<
From version < 142.1 >
edited by Dilisi S
on 2024/10/31 04:04
To version < 164.1 >
edited by Dilisi S
on 2024/11/06 05:10
>
Change comment: minor edits set 2

Summary

Details

Page properties
Content
... ... @@ -17,7 +17,7 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
... ... @@ -42,7 +42,7 @@
42 42  * If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 43  * Setup your own private LoRaWAN network.
44 44  
45 -> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
46 46  )))
47 47  
48 48  (((
... ... @@ -60,12 +60,12 @@
60 60  * Power Consumption:
61 61  ** Idle: 4mA@12v
62 62  ** 20dB Transmit: 34mA@12v
63 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
64 64  
65 65  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
66 66  
67 67  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 69  * 2 x Relay Output (5A@250VAC / 30VDC)
70 70  * 2 x 0~~20mA Analog Input (res:0.01mA)
71 71  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -78,7 +78,7 @@
78 78  ** Band 2 (LF): 410 ~~ 528 Mhz
79 79  * 168 dB maximum link budget.
80 80  * +20 dBm - 100 mW constant RF output vs.
81 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
82 82  * Programmable bit rate up to 300 kbps.
83 83  * High sensitivity: down to -148 dBm.
84 84  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -98,7 +98,7 @@
98 98  * Optional Customized LoRa Protocol
99 99  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 100  * AT Commands to change parameters
101 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
102 102  * Firmware upgradable via program port
103 103  * Counting
104 104  
... ... @@ -139,7 +139,7 @@
139 139  * 1 x bracket for wall mounting
140 140  * 1 x programming cable
141 141  
142 -Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 144  == 2.2 Terminals ==
145 145  
... ... @@ -158,21 +158,20 @@
158 158  
159 159  (% style="width:633px" %)
160 160  |=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 -|(% style="width:296px" %)RO1-2|(% style="width:334px" %)
162 -|(% style="width:296px" %)RO1-1|(% style="width:334px" %)
163 -|(% style="width:296px" %)RO2-2|(% style="width:334px" %)
164 -|(% style="width:296px" %)RO2-1|(% style="width:334px" %)
165 -|(% style="width:296px" %)DI2+|(% style="width:334px" %)
166 -|(% style="width:296px" %)DI2-|(% style="width:334px" %)
167 -|(% style="width:296px" %)DI1+|(% style="width:334px" %)
168 -|(% style="width:296px" %)DI1-|(% style="width:334px" %)
169 -|(% style="width:296px" %)DO2|(% style="width:334px" %)
170 -|(% style="width:296px" %)DO1|(% style="width:334px" %)
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 171  
172 -== 2.3 Powering ==
172 +== 2.3 Powering the LT-22222-L ==
173 173  
174 -(% style="line-height:1.38" %)
175 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The LT-22222-L I/O Controller can be powered by a 7–24V DC power source.(%%) Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The power indicator (PWR) LED will turn on when the device is properly powered.
