,38 @@
619 619  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
620 620  
621 621  
622 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
623 623  
624 624  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
625 625  
626 626  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
627 627  
628 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
629 629  
630 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
631 631  
632 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
633 633  
634 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
635 635  
636 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
637 637  
638 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
639 639  
640 640  
641 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
642 642  
643 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
644 644  
645 645  
646 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
647 647  
648 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
649 649  
650 650  
651 -
652 652  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
653 653  
654 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
655 655  
656 656  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
657 657  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -665,10 +665,10 @@
665 665  MOD(6)
666 666  )))
667 667  
668 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
669 669  
670 670  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
671 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
672 672  |(((
673 673  AV1_LOW
674 674  )))|(((
... ... @@ -687,17 +687,17 @@
687 687  AC2_HIGH
688 688  )))
689 689  
690 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
691 691  
692 692  **Example:**
693 693  
694 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
695 695  
696 696  
697 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
698 698  
699 699  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
700 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
701 701  |(((
702 702  AV1_LOW
703 703  )))|(((
... ... @@ -716,11 +716,11 @@
716 716  AC2_HIGH
717 717  )))
718 718  
719 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
720 720  
721 721  **Example:**
722 722  
723 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
724 724  
725 725  
726 726  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -729,7 +729,7 @@
729 729  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
730 730  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
731 731  
732 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
733 733  
734 734  **Example:**
735 735  
... ... @@ -756,11 +756,11 @@
756 756  )))
757 757  
758 758  
759 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
760 760  
761 761  
762 762  (((
763 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
764 764  )))
765 765  
766 766  (((
... ... @@ -775,9 +775,8 @@
775 775  
776 776  === 3.4.1 Common Commands ===
777 777  
778 -
779 779  (((
780 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
781 781  )))
782 782  
783 783  
... ... @@ -785,34 +785,37 @@
785 785  
786 786  ==== 3.4.2.1 Set Transmit Interval ====
787 787  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
788 788  
789 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
790 790  
791 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
792 792  
793 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
794 794  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
795 795  
796 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
797 797  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
798 798  
799 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
800 -
801 801  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
802 802  
803 803  
804 804  
805 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
806 806  
807 807  
808 -Set work mode.
845 +Sets the work mode.
809 809  
810 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
811 811  
812 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
813 813  
814 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
815 815  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
816 816  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
817 817  
818 818  
... ... @@ -820,10 +820,12 @@
820 820  ==== 3.4.2.3 Poll an uplink ====
821 821  
822 822  
823 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
824 824  
825 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
826 826  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
827 827  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
828 828  
829 829  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -830,16 +830,16 @@
830 830  
831 831  
832 832  
833 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
834 834  
835 835  
836 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
837 837  
838 838  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
839 839  
840 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
841 841  
842 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
843 843  
844 844  
845 845  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -851,7 +851,7 @@
851 851  ==== 3.4.2.5 Poll trigger settings ====
852 852  
853 853  
854 -Poll trigger settings
896 +Polls the trigger settings
855 855  
856 856  * (% style="color:#037691" %)**AT Command:**
857 857  
... ... @@ -859,7 +859,7 @@
859 859  
860 860  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
861 861  
862 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
863 863  
864 864  
865 865  
... ... @@ -866,11 +866,11 @@
866 866  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
867 867  
868 868  
869 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
870 870  
871 871  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
872 872  
873 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
874 874  
875 875  
876 876  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -902,15 +902,15 @@
902 902  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
903 903  
904 904  
905 -Set DI2 trigger.
947 +Sets DI2 trigger.
906 906  
907 907  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
908 908  
909 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
910 910  
911 911  (% style="color:red" %)**b :** (%%)delay timing.
