<
From version < 138.1 >
edited by Dilisi S
on 2024/10/30 02:44
To version < 181.1 >
edited by Dilisi S
on 2024/11/10 05:03
>
Change comment: Uploaded new attachment "thingseye-events.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -17,13 +17,13 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 25  (((
26 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 28  The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 29  )))
... ... @@ -34,17 +34,13 @@
34 34  )))
35 35  
36 36  (((
37 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
38 -The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
39 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
40 40  
41 -(((
42 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
43 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
44 44  
45 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
46 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
47 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -61,16 +61,16 @@
61 61  * SX1276/78 Wireless Chip 
62 62  * Power Consumption:
63 63  ** Idle: 4mA@12v
64 -** 20dB Transmit: 34mA@12v
65 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
66 66  
67 67  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
68 68  
69 69  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
70 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
71 71  * 2 x Relay Output (5A@250VAC / 30VDC)
72 72  * 2 x 0~~20mA Analog Input (res:0.01mA)
73 -* 2 x 0~~30V Analog Input (res:0.01v)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
74 74  * Power Input 7~~ 24V DC. 
75 75  
76 76  (% style="color:#037691" %)**LoRa Spec:**
... ... @@ -80,7 +80,7 @@
80 80  ** Band 2 (LF): 410 ~~ 528 Mhz
81 81  * 168 dB maximum link budget.
82 82  * +20 dBm - 100 mW constant RF output vs.
83 -* +14 dBm high efficiency PA.
79 +* +14 dBm high-efficiency PA.
84 84  * Programmable bit rate up to 300 kbps.
85 85  * High sensitivity: down to -148 dBm.
86 86  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -100,7 +100,7 @@
100 100  * Optional Customized LoRa Protocol
101 101  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
102 102  * AT Commands to change parameters
103 -* Remote configure parameters via LoRa Downlink
99 +* Remotely configure parameters via LoRaWAN Downlink
104 104  * Firmware upgradable via program port
105 105  * Counting
106 106  
... ... @@ -130,17 +130,52 @@
130 130  * 1 x Counting Port
131 131  )))
132 132  
133 -= 2. Powering ON the Device =
129 += 2. Assembling the Device =
134 134  
135 -(% style="line-height:1.38" %)
136 -(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The LT-22222-L controller can be powered by a 7–24V DC power source.
131 +== 2.1 What is included in the package? ==
137 137  
138 -* (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect VIN to Power Input V+ and GND to Power Input V- to power the LT-22222-L controller.
139 -* (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect the positive wire of the power supply to the VIN screw terminal and the negative wire to the GND screw terminal.
133 +The package includes the following items:
140 140  
141 -(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The power indicator (PWR) LED will turn on when the device is properly powered.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
142 142  
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
142 +== 2.2 Terminals ==
143 +
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
144 144  [[image:1653297104069-180.png]]
145 145  
146 146  
... ... @@ -148,74 +148,116 @@
148 148  
149 149  == 3.1 How does it work? ==
150 150  
151 -(((
152 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
153 153  
154 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
155 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
156 156  
157 -(((
158 158  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
159 -)))
160 160  
188 +== 3.2 Registering with a LoRaWAN network server ==
161 161  
162 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
163 163  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
164 164  
165 -(((
166 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
167 167  
168 -
169 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
170 170  
171 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
172 172  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
173 173  
174 -(((
175 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
176 176  
177 -
178 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
179 179  
180 -(((
181 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
182 -)))
208 +==== ====
183 183  
184 -(((
185 -Each LT is shipped with a sticker with the default device EUI as below:
186 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
187 187  
188 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
189 189  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
190 190  
191 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
192 192  
193 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
194 194  
195 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
196 196  
230 +==== ====
197 197  
198 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
199 199  
200 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
201 201  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
202 202  
203 -(((
204 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
205 205  
206 -
207 -)))
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
208 208  
209 -[[image:1653298044601-602.png||height="405" width="709"]]
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
210 210  
211 211  
212 -== 3.3 Uplink Payload ==
257 +You will be navigated to the **Device overview** page.