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
176 176  
177 177  
178 178  [[image:1653297104069-180.png]]
... ... @@ -182,72 +182,87 @@
182 182  
183 183  == 3.1 How does it work? ==
184 184  
185 -(((
186 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
187 187  
188 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
189 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
190 190  
191 -(((
192 192  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
193 -)))
194 194  
190 +== 3.2 Registering with a LoRaWAN network server ==
195 195  
196 -== 3.2 Joining the LoRaWAN network server ==
197 -
198 -(((
199 199  The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
200 200  
201 -
202 -)))
203 -
204 204  [[image:image-20220523172350-1.png||height="266" width="864"]]
205 205  
196 +=== 3.2.1 Prerequisites ===
206 206  
207 -(((
208 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
209 209  
210 -
211 -)))
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
212 212  
213 -(((
214 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
215 -)))
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
216 216  
217 -(((
218 -Each LT is shipped with a sticker with the default device EUI as below:
219 -)))
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
220 220  
221 -[[image:image-20230425173427-2.png||height="246" width="530"]]
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
222 222  
210 +==== Using the LoRaWAN Device Repository: ====
223 223  
224 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
225 225  
226 -**Add APP EUI in the application.**
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
227 227  
228 -[[image:1653297955910-247.png||height="321" width="716"]]
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
229 229  
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
230 230  
231 -**Add APP KEY and DEV EUI**
229 +==== Entering device information manually: ====
232 232  
233 -[[image:1653298023685-319.png]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
234 234  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
235 235  
236 -(((
237 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
238 238  
239 -
240 -)))
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
241 241  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
250 +
251 +
252 +==== Joining ====
253 +
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
242 242  [[image:1653298044601-602.png||height="405" width="709"]]
243 243  
244 244  
245 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
246 246  
247 247  
248 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
249 249  
250 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
251 251  
252 252  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
253 253  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  
265 265  (((
266 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
267 267  
268 268  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
269 269  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -281,23 +281,23 @@
281 281  )))
282 282  
283 283  (((
284 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
285 285  
286 286  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
287 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
288 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
289 289  )))
290 290  
291 -* RO is for relay. ROx=1 : close, ROx=0 always open.
292 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
293 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
294 294  
295 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
296 296  
297 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
298 298  
299 299  
300 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
301 301  
302 302  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
303 303  
... ... @@ -307,35 +307,32 @@
307 307  
308 308  ACI2 channel current is 0x1300/1000=4.864mA
309 309  
310 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
311 311  
312 -* [1] RO1 relay channel is close and the RO1 LED is ON.
313 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
314 314  
315 -**LT22222-L:**
316 -
317 -* [1] DI2 channel is high input and DI2 LED is ON;
318 -* [0] DI1 channel is low input;
319 -
320 -* [0] DO3 channel output state
321 -** DO3 is float in case no load between DO3 and V+.;
322 -** DO3 is high in case there is load between DO3 and V+.
323 -** DO3 LED is off in both case
324 -* [1] DO2 channel output is low and DO2 LED is ON.
325 -* [0] DO1 channel output state
326 -** DO1 is float in case no load between DO1 and V+.;
327 -** DO1 is high in case there is load between DO1 and V+.
328 -** DO1 LED is off in both case
329 -
330 330  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
331 331  
332 332  
333 333  (((
334 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
335 335  )))
336 336  
337 337  (((
338 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
339 339  
340 340  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
341 341  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -345,26 +345,26 @@
345 345  )))
346 346  
347 347  (((
348 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
349 349  
350 350  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
351 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
352 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
353 353  
354 -RO is for relay. ROx=1 : close , ROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
355 355  )))
356 356  
357 -* FIRST: Indicate this is the first packet after join network.
358 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
359 359  
360 360  (((
361 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
362 362  
363 363  
364 364  )))
365 365  
366 366  (((
367 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
368 368  )))
369 369  
370 370  (((
... ... @@ -385,17 +385,17 @@
385 385  (((
386 386  **For LT22222-L:**
387 387  
388 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
389 389  
390 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
391 391  
392 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
393 393  
394 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
395 395  
396 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
397 397  
398 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
399 399  )))
400 400  
401 401  
... ... @@ -402,7 +402,7 @@
402 402  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
403 403  
404 404  
405 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
406 406  
407 407  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
408 408  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -413,24 +413,24 @@
413 413  )))|DIDORO*|Reserve|MOD
414 414  
415 415  (((
416 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
417 417  
418 418  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
420 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
421 421  )))
422 422  
423 -* RO is for relay. ROx=1 : close, ROx=0 always open.
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 429  )))
430 430  
431 431  
432 432  (((
433 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
434 434  )))
435 435  
436 436  (((
... ... @@ -443,7 +443,9 @@
443 443  )))
444 444  
445 445  (((
446 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
447 447  )))
448 448  
449 449  
... ... @@ -451,11 +451,11 @@
451 451  
452 452  
453 453  (((
454 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
455 455  )))
456 456  
457 457  (((
458 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
459 459  
460 460  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
461 461  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -465,25 +465,25 @@
465 465  )))
466 466  
467 467  (((
468 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
472 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
473 473  )))
474 474  
475 -* RO is for relay. ROx=1 : close, ROx=0 always open.