912 912  
913 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
914 914  
915 915  
916 916  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -948,7 +948,7 @@
948 948  ==== 3.4.2.11 Trigger – Set minimum interval ====
949 949  
950 950  
951 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
952 952  
953 953  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
954 954  
... ... @@ -1096,7 +1096,7 @@
1096 1096  )))
1097 1097  
1098 1098  (((
1099 -00: Close ,  01: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1100 1100  
1101 1101  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1102 1102  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1218,7 +1218,7 @@
1218 1218  
1219 1219  
1220 1220  
1221 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1222 1222  
1223 1223  
1224 1224  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1339,74 +1339,144 @@
1339 1339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1340 1340  
1341 1341  
1342 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1343 1343  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1344 1344  
1345 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1346 1346  
1347 -(((
1348 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1349 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1350 1350  
1351 -(((
1352 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1353 1353  
1354 -
1355 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1356 1356  
1357 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1358 1358  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1359 1359  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1360 1360  
1361 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1362 1362  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1363 1363  
1364 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1365 1365  
1366 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1367 1367  
1368 -Search under The things network
1414 +**Basic settings:**
1369 1369  
1370 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1371 1371  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1372 1372  
1373 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1374 1374  
1375 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1427 +**Uplink data converter:**
1376 1376  
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1377 1377  
1378 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1379 1379  
1380 1380  
1381 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1438 +**Downlink data converter (this is an optional step):**
1382 1382  
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1383 1383  
1384 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1385 1385  
1386 1386  
1387 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1449 +**Connection:**
1388 1388  
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1389 1389  
1390 -== 3.6 Interface Detail ==
1456 +[[image:message-1.png]]
1391 1391  
1458 +
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1392 1392  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1393 1393  
1394 1394  
1395 -Support NPN Type sensor
1507 +Support NPN-type sensor
1396 1396  
1397 1397  [[image:1653356991268-289.png]]
1398 1398  
1399 1399  
1400 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1401 1401  
1402 1402  
1403 1403  (((
1404 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1405 1405  )))
1406 1406  
1407 1407  (((
1408 1408  (((
1409 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1410 1410  
1411 1411  
1412 1412  )))
... ... @@ -1416,7 +1416,7 @@
1416 1416  
1417 1417  (((
1418 1418  (((
1419 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1420 1420  )))
1421 1421  )))
1422 1422  
... ... @@ -1425,22 +1425,22 @@
1425 1425  )))
1426 1426  
1427 1427  (((
1428 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1429 1429  )))
1430 1430  
1431 1431  (((
1432 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1433 1433  )))
1434 1434  
1435 1435  * (((
1436 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1437 1437  )))
1438 1438  * (((
1439 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1440 1440  )))
1441 1441  
1442 1442  (((
1443 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1444 1444  )))
1445 1445  
1446 1446  (((
... ... @@ -1448,7 +1448,7 @@
1448 1448  )))
1449 1449  
1450 1450  (((
1451 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1452 1452  )))
1453 1453  
1454 1454  (((
... ... @@ -1456,22 +1456,22 @@
1456 1456  )))
1457 1457  
1458 1458  (((
1459 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1460 1460  )))
1461 1461  
1462 1462  (((
1463 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1464 1464  )))
1465 1465  
1466 1466  * (((
1467 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1468 1468  )))
1469 1469  * (((
1470 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1475 1475  )))
1476 1476  
1477 1477  (((
... ... @@ -1479,7 +1479,7 @@
1479 1479  )))
1480 1480  
1481 1481  (((
1482 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1483 1483  )))
1484 1484  
1485 1485  (((
... ... @@ -1487,22 +1487,22 @@
1487 1487  )))
1488 1488  
1489 1489  (((
1490 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1491 1491  )))
1492 1492  
1493 1493  (((
1494 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1495 1495  )))
1496 1496  
1497 1497  * (((
1498 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1499 1499  )))
1500 1500  * (((
1501 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1502 1502  )))
1503 1503  
1504 1504  (((
1505 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1506 1506  )))
1507 1507  
1508 1508  (((
... ... @@ -1510,37 +1510,37 @@
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1514 1514  )))
1515 1515  
1516 1516  
1517 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1518 1518  
1519 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1520 1520  
1521 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1522 1522  
1523 1523  [[image:image-20230616235145-1.png]]
1524 1524  
1525 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1526 1526  
1527 1527  [[image:image-20240219115718-1.png]]
1528 1528  
1529 1529  
1530 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1531 1531  
1532 1532  
1533 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1534 1534  
1535 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1536 1536  
1537 1537  [[image:1653357531600-905.png]]
1538 1538  
1539 1539  
1540 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1541 1541  
1542 1542  
1543 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1544 1544  
1545 1545  
1546 1546  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1547,14 +1547,14 @@
1547 1547  
1548 1548  [[image:1653357592296-182.png]]
1549 1549  
1550 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1551 1551  
1552 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1553 1553  
1554 1554  
1555 1555  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1556 1556  
1557 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1558 1558  
1559 1559  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1560 1560  
... ... @@ -1567,7 +1567,7 @@
1567 1567  [[image:1653357648330-671.png||height="155" width="733"]]
1568 1568  
1569 1569  
1570 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1571 1571  
1572 1572  [[image:image-20230608101532-1.png||height="606" width="447"]]
1573 1573  
... ... @@ -1576,7 +1576,7 @@
1576 1576  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1577 1577  
1578 1578  
1579 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1580 1580  
1581 1581  (% style="color:red" %)**Red:  12~~24v**
1582 1582  
... ... @@ -1587,9 +1587,9 @@
1587 1587  
1588 1588  
1589 1589  (((
1590 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1591 1591  
1592 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1593 1593  )))
1594 1594  
1595 1595  [[image:image-20220524100215-9.png]]
... ... @@ -1617,25 +1617,26 @@
1617 1617  Transmit a LoRa packet: TX blinks once
1618 1618  )))
1619 1619  )))
1620 -|**RX**|RX blinks once when receive a packet.
