<
From version < 138.1 >
edited by Dilisi S
on 2024/10/30 02:44
To version < 163.1 >
edited by Dilisi S
on 2024/11/06 04:29
>
Change comment: minor edits set 1

Summary

Details

Page properties
Content
... ... @@ -17,13 +17,13 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 22  == 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 25  (((
26 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 28  The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
29 29  )))
... ... @@ -33,18 +33,16 @@
33 33  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
34 34  )))
35 35  
36 -(((
37 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
38 -The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
39 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
40 40  
41 41  (((
42 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
43 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
44 44  
45 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
46 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
47 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Set up your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -62,12 +62,12 @@
62 62  * Power Consumption:
63 63  ** Idle: 4mA@12v
64 64  ** 20dB Transmit: 34mA@12v
65 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
66 66  
67 67  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
68 68  
69 69  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
70 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
71 71  * 2 x Relay Output (5A@250VAC / 30VDC)
72 72  * 2 x 0~~20mA Analog Input (res:0.01mA)
73 73  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -80,7 +80,7 @@
80 80  ** Band 2 (LF): 410 ~~ 528 Mhz
81 81  * 168 dB maximum link budget.
82 82  * +20 dBm - 100 mW constant RF output vs.
83 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
84 84  * Programmable bit rate up to 300 kbps.
85 85  * High sensitivity: down to -148 dBm.
86 86  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -100,7 +100,7 @@
100 100  * Optional Customized LoRa Protocol
101 101  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
102 102  * AT Commands to change parameters
103 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
104 104  * Firmware upgradable via program port
105 105  * Counting
106 106  
... ... @@ -130,17 +130,52 @@
130 130  * 1 x Counting Port
131 131  )))
132 132  
133 -= 2. Powering ON the Device =
131 += 2. Assembling the Device =
134 134  
135 -(% style="line-height:1.38" %)
136 -(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The LT-22222-L controller can be powered by a 7–24V DC power source.
133 +== 2.1 What is included in the package? ==
137 137  
138 -* (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect VIN to Power Input V+ and GND to Power Input V- to power the LT-22222-L controller.
139 -* (% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)Connect the positive wire of the power supply to the VIN screw terminal and the negative wire to the GND screw terminal.
135 +The package includes the following items:
140 140  
141 -(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)The power indicator (PWR) LED will turn on when the device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
142 142  
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 143  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L  ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
144 144  [[image:1653297104069-180.png]]
145 145  
146 146  
... ... @@ -148,73 +148,87 @@
148 148  
149 149  == 3.1 How does it work? ==
150 150  
151 -(((
152 -The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
153 153  
154 -For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
155 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
156 156  
157 -(((
158 158  In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
159 -)))
160 160  
190 +== 3.2 Registering with a LoRaWAN network server ==
161 161  
162 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
163 163  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
164 164  
165 -(((
166 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
167 167  
168 -
169 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
170 170  
171 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
172 172  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
173 173  
174 -(((
175 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
176 176  
177 -
178 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
179 179  
180 -(((
181 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
182 -)))
210 +==== Using the LoRaWAN Device Repository: ====
183 183  
184 -(((
185 -Each LT is shipped with a sticker with the default device EUI as below:
186 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
187 187  
188 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
189 189  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
190 190  
191 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
192 192  
193 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
194 194  
195 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
196 196  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
197 197  
198 -**Add APP KEY and DEV EUI**
199 199  
200 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
201 201  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
202 202  
203 -(((
204 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
205 205  
206 -
207 -)))
252 +==== Joining ====
208 208  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
209 209  [[image:1653298044601-602.png||height="405" width="709"]]
210 210  
211 211  
212 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
213 213  
214 214  
215 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
216 216  
217 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
218 218  
219 219  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
220 220  
... ... @@ -230,7 +230,7 @@
230 230  
231 231  
232 232  (((
233 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
234 234  
235 235  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
236 236  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -248,23 +248,23 @@
248 248  )))
249 249  
250 250  (((
251 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
252 252  
253 253  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
254 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
255 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
256 256  )))
257 257  
258 -* RO is for relay. ROx=1 : close, ROx=0 always open.
259 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
260 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
261 261  
262 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
263 263  
264 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
265 265  
266 266  
267 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
268 268  
269 269  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
270 270  
... ... @@ -274,35 +274,32 @@
274 274  
275 275  ACI2 channel current is 0x1300/1000=4.864mA
276 276  
277 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
278 278  
279 -* [1] RO1 relay channel is close and the RO1 LED is ON.
280 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
281 281  
282 -**LT22222-L:**
283 -
284 -* [1] DI2 channel is high input and DI2 LED is ON;
285 -* [0] DI1 channel is low input;
286 -
287 -* [0] DO3 channel output state
288 -** DO3 is float in case no load between DO3 and V+.;
289 -** DO3 is high in case there is load between DO3 and V+.