476 -* FIRST: Indicate this is the first packet after join network.
477 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
478 478  
479 479  (((
480 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
481 481  
482 482  
483 483  )))
484 484  
485 485  (((
486 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
487 487  )))
488 488  
489 489  (((
... ... @@ -496,19 +496,19 @@
496 496  )))
497 497  
498 498  (((
499 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
500 500  )))
501 501  
502 502  (((
503 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
504 504  
505 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
506 506  
507 507  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
508 508  
509 509  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
510 510  
511 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
512 512  )))
513 513  
514 514  
... ... @@ -515,7 +515,7 @@
515 515  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
516 516  
517 517  
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  
520 520  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
521 521  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -530,25 +530,25 @@
530 530  )))|MOD
531 531  
532 532  (((
533 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
534 534  
535 535  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
536 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
537 537  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
538 538  )))
539 539  
540 -* RO is for relay. ROx=1 : close, ROx=0 always open.
541 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
542 542  * (((
543 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
544 544  )))
545 545  
546 546  (((
547 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
548 548  )))
549 549  
550 550  (((
551 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
552 552  )))
553 553  
554 554  (((
... ... @@ -561,7 +561,7 @@
561 561  )))
562 562  
563 563  (((
564 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
565 565  )))
566 566  
567 567  
... ... @@ -568,23 +568,22 @@
568 568  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
569 569  
570 570  
571 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
572 572  
573 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
574 574  
575 575  * **AT+MOD=1 ** **~-~->**  The normal working mode
576 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
577 577  
578 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
579 579  
580 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
581 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
582 582  
583 583  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
584 584  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
585 585  
586 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
587 -
588 588  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
589 589  
590 590  
... ... @@ -595,9 +595,8 @@
595 595  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
596 596  
597 597  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
598 598  
599 -(% style="color:#4f81bd" %)**Trigger base on current**:
600 -
601 601  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
602 602  
603 603  
... ... @@ -606,11 +606,10 @@
606 606  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
607 607  
608 608  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
609 609  
610 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
611 611  
612 -DI status trigger Flag.
613 -
614 614  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
615 615  
616 616  
... ... @@ -651,7 +651,7 @@
651 651  
652 652  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
653 653  
654 -MOD6 Payload : total 11 bytes payload
664 +MOD6 Payload: total 11 bytes payload
655 655  
656 656  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
657 657  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -665,7 +665,7 @@
665 665  MOD(6)
666 666  )))
667 667  
668 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
678 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1byte as below
669 669  
670 670  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
671 671  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
... ... @@ -1096,7 +1096,7 @@
1096 1096  )))
1097 1097  
1098 1098  (((
1099 -00: Close ,  01: Open , 11: No action
1109 +00: Closed ,  01: Open , 11: No action
1100 1100  
1101 1101  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1102 1102  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1218,7 +1218,7 @@
1218 1218  
1219 1219  
1220 1220  
1221 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1231 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1222 1222  
1223 1223  
1224 1224  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1339,74 +1339,91 @@
1339 1339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1340 1340  
1341 1341  
1342 -== 3.5 Integrate with Mydevice ==
1352 +== 3.5 Integrating with ThingsEye.io ==
1343 1343  
1354 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1344 1344  
1345 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1356 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1346 1346  
1347 -(((
1348 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1349 -)))
1358 +* Go to your Application and select MQTT under Integrations.
1359 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1360 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1350 1350  
1351 -(((
1352 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1362 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1353 1353  
1354 -
1355 -)))
1364 +=== 3.5.2 Configuring ThingsEye.io ===
1356 1356  
1357 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1366 +* Login to your thingsEye.io account.
1367 +* Under the Integrations center, click Integrations.