1621 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1622 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1623 1623  |**DI1**|(((
1624 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1625 1625  )))
1626 1626  |**DI2**|(((
1627 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1628 1628  )))
1629 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1630 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1631 1631  
1632 -= 4. Use AT Command =
1744 += 4. Using AT Commands =
1633 1633  
1634 -== 4.1 Access AT Command ==
1746 +The LT-22222-L supports programming using AT Commands.
1635 1635  
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1636 1636  
1637 1637  (((
1638 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1639 1639  )))
1640 1640  
1641 1641  [[image:1653358238933-385.png]]
... ... @@ -1642,7 +1642,7 @@
1642 1642  
1643 1643  
1644 1644  (((
1645 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1646 1646  )))
1647 1647  
1648 1648  [[image:1653358355238-883.png]]
... ... @@ -1649,194 +1649,63 @@
1649 1649  
1650 1650  
1651 1651  (((
1652 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1653 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1654 1654  
1655 -(((
1656 -AT+<CMD>?        : Help on <CMD>
1767 +== 4.2 LT-22222-L related AT commands ==
1657 1657  )))
1658 1658  
1659 1659  (((
1660 -AT+<CMD>         : Run <CMD>
1661 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1662 1662  
1663 -(((
1664 -AT+<CMD>=<value> : Set the value
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1665 1665  )))
1666 1666  
1667 -(((
1668 -AT+<CMD>=?       :  Get the value
1669 -)))
1670 1670  
1671 -(((
1672 -ATZ: Trig a reset of the MCU
1673 -)))
1674 -
1675 -(((
1676 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1677 -)))
1678 -
1679 -(((
1680 -AT+DEUI: Get or Set the Device EUI
1681 -)))
1682 -
1683 -(((
1684 -AT+DADDR: Get or Set the Device Address
1685 -)))
1686 -
1687 -(((
1688 -AT+APPKEY: Get or Set the Application Key
1689 -)))
1690 -
1691 -(((
1692 -AT+NWKSKEY: Get or Set the Network Session Key
1693 -)))
1694 -
1695 -(((
1696 -AT+APPSKEY:  Get or Set the Application Session Key
1697 -)))
1698 -
1699 -(((
1700 -AT+APPEUI:  Get or Set the Application EUI
1701 -)))
1702 -
1703 -(((
1704 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1705 -)))
1706 -
1707 -(((
1708 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1709 -)))
1710 -
1711 -(((
1712 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1713 -)))
1714 -
1715 -(((
1716 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1717 -)))
1718 -
1719 -(((
1720 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1721 -)))
1722 -
1723 -(((
1724 -AT+RX2FQ: Get or Set the Rx2 window frequency
1725 -)))
1726 -
1727 -(((
1728 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1729 -)))
1730 -
1731 -(((
1732 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1733 -)))
1734 -
1735 -(((
1736 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1737 -)))
1738 -
1739 -(((
1740 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1741 -)))
1742 -
1743 -(((
1744 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1745 -)))
1746 -
1747 -(((
1748 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1749 -)))
1750 -
1751 -(((
1752 -AT+NWKID: Get or Set the Network ID
1753 -)))
1754 -
1755 -(((
1756 -AT+FCU: Get or Set the Frame Counter Uplink
1757 -)))
1758 -
1759 -(((
1760 -AT+FCD: Get or Set the Frame Counter Downlink
1761 -)))
1762 -
1763 -(((
1764 -AT+CLASS: Get or Set the Device Class
1765 -)))
1766 -
1767 -(((
1768 -AT+JOIN: Join network
1769 -)))
1770 -
1771 -(((
1772 -AT+NJS: Get OTAA Join Status
1773 -)))
1774 -
1775 -(((
1776 -AT+SENDB: Send hexadecimal data along with the application port
1777 -)))
1778 -
1779 -(((
1780 -AT+SEND: Send text data along with the application port
1781 -)))
1782 -
1783 -(((
1784 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1785 -)))
1786 -
1787 -(((
1788 -AT+RECV: Print last received data in raw format
1789 -)))
1790 -
1791 -(((
1792 -AT+VER:  Get current image version and Frequency Band
1793 -)))
1794 -
1795 -(((
1796 -AT+CFM: Get or Set the confirmation mode (0-1)
1797 -)))
1798 -
1799 -(((
1800 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1801 -)))
1802 -
1803 -(((
1804 -AT+SNR: Get the SNR of the last received packet