290 -** DO3 LED is off in both case
291 -* [1] DO2 channel output is low and DO2 LED is ON.
292 -* [0] DO1 channel output state
293 -** DO1 is float in case no load between DO1 and V+.;
294 -** DO1 is high in case there is load between DO1 and V+.
295 -** DO1 LED is off in both case
296 -
297 297  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
298 298  
299 299  
300 300  (((
301 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
302 302  )))
303 303  
304 304  (((
305 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
306 306  
307 307  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
308 308  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -312,26 +312,26 @@
312 312  )))
313 313  
314 314  (((
315 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
316 316  
317 317  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
318 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
319 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
320 320  
321 -RO is for relay. ROx=1 : close , ROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
322 322  )))
323 323  
324 -* FIRST: Indicate this is the first packet after join network.
325 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
326 326  
327 327  (((
328 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
329 329  
330 330  
331 331  )))
332 332  
333 333  (((
334 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
335 335  )))
336 336  
337 337  (((
... ... @@ -352,17 +352,17 @@
352 352  (((
353 353  **For LT22222-L:**
354 354  
355 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
360 360  
361 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
362 362  
363 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
364 364  
365 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
366 366  )))
367 367  
368 368  
... ... @@ -369,7 +369,7 @@
369 369  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
370 370  
371 371  
372 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
373 373  
374 374  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
375 375  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -380,24 +380,24 @@
380 380  )))|DIDORO*|Reserve|MOD
381 381  
382 382  (((
383 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
384 384  
385 385  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
386 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
387 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
388 388  )))
389 389  
390 -* RO is for relay. ROx=1 : close, ROx=0 always open.
391 -* FIRST: Indicate this is the first packet after join network.
392 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
393 393  
394 394  (((
395 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
396 396  )))
397 397  
398 398  
399 399  (((
400 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
401 401  )))
402 402  
403 403  (((
... ... @@ -410,7 +410,9 @@
410 410  )))
411 411  
412 412  (((
413 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
414 414  )))
415 415  
416 416  
... ... @@ -418,11 +418,11 @@
418 418  
419 419  
420 420  (((
421 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
422 422  )))
423 423  
424 424  (((
425 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
426 426  
427 427  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
428 428  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -432,25 +432,25 @@
432 432  )))
433 433  
434 434  (((
435 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
436 436  
437 437  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
439 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
440 440  )))
441 441  
442 -* RO is for relay. ROx=1 : close, ROx=0 always open.
443 -* FIRST: Indicate this is the first packet after join network.
444 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
445 445  
446 446  (((
447 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
448 448  
449 449  
450 450  )))
451 451  
452 452  (((
453 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
454 454  )))
455 455  
456 456  (((
... ... @@ -463,19 +463,19 @@
463 463  )))
464 464  
465 465  (((
466 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
467 467  )))
468 468  
469 469  (((
470 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
471 471  
472 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
473 473  
474 474  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
475 475  
476 476  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
477 477  
478 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
479 479  )))
480 480  
481 481  
... ... @@ -482,7 +482,7 @@
482 482  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
483 483  
484 484  
485 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
486 486  
487 487  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
488 488  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -497,25 +497,25 @@
497 497  )))|MOD
498 498  
499 499  (((
500 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
501 501  
502 502  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
504 504  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
505 505  )))
506 506  
507 -* RO is for relay. ROx=1 : close, ROx=0 always open.
508 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
509 509  * (((
510 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
511 511  )))
512 512  
513 513  (((
514 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
515 515  )))
516 516  
517 517  (((
518 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
519 519  )))
520 520  
521 521  (((
... ... @@ -528,7 +528,7 @@
528 528  )))
529 529  
530 530  (((
531 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
532 532  )))
533 533  
534 534  
... ... @@ -535,23 +535,23 @@
535 535  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
536 536  
537 537  
538 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
539 539  
540 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
541 541  
542 542  * **AT+MOD=1 ** **~-~->**  The normal working mode
543 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
544 544  
545 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
546 546  
547 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
548 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
549 549  
596 +
550 550  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
551 551  
599 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
552 552  
553 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
554 -
555 555  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
556 556  
557 557  
... ... @@ -562,9 +562,8 @@
562 562  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
563 563  
564 564  
611 +(% style="color:#4f81bd" %)**Trigger based on current**:
565 565  
566 -(% style="color:#4f81bd" %)**Trigger base on current**:
567 -
568 568  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
569 569  
570 570  
... ... @@ -573,7 +573,6 @@
573 573  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
574 574  
575 575  
576 -
577 577  (% style="color:#4f81bd" %)**Trigger base on DI status**:
578 578  
579 579  DI status trigger Flag.