1368 +* Click the Add integration button (the button with the + symbol).
1358 1358  
1370 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1359 1359  
1360 1360  
1361 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1373 +On the Add integration page configure the following:
1362 1362  
1375 +Basic settings:
1363 1363  
1364 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1377 +* Select The Things Stack Community from the Integration type list.
1378 +* Enter a suitable name for your integration in the Name box or keep the default name.
1379 +* Click the Next button.
1365 1365  
1366 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1381 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1367 1367  
1368 -Search under The things network
1383 +Uplink Data converter:
1369 1369  
1370 -[[image:1653356838789-523.png||height="337" width="740"]]
1385 +* Click the Create New button if it is not selected by default.
1386 +* Click the JavaScript button.
1387 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1388 +* Click the Next button.
1371 1371  
1390 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1372 1372  
1373 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1392 +Downlink Data converter (this is an optional step):
1374 1374  
1375 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1394 +* Click the Create new button if it is not selected by default.
1395 +* Click the JavaScript button.
1396 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1397 +* Click the Next button.
1376 1376  
1399 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1377 1377  
1378 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1401 +Connection:
1379 1379  
1403 +* Choose Region from the Host type.
1404 +* Enter the cluster of your The Things Stack in the Region textbox.
1405 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1406 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1407 +* Click the Add button.
1380 1380  
1381 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1409 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1382 1382  
1383 1383  
1384 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1412 +Your integration is added to the integrations list and it will display on the Integrations page.
1385 1385  
1414 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1386 1386  
1387 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1388 1388  
1417 +== 3.6 Interface Details ==
1389 1389  
1390 -== 3.6 Interface Detail ==
1391 -
1392 1392  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1393 1393  
1394 1394  
1395 -Support NPN Type sensor
1422 +Support NPN-type sensor
1396 1396  
1397 1397  [[image:1653356991268-289.png]]
1398 1398  
1399 1399  
1400 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1427 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1401 1401  
1402 1402  
1403 1403  (((
1404 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1431 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1405 1405  )))
1406 1406  
1407 1407  (((
1408 1408  (((
1409 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1436 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1410 1410  
1411 1411  
1412 1412  )))
... ... @@ -1416,7 +1416,7 @@
1416 1416  
1417 1417  (((
1418 1418  (((
1419 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1446 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1420 1420  )))
1421 1421  )))
1422 1422  
... ... @@ -1425,22 +1425,22 @@
1425 1425  )))
1426 1426  
1427 1427  (((
1428 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1455 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1429 1429  )))
1430 1430  
1431 1431  (((
1432 -This type of sensor will output a low signal GND when active.
1459 +This type of sensor outputs a low (GND) signal when active.
1433 1433  )))
1434 1434  
1435 1435  * (((
1436 -Connect sensor's output to DI1-
1463 +Connect the sensor's output to DI1-
1437 1437  )))
1438 1438  * (((
1439 -Connect sensor's VCC to DI1+.
1466 +Connect the sensor's VCC to DI1+.
1440 1440  )))
1441 1441  
1442 1442  (((
1443 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1470 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1444 1444  )))
1445 1445  
1446 1446  (((
... ... @@ -1448,7 +1448,7 @@
1448 1448  )))
1449 1449  
1450 1450  (((
1451 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1478 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1452 1452  )))
1453 1453  
1454 1454  (((
... ... @@ -1456,22 +1456,22 @@
1456 1456  )))
1457 1457  
1458 1458  (((
1459 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1486 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1460 1460  )))
1461 1461  
1462 1462  (((
1463 -This type of sensor will output a high signal (example 24v) when active.
1490 +This type of sensor outputs a high signal (e.g., 24V) when active.
1464 1464  )))
1465 1465  
1466 1466  * (((
1467 -Connect sensor's output to DI1+
1494 +Connect the sensor's output to DI1+
1468 1468  )))
1469 1469  * (((
1470 -Connect sensor's GND DI1-.