213 213  
214 214  
215 -There are five working modes + one interrupt mode on LT for different type application:
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
216 216  
217 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
218 218  
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
219 219  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
220 220  
221 221  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -226,12 +226,15 @@
226 226  
227 227  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
228 228  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
229 229  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
230 230  
231 -
232 232  (((
233 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
234 234  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
235 235  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
236 236  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
237 237  |Value|(((
... ... @@ -242,29 +242,29 @@
242 242  ACI1 Current
243 243  )))|(((
244 244  ACI2 Current
245 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
246 246  Reserve
247 247  )))|MOD
248 248  )))
249 249  
250 250  (((
251 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
252 252  
253 253  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
255 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
256 256  )))
257 257  
258 -* RO is for relay. ROx=1 : close, ROx=0 always open.
259 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
260 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
261 261  
262 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
263 263  
264 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
265 265  
266 266  
267 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
268 268  
269 269  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
270 270  
... ... @@ -274,35 +274,32 @@
274 274  
275 275  ACI2 channel current is 0x1300/1000=4.864mA
276 276  
277 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
278 278  
279 -* [1] RO1 relay channel is close and the RO1 LED is ON.
280 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
281 281  
282 -**LT22222-L:**
283 -
284 -* [1] DI2 channel is high input and DI2 LED is ON;
285 -* [0] DI1 channel is low input;
286 -
287 -* [0] DO3 channel output state
288 -** DO3 is float in case no load between DO3 and V+.;
289 -** DO3 is high in case there is load between DO3 and V+.
290 -** DO3 LED is off in both case
291 -* [1] DO2 channel output is low and DO2 LED is ON.
292 -* [0] DO1 channel output state
293 -** DO1 is float in case no load between DO1 and V+.;
294 -** DO1 is high in case there is load between DO1 and V+.
295 -** DO1 LED is off in both case
296 -
297 297  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
298 298  
299 299  
300 300  (((
301 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
302 302  )))
303 303  
304 304  (((
305 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
308 308  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -312,26 +312,26 @@
312 312  )))
313 313  
314 314  (((
315 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
316 316  
317 317  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
319 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
320 320  
321 -RO is for relay. ROx=1 : close , ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
322 322  )))
323 323  
324 -* FIRST: Indicate this is the first packet after join network.
325 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
326 326  
327 327  (((
328 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
329 329  
330 330  
331 331  )))
332 332  
333 333  (((
334 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
335 335  )))
336 336  
337 337  (((
... ... @@ -352,17 +352,17 @@
352 352  (((
353 353  **For LT22222-L:**
354 354  
355 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
360 360  
361 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
362 362  
363 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
364 364  
365 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
366 366  )))
367 367  
368 368  
... ... @@ -369,7 +369,7 @@
369 369  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
370 370  
371 371  
372 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
373 373  
374 374  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
375 375  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -380,24 +380,24 @@
380 380  )))|DIDORO*|Reserve|MOD
381 381  
382 382  (((
383 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
384 384  
385 385  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
387 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
388 388  )))
389 389  
390 -* RO is for relay. ROx=1 : close, ROx=0 always open.
391 -* FIRST: Indicate this is the first packet after join network.
392 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
393 393  
394 394  (((
395 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
396 396  )))
397 397  
398 398  
399 399  (((
400 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
401 401  )))
402 402  
403 403  (((
... ... @@ -410,7 +410,9 @@
410 410  )))
411 411  
412 412  (((
413 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
414 414  )))
415 415  
416 416  
... ... @@ -418,11 +418,11 @@
418 418  
419 419  
420 420  (((
421 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
422 422  )))
423 423  
424 424  (((
425 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
426 426  
427 427  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 428  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -432,25 +432,25 @@
432 432  )))
433 433  
434 434  (((
435 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
436 436  
437 437  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
439 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
440 440  )))
441 441  
442 -* RO is for relay. ROx=1 : close, ROx=0 always open.