... ... @@ -1306,74 +1306,91 @@
1306 1306  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1307 1307  
1308 1308  
1309 -== 3.5 Integrate with Mydevice ==
1353 +== 3.5 Integrating with ThingsEye.io ==
1310 1310  
1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1311 1311  
1312 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1357 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1313 1313  
1314 -(((
1315 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1316 -)))
1359 +* Go to your Application and select MQTT under Integrations.
1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1317 1317  
1318 -(((
1319 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1320 1320  
1321 -
1322 -)))
1365 +=== 3.5.2 Configuring ThingsEye.io ===
1323 1323  
1324 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1367 +* Login to your thingsEye.io account.
1368 +* Under the Integrations center, click Integrations.
1369 +* Click the Add integration button (the button with the + symbol).
1325 1325  
1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1326 1326  
1327 1327  
1328 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1374 +On the Add integration page configure the following:
1329 1329  
1376 +Basic settings:
1330 1330  
1331 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1378 +* Select The Things Stack Community from the Integration type list.
1379 +* Enter a suitable name for your integration in the Name box or keep the default name.
1380 +* Click the Next button.
1332 1332  
1333 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1334 1334  
1335 -Search under The things network
1384 +Uplink Data converter:
1336 1336  
1337 -[[image:1653356838789-523.png||height="337" width="740"]]
1386 +* Click the Create New button if it is not selected by default.
1387 +* Click the JavaScript button.
1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1389 +* Click the Next button.
1338 1338  
1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1339 1339  
1340 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1393 +Downlink Data converter (this is an optional step):
1341 1341  
1342 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1395 +* Click the Create new button if it is not selected by default.
1396 +* Click the JavaScript button.
1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1398 +* Click the Next button.
1343 1343  
1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1344 1344  
1345 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1402 +Connection:
1346 1346  
1404 +* Choose Region from the Host type.
1405 +* Enter the cluster of your The Things Stack in the Region textbox.
1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1408 +* Click the Add button.
1347 1347  
1348 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1349 1349  
1350 1350  
1351 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1413 +Your integration is added to the integrations list and it will display on the Integrations page.
1352 1352  
1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1353 1353  
1354 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1355 1355  
1418 +== 3.6 Interface Details ==
1356 1356  
1357 -== 3.6 Interface Detail ==
1358 -
1359 1359  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1360 1360  
1361 1361  
1362 -Support NPN Type sensor
1423 +Support NPN-type sensor
1363 1363  
1364 1364  [[image:1653356991268-289.png]]
1365 1365  
1366 1366  
1367 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1368 1368  
1369 1369  
1370 1370  (((
1371 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1372 1372  )))
1373 1373  
1374 1374  (((
1375 1375  (((
1376 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1377 1377  
1378 1378  
1379 1379  )))
... ... @@ -1383,7 +1383,7 @@
1383 1383  
1384 1384  (((
1385 1385  (((
1386 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1387 1387  )))
1388 1388  )))
1389 1389  
... ... @@ -1392,22 +1392,22 @@
1392 1392  )))
1393 1393  
1394 1394  (((
1395 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1396 1396  )))
1397 1397  
1398 1398  (((
1399 -This type of sensor will output a low signal GND when active.
1460 +This type of sensor outputs a low (GND) signal when active.
1400 1400  )))
1401 1401  
1402 1402  * (((
1403 -Connect sensor's output to DI1-
1464 +Connect the sensor's output to DI1-
1404 1404  )))
1405 1405  * (((
1406 -Connect sensor's VCC to DI1+.
1467 +Connect the sensor's VCC to DI1+.
1407 1407  )))
1408 1408  
1409 1409  (((
1410 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1411 1411  )))
1412 1412  
1413 1413  (((
... ... @@ -1415,7 +1415,7 @@
1415 1415  )))
1416 1416  
1417 1417  (((
1418 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1419 1419  )))
1420 1420  
1421 1421  (((
... ... @@ -1423,22 +1423,22 @@
1423 1423  )))
1424 1424  
1425 1425  (((
1426 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1427 1427  )))
1428 1428  
1429 1429  (((
1430 -This type of sensor will output a high signal (example 24v) when active.
1491 +This type of sensor outputs a high signal (e.g., 24V) when active.
1431 1431  )))
1432 1432  
1433 1433  * (((
1434 -Connect sensor's output to DI1+
1495 +Connect the sensor's output to DI1+
1435 1435  )))
1436 1436  * (((
1437 -Connect sensor's GND DI1-.
1498 +Connect the sensor's GND DI1-.