1497 +Connect the sensor's GND DI1-.
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1501 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1475 1475  )))
1476 1476  
1477 1477  (((
... ... @@ -1479,7 +1479,7 @@
1479 1479  )))
1480 1480  
1481 1481  (((
1482 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1509 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1483 1483  )))
1484 1484  
1485 1485  (((
... ... @@ -1487,22 +1487,22 @@
1487 1487  )))
1488 1488  
1489 1489  (((
1490 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1517 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1491 1491  )))
1492 1492  
1493 1493  (((
1494 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1521 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1495 1495  )))
1496 1496  
1497 1497  * (((
1498 -Connect sensor's output to DI1+ with a serial 50K resistor
1525 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1499 1499  )))
1500 1500  * (((
1501 -Connect sensor's GND DI1-.
1528 +Connect the sensor's GND DI1-.
1502 1502  )))
1503 1503  
1504 1504  (((
1505 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1532 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1506 1506  )))
1507 1507  
1508 1508  (((
... ... @@ -1510,37 +1510,37 @@
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1540 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1514 1514  )))
1515 1515  
1516 1516  
1517 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1544 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1518 1518  
1519 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1546 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1520 1520  
1521 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1548 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1522 1522  
1523 1523  [[image:image-20230616235145-1.png]]
1524 1524  
1525 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1552 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1526 1526  
1527 1527  [[image:image-20240219115718-1.png]]
1528 1528  
1529 1529  
1530 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1557 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1531 1531  
1532 1532  
1533 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1560 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1534 1534  
1535 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1562 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1536 1536  
1537 1537  [[image:1653357531600-905.png]]
1538 1538  
1539 1539  
1540 -=== 3.6.4 Analog Input Interface ===
1567 +=== 3.6.4 Analog Input Interfaces ===
1541 1541  
1542 1542  
1543 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1570 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1544 1544  
1545 1545  
1546 1546  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1547,14 +1547,14 @@
1547 1547  
1548 1548  [[image:1653357592296-182.png]]
1549 1549  
1550 -Example to connect a 4~~20mA sensor
1577 +Example: Connecting a 4~~20mA sensor
1551 1551  
1552 -We take the wind speed sensor as an example for reference only.
1579 +We will use the wind speed sensor as an example for reference only.
1553 1553  
1554 1554  
1555 1555  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1556 1556  
1557 -(% style="color:red" %)**Red:  12~~24v**
1584 +(% style="color:red" %)**Red:  12~~24V**
1558 1558  
1559 1559  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1560 1560  
... ... @@ -1567,7 +1567,7 @@
1567 1567  [[image:1653357648330-671.png||height="155" width="733"]]
1568 1568  
1569 1569  
1570 -Example connected to a regulated power supply to measure voltage
1597 +Example: Connecting to a regulated power supply to measure voltage
1571 1571  
1572 1572  [[image:image-20230608101532-1.png||height="606" width="447"]]
1573 1573  
... ... @@ -1576,7 +1576,7 @@
1576 1576  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1577 1577  
1578 1578  
1579 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1606 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1580 1580  
1581 1581  (% style="color:red" %)**Red:  12~~24v**
1582 1582  
... ... @@ -1587,9 +1587,9 @@
1587 1587  
1588 1588  
1589 1589  (((
1590 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1617 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1591 1591  
1592 -**Note**: RO pins go to Open(NO) when device is power off.
1619 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1593 1593  )))
1594 1594  
1595 1595  [[image:image-20220524100215-9.png]]
... ... @@ -1617,25 +1617,25 @@
1617 1617  Transmit a LoRa packet: TX blinks once
1618 1618  )))
1619 1619  )))
1620 -|**RX**|RX blinks once when receive a packet.
1621 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1622 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1647 +|**RX**|RX blinks once when receiving a packet.