443 -* FIRST: Indicate this is the first packet after join network.
444 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
445 445  
446 446  (((
447 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
448 448  
449 449  
450 450  )))
451 451  
452 452  (((
453 -**To use this mode, please run:**
528 +**To activate this mode, run the following AT commands:**
454 454  )))
455 455  
456 456  (((
... ... @@ -463,19 +463,19 @@
463 463  )))
464 464  
465 465  (((
466 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
467 467  )))
468 468  
469 469  (((
470 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
471 471  
472 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
473 473  
474 474  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
475 475  
476 476  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
477 477  
478 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
479 479  )))
480 480  
481 481  
... ... @@ -482,7 +482,7 @@
482 482  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
483 483  
484 484  
485 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
486 486  
487 487  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
488 488  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -497,25 +497,25 @@
497 497  )))|MOD
498 498  
499 499  (((
500 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
501 501  
502 502  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
504 504  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
505 505  )))
506 506  
507 -* RO is for relay. ROx=1 : close, ROx=0 always open.
508 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
509 509  * (((
510 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
511 511  )))
512 512  
513 513  (((
514 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
515 515  )))
516 516  
517 517  (((
518 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
519 519  )))
520 520  
521 521  (((
... ... @@ -528,7 +528,7 @@
528 528  )))
529 529  
530 530  (((
531 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
532 532  )))
533 533  
534 534  
... ... @@ -535,49 +535,46 @@
535 535  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
536 536  
537 537  
538 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
539 539  
540 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
541 541  
542 542  * **AT+MOD=1 ** **~-~->**  The normal working mode
543 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
544 544  
545 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
546 546  
547 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
548 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
549 549  
550 550  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
551 551  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
552 552  
553 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
554 -
555 555  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
556 556  
557 557  
558 558  **Example:**
559 559  
560 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
561 561  
562 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
563 563  
564 564  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
565 565  
566 -(% style="color:#4f81bd" %)**Trigger base on current**:
567 -
568 568  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
569 569  
570 570  
571 571  **Example:**
572 572  
573 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
574 574  
575 575  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
576 576  
577 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
578 578  
579 -DI status trigger Flag.
580 -
581 581  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
582 582  
583 583  
... ... @@ -586,39 +586,38 @@
586 586  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
587 587  
588 588  
589 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
590 590  
591 591  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
592 592  
593 593  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
594 594  
595 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
596 596  
597 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
598 598  
599 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
600 600  
601 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
602 602  
603 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
604 604  
605 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
606 606  
607 607  
608 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
609 609  
610 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
611 611  
612 612  
613 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
614 614  
615 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
616 616  
617 617  
618 -
619 619  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
620 620  
621 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
622 622  
623 623  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
624 624  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -632,10 +632,10 @@
632 632  MOD(6)
633 633  )))
634 634  
635 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
636 636  
637 637  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
638 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
639 639  |(((
640 640  AV1_LOW
641 641  )))|(((
... ... @@ -654,17 +654,17 @@
654 654  AC2_HIGH
655 655  )))
656 656  
657 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
658 658  
659 659  **Example:**
660 660  
661 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
662 662  
663 663  
664 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
665 665  
666 666  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
667 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
668 668  |(((
669 669  AV1_LOW
670 670  )))|(((
... ... @@ -683,11 +683,11 @@
683 683  AC2_HIGH
684 684  )))
685 685  
686 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
687 687  
688 688  **Example:**
689 689  
690 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
691 691  
692 692  
693 693  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -696,7 +696,7 @@
696 696  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
697 697  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
698 698  
699 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
700 700  
701 701  **Example:**
702 702  
... ... @@ -723,11 +723,11 @@
723 723  )))
724 724  
725 725  
726 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
727 727  
728 728  
729 729  (((
730 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
731 731  )))
732 732  
733 733  (((
... ... @@ -742,9 +742,8 @@
742 742  
743 743  === 3.4.1 Common Commands ===
744 744  
745 -
746 746  (((
747 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
748 748  )))
749 749  
750 750  
... ... @@ -752,34 +752,37 @@
752 752  
753 753  ==== 3.4.2.1 Set Transmit Interval ====
754 754  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
755 755  
756 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
757 757  
758 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
759 759  
760 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
761 761  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
762 762  
763 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
764 764  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
765 765  
766 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
767 -
768 768  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
769 769  
770 770  
771 771  
772 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
773 773  
774 774  
775 -Set work mode.