1805 -)))
1806 -
1807 -(((
1808 -AT+RSSI: Get the RSSI of the last received packet
1809 -)))
1810 -
1811 -(((
1812 -AT+TDC: Get or set the application data transmission interval in ms
1813 -)))
1814 -
1815 -(((
1816 -AT+PORT: Get or set the application port
1817 -)))
1818 -
1819 -(((
1820 -AT+DISAT: Disable AT commands
1821 -)))
1822 -
1823 -(((
1824 -AT+PWORD: Set password, max 9 digits
1825 -)))
1826 -
1827 -(((
1828 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1829 -)))
1830 -
1831 -(((
1832 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1833 -)))
1834 -
1835 -(((
1836 -AT+CFG: Print all settings
1837 -)))
1838 -
1839 -
1840 1840  == 4.2 Common AT Command Sequence ==
1841 1841  
1842 1842  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1845,41 +1845,41 @@
1845 1845  
1846 1846  
1847 1847  (((
1848 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1849 1849  )))
1850 1850  )))
1851 1851  
1852 1852  (((
1853 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1854 1854  )))
1855 1855  
1856 1856  (((
1857 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1858 1858  )))
1859 1859  
1860 1860  (((
1861 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1862 1862  )))
1863 1863  
1864 1864  (((
1865 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1866 1866  )))
1867 1867  
1868 1868  (((
1869 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1870 1870  )))
1871 1871  
1872 1872  
1873 1873  (((
1874 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1875 1875  )))
1876 1876  
1877 1877  (((
1878 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1879 1879  )))
1880 1880  
1881 1881  (((
1882 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1883 1883  )))
1884 1884  
1885 1885  
... ... @@ -1977,37 +1977,50 @@
1977 1977  
1978 1978  = 5. Case Study =
1979 1979  
1980 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
1981 1981  
1982 1982  
1983 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1984 1984  
1985 1985  
1986 1986  = 6. FAQ =
1987 1987  
1988 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1989 1989  
1972 +== 6.1 How to update the firmware? ==
1990 1990  
1991 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
1992 1992  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
1993 1993  * Support new features
1994 -* For bug fix
1995 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
1996 1996  
1997 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
1998 1998  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
1999 1999  [[image:1653359603330-121.png]]
2000 2000  
2001 2001  
2002 -(((
2003 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2004 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2005 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2006 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2007 2007  
2008 2008  (((
2002 +(((
2009 2009  (% style="color:blue" %)**For LT-22222-L**(%%):
2010 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2011 2011  )))
2012 2012  
2013 2013  
... ... @@ -2022,7 +2022,7 @@
2022 2022  [[image:image-20220524104033-15.png]]
2023 2023  
2024 2024  
2025 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2026 2026  
2027 2027  [[image:1653360054704-518.png||height="186" width="745"]]
2028 2028  
... ... @@ -2029,7 +2029,7 @@
2029 2029  
2030 2030  (((
2031 2031  (((
2032 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2033 2033  
2034 2034  
2035 2035  )))
... ... @@ -2036,13 +2036,13 @@
2036 2036  )))
2037 2037  
2038 2038  (((
2039 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2040 2040  )))
2041 2041  
2042 2042  (((
2043 2043  
2044 2044  
2045 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2046 2046  
2047 2047  
2048 2048  )))
... ... @@ -2049,13 +2049,13 @@
2049 2049  
2050 2050  (((
2051 2051  (((
2052 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2053 2053  )))
2054 2054  )))
2055 2055  
2056 2056  (((
2057 2057  (((
2058 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2059 2059  
2060 2060  
2061 2061  )))
... ... @@ -2062,7 +2062,7 @@
2062 2062  )))
2063 2063  
2064 2064  (((
2065 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2066 2066  
2067 2067  
2068 2068  )))
... ... @@ -2119,61 +2119,55 @@
2119 2119  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2120 2120  