1648 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1649 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1623 1623  |**DI1**|(((
1624 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1651 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1625 1625  )))
1626 1626  |**DI2**|(((
1627 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1654 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1628 1628  )))
1629 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1630 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1656 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1657 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1631 1631  
1632 -= 4. Use AT Command =
1659 += 4. Using AT Command =
1633 1633  
1634 -== 4.1 Access AT Command ==
1661 +== 4.1 Connecting the LT-22222-L to a computer ==
1635 1635  
1636 1636  
1637 1637  (((
1638 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1665 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1639 1639  )))
1640 1640  
1641 1641  [[image:1653358238933-385.png]]
... ... @@ -1642,7 +1642,7 @@
1642 1642  
1643 1643  
1644 1644  (((
1645 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1672 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1646 1646  )))
1647 1647  
1648 1648  [[image:1653358355238-883.png]]
... ... @@ -1649,10 +1649,12 @@
1649 1649  
1650 1650  
1651 1651  (((
1652 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1679 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1653 1653  )))
1654 1654  
1655 1655  (((
1683 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1684 +
1656 1656  AT+<CMD>?        : Help on <CMD>
1657 1657  )))
1658 1658  
... ... @@ -1977,10 +1977,10 @@
1977 1977  
1978 1978  = 5. Case Study =
1979 1979  
1980 -== 5.1 Counting how many objects pass in Flow Line ==
2009 +== 5.1 Counting how many objects pass through the flow Line ==
1981 1981  
1982 1982  
1983 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2012 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1984 1984  
1985 1985  
1986 1986  = 6. FAQ =
... ... @@ -1988,26 +1988,26 @@
1988 1988  == 6.1 How to upgrade the image? ==
1989 1989  
1990 1990  
1991 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2020 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
1992 1992  
1993 -* Support new features
1994 -* For bug fix
2022 +* Support new features.
2023 +* Fix bugs.
1995 1995  * Change LoRaWAN bands.
1996 1996  
1997 -Below shows the hardware connection for how to upload an image to the LT:
2026 +Below is the hardware connection setup for uploading an image to the LT:
1998 1998  
1999 1999  [[image:1653359603330-121.png]]
2000 2000  
2001 2001  
2002 2002  (((
2003 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2004 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2005 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2032 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2033 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2034 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2006 2006  
2007 2007  
2008 2008  (((
2009 2009  (% style="color:blue" %)**For LT-22222-L**(%%):
2010 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2039 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2011 2011  )))
2012 2012  
2013 2013  
... ... @@ -2022,7 +2022,7 @@
2022 2022  [[image:image-20220524104033-15.png]]
2023 2023  
2024 2024  
2025 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2054 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2026 2026  
2027 2027  [[image:1653360054704-518.png||height="186" width="745"]]
2028 2028  
... ... @@ -2036,13 +2036,13 @@
2036 2036  )))
2037 2037  
2038 2038  (((
2039 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2068 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2040 2040  )))
2041 2041  
2042 2042  (((
2043 2043  
2044 2044  
2045 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2074 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2046 2046  
2047 2047  
2048 2048  )))
... ... @@ -2049,13 +2049,13 @@
2049 2049  
2050 2050  (((
2051 2051  (((
2052 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2081 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2053 2053  )))
2054 2054  )))
2055 2055  
2056 2056  (((
2057 2057  (((
2058 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2087 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2059 2059  
2060 2060  
2061 2061  )))
... ... @@ -2062,7 +2062,7 @@
2062 2062  )))
2063 2063  
2064 2064  (((
2065 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2094 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2066 2066  
2067 2067  
2068 2068  )))
... ... @@ -2119,7 +2119,7 @@
2119 2119  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2120 2120  
2121 2121  
2122 -== 6.5 Can I see counting event in Serial? ==
2151 +== 6.5 Can I see the counting event in Serial? ==
2123 2123  
2124 2124  
2125 2125  (((
... ... @@ -2126,10 +2126,10 @@
2126 2126  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2127 2127  
2128 2128  
2129 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2158 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2130 2130  
2131 2131  
2132 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2161 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2133 2133  
2134 2134  
2135 2135  )))
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0