845 +Sets the work mode.
776 776  
777 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
778 778  
779 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
780 780  
781 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
782 782  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
783 783  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
784 784  
785 785  
... ... @@ -787,10 +787,12 @@
787 787  ==== 3.4.2.3 Poll an uplink ====
788 788  
789 789  
790 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
791 791  
792 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
793 793  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
794 794  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
795 795  
796 796  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -797,16 +797,16 @@
797 797  
798 798  
799 799  
800 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
801 801  
802 802  
803 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
804 804  
805 805  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
806 806  
807 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
808 808  
809 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
810 810  
811 811  
812 812  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -818,7 +818,7 @@
818 818  ==== 3.4.2.5 Poll trigger settings ====
819 819  
820 820  
821 -Poll trigger settings
896 +Polls the trigger settings
822 822  
823 823  * (% style="color:#037691" %)**AT Command:**
824 824  
... ... @@ -826,7 +826,7 @@
826 826  
827 827  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
828 828  
829 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
830 830  
831 831  
832 832  
... ... @@ -833,11 +833,11 @@
833 833  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
834 834  
835 835  
836 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
837 837  
838 838  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
839 839  
840 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
841 841  
842 842  
843 843  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -869,15 +869,15 @@
869 869  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
870 870  
871 871  
872 -Set DI2 trigger.
947 +Sets DI2 trigger.
873 873  
874 874  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
875 875  
876 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
877 877  
878 878  (% style="color:red" %)**b :** (%%)delay timing.
879 879  
880 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
881 881  
882 882  
883 883  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -915,7 +915,7 @@
915 915  ==== 3.4.2.11 Trigger – Set minimum interval ====
916 916  
917 917  
918 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
919 919  
920 920  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
921 921  
... ... @@ -1063,7 +1063,7 @@
1063 1063  )))
1064 1064  
1065 1065  (((
1066 -00: Close ,  01: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1067 1067  
1068 1068  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1069 1069  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1185,7 +1185,7 @@
1185 1185  
1186 1186  
1187 1187  
1188 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1189 1189  
1190 1190  
1191 1191  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1306,74 +1306,144 @@
1306 1306  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1307 1307  
1308 1308  
1309 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1310 1310  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1311 1311  
1312 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1313 1313  
1314 -(((
1315 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1316 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1317 1317  
1318 -(((
1319 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1320 1320  
1321 -
1322 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1323 1323  
1324 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1325 1325  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1326 1326  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1327 1327  
1328 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1329 1329  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1330 1330  
1331 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1332 1332  
1333 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1334 1334  
1335 -Search under The things network
1414 +**Basic settings:**
1336 1336  
1337 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1338 1338  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1339 1339  
1340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1341 1341  
1342 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1427 +**Uplink data converter:**
1343 1343  
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1344 1344  
1345 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1346 1346  
1347 1347  
1348 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1438 +**Downlink data converter (this is an optional step):**
1349 1349  
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1350 1350  
1351 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1352 1352  
1353 1353  
1354 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1449 +**Connection:**
1355 1355  
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1356 1356  
1357 -== 3.6 Interface Detail ==