2121 2121  
2122 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2123 2123  
2124 2124  
2125 2125  (((
2126 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2127 2127  
2128 2128  
2129 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2130 2130  
2131 2131  
2132 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2133 -
2134 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2135 2135  )))
2136 2136  
2137 2137  (((
2138 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2139 2139  
2140 2140  
2141 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2142 2142  
2143 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2144 2144  
2145 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2146 2146  
2147 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2148 2148  
2149 2149  
2150 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2151 -
2152 -
2153 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2154 -
2155 -
2156 2156  [[image:image-20221006170630-1.png||height="610" width="945"]]
2157 2157  
2158 2158  
2159 -== 6.9 Can LT22222-L save RO state? ==
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2160 2160  
2161 2161  
2162 -Firmware version needs to be no less than 1.6.0.
2151 +The firmware version must be at least 1.6.0.
2163 2163  
2164 2164  
2165 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2166 2166  
2167 2167  
2168 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2169 2169  
2170 2170  
2171 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2172 2172  )))
2173 2173  
2174 2174  (((
2175 2175  (((
2176 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2177 2177  
2178 2178  
2179 2179  )))
... ... @@ -2180,42 +2180,42 @@
2180 2180  )))
2181 2181  
2182 2182  (((
2183 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2184 2184  )))
2185 2185  
2186 2186  (((
2187 2187  
2188 2188  
2189 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2190 2190  
2191 2191  
2192 2192  )))
2193 2193  
2194 2194  (((
2195 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2196 2196  )))
2197 2197  
2198 2198  (((
2199 2199  
2200 2200  
2201 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2202 2202  
2203 2203  
2204 2204  )))
2205 2205  
2206 2206  (((
2207 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2208 2208  )))
2209 2209  
2210 2210  
2211 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2212 2212  
2213 2213  
2214 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2215 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2216 2216  
2217 2217  
2218 -= 8. Order Info =
2207 += 8. Ordering information =
2219 2219  
2220 2220  
2221 2221  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2222,43 +2222,42 @@
2222 2222  
2223 2223  (% style="color:#4f81bd" %)**XXX:**
2224 2224  
2225 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2226 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2227 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2228 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2229 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2230 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2231 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2232 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2233 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2234 2234  
2235 -= 9. Packing Info =
2224 += 9. Packing information =
2236 2236  
2237 2237  
2238 -**Package Includes**:
2227 +**Package includes**:
2239 2239  
2240 2240  * LT-22222-L I/O Controller x 1
2241 2241  * Stick Antenna for LoRa RF part x 1
2242 2242  * Bracket for controller x1
2243 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2244 2244  
2245 2245  **Dimension and weight**:
2246 2246  
2247 2247  * Device Size: 13.5 x 7 x 3 cm
2248 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2249 2249  * Package Size / pcs : 14.5 x 8 x 5 cm
2250 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2251 2251  
2252 2252  = 10. Support =
2253 2253  
2254 2254  
2255 2255  * (((
2256 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2257 2257  )))
2258 2258  * (((
2259 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2260 2260  
2261 -
2262 2262  
2263 2263  )))
2264 2264  
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +567.7 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0