1456 +[[image:message-1.png]]
1358 1358  
1458 +
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1359 1359  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1360 1360  
1361 1361  
1362 -Support NPN Type sensor
1507 +Support NPN-type sensor
1363 1363  
1364 1364  [[image:1653356991268-289.png]]
1365 1365  
1366 1366  
1367 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1368 1368  
1369 1369  
1370 1370  (((
1371 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1372 1372  )))
1373 1373  
1374 1374  (((
1375 1375  (((
1376 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1377 1377  
1378 1378  
1379 1379  )))
... ... @@ -1383,7 +1383,7 @@
1383 1383  
1384 1384  (((
1385 1385  (((
1386 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1387 1387  )))
1388 1388  )))
1389 1389  
... ... @@ -1392,22 +1392,22 @@
1392 1392  )))
1393 1393  
1394 1394  (((
1395 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1396 1396  )))
1397 1397  
1398 1398  (((
1399 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1400 1400  )))
1401 1401  
1402 1402  * (((
1403 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1404 1404  )))
1405 1405  * (((
1406 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1407 1407  )))
1408 1408  
1409 1409  (((
1410 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1411 1411  )))
1412 1412  
1413 1413  (((
... ... @@ -1415,7 +1415,7 @@
1415 1415  )))
1416 1416  
1417 1417  (((
1418 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1419 1419  )))
1420 1420  
1421 1421  (((
... ... @@ -1423,22 +1423,22 @@
1423 1423  )))
1424 1424  
1425 1425  (((
1426 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1427 1427  )))
1428 1428  
1429 1429  (((
1430 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1431 1431  )))
1432 1432  
1433 1433  * (((
1434 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1435 1435  )))
1436 1436  * (((
1437 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1438 1438  )))
1439 1439  
1440 1440  (((
1441 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1442 1442  )))
1443 1443  
1444 1444  (((
... ... @@ -1446,7 +1446,7 @@
1446 1446  )))
1447 1447  
1448 1448  (((
1449 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1450 1450  )))
1451 1451  
1452 1452  (((
... ... @@ -1454,22 +1454,22 @@
1454 1454  )))
1455 1455  
1456 1456  (((
1457 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1458 1458  )))
1459 1459  
1460 1460  (((
1461 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1462 1462  )))
1463 1463  
1464 1464  * (((
1465 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1466 1466  )))
1467 1467  * (((
1468 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1469 1469  )))
1470 1470  
1471 1471  (((
1472 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1473 1473  )))
1474 1474  
1475 1475  (((
... ... @@ -1477,37 +1477,37 @@
1477 1477  )))
1478 1478  
1479 1479  (((
1480 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1481 1481  )))
1482 1482  
1483 1483  
1484 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1485 1485  
1486 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1487 1487  
1488 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1489 1489  
1490 1490  [[image:image-20230616235145-1.png]]
1491 1491  
1492 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1493 1493  
1494 1494  [[image:image-20240219115718-1.png]]
1495 1495  
1496 1496  
1497 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1498 1498  
1499 1499  
1500 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1501 1501  
1502 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1503 1503  
1504 1504  [[image:1653357531600-905.png]]
1505 1505  
1506 1506  
1507 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1508 1508  
1509 1509  
1510 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1511 1511  
1512 1512  
1513 1513  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1514,14 +1514,14 @@
1514 1514  
1515 1515  [[image:1653357592296-182.png]]
1516 1516  
1517 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1518 1518  
1519 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1520 1520  
1521 1521  
1522 1522  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1523 1523  
1524 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1525 1525  
1526 1526  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1527 1527  
... ... @@ -1534,7 +1534,7 @@
1534 1534  [[image:1653357648330-671.png||height="155" width="733"]]
1535 1535  
1536 1536  
1537 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1538 1538  
1539 1539  [[image:image-20230608101532-1.png||height="606" width="447"]]
1540 1540  
... ... @@ -1543,7 +1543,7 @@
1543 1543  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1544 1544  
1545 1545  
1546 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1547 1547  
1548 1548  (% style="color:red" %)**Red:  12~~24v**
1549 1549  
... ... @@ -1554,9 +1554,9 @@
1554 1554  
1555 1555  
1556 1556  (((
1557 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1558 1558  
1559 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1560 1560  )))
1561 1561  
1562 1562  [[image:image-20220524100215-9.png]]
... ... @@ -1584,25 +1584,26 @@
1584 1584  Transmit a LoRa packet: TX blinks once
1585 1585  )))
1586 1586  )))
1587 -|**RX**|RX blinks once when receive a packet.
1588 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1589 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1590 1590  |**DI1**|(((
1591 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1592 1592  )))
1593 1593  |**DI2**|(((
1594 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1595 1595  )))
1596 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1597 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1598 1598  
1599 -= 4. Use AT Command =
1744 += 4. Using AT Commands =
1600 1600  
1601 -== 4.1 Access AT Command ==
1746 +The LT-22222-L supports programming using AT Commands.
1602 1602  
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1603 1603  
1604 1604  (((
1605 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1606 1606  )))
1607 1607  
1608 1608  [[image:1653358238933-385.png]]
... ... @@ -1609,7 +1609,7 @@
1609 1609  
1610 1610  
1611 1611  (((
1612 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1613 1613  )))
1614 1614  
1615 1615  [[image:1653358355238-883.png]]
... ... @@ -1616,194 +1616,63 @@
1616 1616  
1617 1617  
1618 1618  (((
1619 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1620 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1621 1621  
1622 -(((
1623 -AT+<CMD>?        : Help on <CMD>
1767 +== 4.2 LT-22222-L related AT commands ==
1624 1624  )))
1625 1625  
1626 1626  (((
1627 -AT+<CMD>         : Run <CMD>
1628 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1629 1629  
1630 -(((
1631 -AT+<CMD>=<value> : Set the value
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1632 1632  )))
1633 1633  
1634 -(((
1635 -AT+<CMD>=?       :  Get the value
1636 -)))
1637 1637  
1638 -(((
1639 -ATZ: Trig a reset of the MCU
1640 -)))
1641 -
1642 -(((
1643 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1644 -)))
1645 -
1646 -(((
1647 -AT+DEUI: Get or Set the Device EUI
1648 -)))
1649 -
1650 -(((
1651 -AT+DADDR: Get or Set the Device Address
1652 -)))
1653 -
1654 -(((
1655 -AT+APPKEY: Get or Set the Application Key
1656 -)))
1657 -
1658 -(((
1659 -AT+NWKSKEY: Get or Set the Network Session Key
1660 -)))
1661 -
1662 -(((
1663 -AT+APPSKEY:  Get or Set the Application Session Key
1664 -)))
1665 -
1666 -(((
1667 -AT+APPEUI:  Get or Set the Application EUI
1668 -)))
1669 -
1670 -(((
1671 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1672 -)))
1673 -
1674 -(((
1675 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1676 -)))
1677 -
1678 -(((
1679 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1680 -)))
1681 -
1682 -(((
1683 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1684 -)))
1685 -
1686 -(((
1687 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1688 -)))
1689 -
1690 -(((
1691 -AT+RX2FQ: Get or Set the Rx2 window frequency
1692 -)))
1693 -
1694 -(((
1695 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1696 -)))
1697 -
1698 -(((
1699 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1700 -)))
1701 -
1702 -(((
1703 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1704 -)))
1705 -
1706 -(((
1707 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1708 -)))
1709 -
1710 -(((
1711 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1712 -)))
1713 -
1714 -(((
1715 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1716 -)))
1717 -
1718 -(((
1719 -AT+NWKID: Get or Set the Network ID
1720 -)))
1721 -
1722 -(((
1723 -AT+FCU: Get or Set the Frame Counter Uplink
1724 -)))
1725 -
1726 -(((
1727 -AT+FCD: Get or Set the Frame Counter Downlink
1728 -)))
1729 -
1730 -(((
1731 -AT+CLASS: Get or Set the Device Class
1732 -)))
1733 -
1734 -(((
1735 -AT+JOIN: Join network
1736 -)))
1737 -
1738 -(((
1739 -AT+NJS: Get OTAA Join Status
1740 -)))
1741 -
1742 -(((
1743 -AT+SENDB: Send hexadecimal data along with the application port
1744 -)))
1745 -
1746 -(((
1747 -AT+SEND: Send text data along with the application port
1748 -)))
1749 -
1750 -(((
1751 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1752 -)))
1753 -
1754 -(((
1755 -AT+RECV: Print last received data in raw format
1756 -)))
1757 -
1758 -(((
1759 -AT+VER:  Get current image version and Frequency Band
1760 -)))
1761 -
1762 -(((
1763 -AT+CFM: Get or Set the confirmation mode (0-1)
1764 -)))
1765 -
1766 -(((
1767 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1768 -)))
1769 -
1770 -(((
1771 -AT+SNR: Get the SNR of the last received packet
1772 -)))
1773 -
1774 -(((
1775 -AT+RSSI: Get the RSSI of the last received packet
1776 -)))
1777 -
1778 -(((
1779 -AT+TDC: Get or set the application data transmission interval in ms
1780 -)))
1781 -
1782 -(((
1783 -AT+PORT: Get or set the application port
1784 -)))
1785 -
1786 -(((
1787 -AT+DISAT: Disable AT commands
1788 -)))
1789 -
1790 -(((
1791 -AT+PWORD: Set password, max 9 digits
1792 -)))
1793 -
1794 -(((
1795 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1796 -)))
1797 -
1798 -(((
1799 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1800 -)))
1801 -
1802 -(((
1803 -AT+CFG: Print all settings
1804 -)))
1805 -
1806 -
1807 1807  == 4.2 Common AT Command Sequence ==
1808 1808  
1809 1809  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1812,41 +1812,41 @@
1812 1812  
1813 1813  
1814 1814  (((
1815 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1816 1816  )))
1817 1817  )))
1818 1818  
1819 1819  (((
1820 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1821 1821  )))
1822 1822  
1823 1823  (((
1824 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1825 1825  )))
1826 1826  
1827 1827  (((
1828 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1829 1829  )))
1830 1830  
1831 1831  (((
1832 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1833 1833  )))
1834 1834  
1835 1835  (((
1836 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1837 1837  )))
1838 1838  
1839 1839  
1840 1840  (((
1841 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1842 1842  )))
1843 1843  
1844 1844  (((
1845 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1846 1846  )))
1847 1847  
1848 1848  (((
1849 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1850 1850  )))
1851 1851  
1852 1852  
... ... @@ -1944,37 +1944,50 @@
1944 1944  
1945 1945  = 5. Case Study =
1946 1946  
1947 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
1948 1948  
1949 1949  
1950 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1951 1951  
1952 1952  
1953 1953  = 6. FAQ =
1954 1954  
1955 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
1956 1956  
1972 +== 6.1 How to update the firmware? ==
1957 1957  
1958 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
1959 1959  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
1960 1960  * Support new features
1961 -* For bug fix
1962 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
1963 1963  
1964 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
1965 1965  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
1966 1966  [[image:1653359603330-121.png]]
1967 1967  
1968 1968  
1969 -(((
1970 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1971 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1972 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1973 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
1974 1974  
1975 1975  (((
2002 +(((
1976 1976  (% style="color:blue" %)**For LT-22222-L**(%%):
1977 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
1978 1978  )))
1979 1979  
1980 1980  
... ... @@ -1989,7 +1989,7 @@
1989 1989  [[image:image-20220524104033-15.png]]
1990 1990  
1991 1991  
1992 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
1993 1993  
1994 1994  [[image:1653360054704-518.png||height="186" width="745"]]
1995 1995  
... ... @@ -1996,7 +1996,7 @@
1996 1996  
1997 1997  (((
1998 1998  (((
1999 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2000 2000  
2001 2001  
2002 2002  )))
... ... @@ -2003,13 +2003,13 @@
2003 2003  )))
2004 2004  
2005 2005  (((
2006 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2007 2007  )))
2008 2008  
2009 2009  (((
2010 2010  
2011 2011  
2012 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2013 2013  
2014 2014  
2015 2015  )))
... ... @@ -2016,13 +2016,13 @@
2016 2016  
2017 2017  (((
2018 2018  (((
2019 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2020 2020  )))
2021 2021  )))
2022 2022  
2023 2023  (((
2024 2024  (((
2025 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2026 2026  
2027 2027  
2028 2028  )))
... ... @@ -2029,7 +2029,7 @@
2029 2029  )))
2030 2030  
2031 2031  (((
2032 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2033 2033  
2034 2034  
2035 2035  )))
... ... @@ -2086,61 +2086,55 @@
2086 2086  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2087 2087  
2088 2088  
2089 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2090 2090  
2091 2091  
2092 2092  (((
2093 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2094 2094  
2095 2095  
2096 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2097 2097  
2098 2098  
2099 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2100 -
2101 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2102 2102  )))
2103 2103  
2104 2104  (((
2105 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2106 2106  
2107 2107  
2108 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2109 2109  
2110 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2111 2111  
2112 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2113 2113  
2114 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2115 2115  
2116 2116  
2117 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2118 -
2119 -
2120 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2121 -
2122 -
2123 2123  [[image:image-20221006170630-1.png||height="610" width="945"]]
2124 2124  
2125 2125  
2126 -== 6.9 Can LT22222-L save RO state? ==
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2127 2127  
2128 2128  
2129 -Firmware version needs to be no less than 1.6.0.
2151 +The firmware version must be at least 1.6.0.
2130 2130  
2131 2131  
2132 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2133 2133  
2134 2134  
2135 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2136 2136  
2137 2137  
2138 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2139 2139  )))
2140 2140  
2141 2141  (((
2142 2142  (((
2143 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2144 2144  
2145 2145  
2146 2146  )))
... ... @@ -2147,42 +2147,42 @@
2147 2147  )))
2148 2148  
2149 2149  (((
2150 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2151 2151  )))
2152 2152  
2153 2153  (((
2154 2154  
2155 2155  
2156 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2157 2157  
2158 2158  
2159 2159  )))
2160 2160  
2161 2161  (((
2162 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2163 2163  )))
2164 2164  
2165 2165  (((
2166 2166  
2167 2167  
2168 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2169 2169  
2170 2170  
2171 2171  )))
2172 2172  
2173 2173  (((
2174 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2175 2175  )))
2176 2176  
2177 2177  
2178 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2179 2179  
2180 2180  
2181 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2182 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2183 2183  
2184 2184  
2185 -= 8. Order Info =
2207 += 8. Ordering information =
2186 2186  
2187 2187  
2188 2188  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2189,43 +2189,42 @@
2189 2189  
2190 2190  (% style="color:#4f81bd" %)**XXX:**
2191 2191  
2192 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2193 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2194 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2195 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2196 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2197 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2198 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2199 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2200 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2201 2201  
2202 -= 9. Packing Info =
2224 += 9. Packing information =
2203 2203  
2204 2204  
2205 -**Package Includes**:
2227 +**Package includes**:
2206 2206  
2207 2207  * LT-22222-L I/O Controller x 1
2208 2208  * Stick Antenna for LoRa RF part x 1
2209 2209  * Bracket for controller x1
2210 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2211 2211  
2212 2212  **Dimension and weight**:
2213 2213  
2214 2214  * Device Size: 13.5 x 7 x 3 cm
2215 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2216 2216  * Package Size / pcs : 14.5 x 8 x 5 cm
2217 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2218 2218  
2219 2219  = 10. Support =
2220 2220  
2221 2221  
2222 2222  * (((
2223 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2224 2224  )))
2225 2225  * (((
2226 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2227 2227  
2228 -
2229 2229  
2230 2230  )))
2231 2231  
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0