1438 1438  )))
1439 1439  
1440 1440  (((
1441 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1442 1442  )))
1443 1443  
1444 1444  (((
... ... @@ -1446,7 +1446,7 @@
1446 1446  )))
1447 1447  
1448 1448  (((
1449 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1450 1450  )))
1451 1451  
1452 1452  (((
... ... @@ -1454,22 +1454,22 @@
1454 1454  )))
1455 1455  
1456 1456  (((
1457 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1458 1458  )))
1459 1459  
1460 1460  (((
1461 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1462 1462  )))
1463 1463  
1464 1464  * (((
1465 -Connect sensor's output to DI1+ with a serial 50K resistor
1526 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1466 1466  )))
1467 1467  * (((
1468 -Connect sensor's GND DI1-.
1529 +Connect the sensor's GND DI1-.
1469 1469  )))
1470 1470  
1471 1471  (((
1472 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1473 1473  )))
1474 1474  
1475 1475  (((
... ... @@ -1477,37 +1477,37 @@
1477 1477  )))
1478 1478  
1479 1479  (((
1480 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1541 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1481 1481  )))
1482 1482  
1483 1483  
1484 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1485 1485  
1486 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1487 1487  
1488 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1489 1489  
1490 1490  [[image:image-20230616235145-1.png]]
1491 1491  
1492 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1493 1493  
1494 1494  [[image:image-20240219115718-1.png]]
1495 1495  
1496 1496  
1497 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1498 1498  
1499 1499  
1500 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1501 1501  
1502 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1503 1503  
1504 1504  [[image:1653357531600-905.png]]
1505 1505  
1506 1506  
1507 -=== 3.6.4 Analog Input Interface ===
1568 +=== 3.6.4 Analog Input Interfaces ===
1508 1508  
1509 1509  
1510 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1511 1511  
1512 1512  
1513 1513  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1514,14 +1514,14 @@
1514 1514  
1515 1515  [[image:1653357592296-182.png]]
1516 1516  
1517 -Example to connect a 4~~20mA sensor
1578 +Example: Connecting a 4~~20mA sensor
1518 1518  
1519 -We take the wind speed sensor as an example for reference only.
1580 +We will use the wind speed sensor as an example for reference only.
1520 1520  
1521 1521  
1522 1522  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1523 1523  
1524 -(% style="color:red" %)**Red:  12~~24v**
1585 +(% style="color:red" %)**Red:  12~~24V**
1525 1525  
1526 1526  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1527 1527  
... ... @@ -1534,7 +1534,7 @@
1534 1534  [[image:1653357648330-671.png||height="155" width="733"]]
1535 1535  
1536 1536  
1537 -Example connected to a regulated power supply to measure voltage
1598 +Example: Connecting to a regulated power supply to measure voltage
1538 1538  
1539 1539  [[image:image-20230608101532-1.png||height="606" width="447"]]
1540 1540  
... ... @@ -1543,7 +1543,7 @@
1543 1543  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1544 1544  
1545 1545  
1546 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1547 1547  
1548 1548  (% style="color:red" %)**Red:  12~~24v**
1549 1549  
... ... @@ -1554,9 +1554,9 @@
1554 1554  
1555 1555  
1556 1556  (((
1557 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1558 1558  
1559 -**Note**: RO pins go to Open(NO) when device is power off.
1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1560 1560  )))
1561 1561  
1562 1562  [[image:image-20220524100215-9.png]]
... ... @@ -1584,25 +1584,25 @@
1584 1584  Transmit a LoRa packet: TX blinks once
1585 1585  )))
1586 1586  )))
1587 -|**RX**|RX blinks once when receive a packet.
1588 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1589 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1648 +|**RX**|RX blinks once when receiving a packet.
1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1590 1590  |**DI1**|(((
1591 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1592 1592  )))
1593 1593  |**DI2**|(((
1594 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1595 1595  )))
1596 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1597 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1598 1598  
1599 -= 4. Use AT Command =
1660 += 4. Using AT Command =
1600 1600  
1601 -== 4.1 Access AT Command ==
1662 +== 4.1 Connecting the LT-22222-L to a computer ==
1602 1602  
1603 1603  
1604 1604  (((
1605 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1606 1606  )))
1607 1607  
1608 1608  [[image:1653358238933-385.png]]
... ... @@ -1609,7 +1609,7 @@
1609 1609  
1610 1610  
1611 1611  (((
1612 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1613 1613  )))
1614 1614  
1615 1615  [[image:1653358355238-883.png]]
... ... @@ -1616,10 +1616,12 @@
1616 1616  
1617 1617  
1618 1618  (((
1619 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1620 1620  )))
1621 1621  
1622 1622  (((
1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685 +
1623 1623  AT+<CMD>?        : Help on <CMD>
1624 1624  )))
1625 1625  
... ... @@ -1961,7 +1961,7 @@
1961 1961  * For bug fix
1962 1962  * Change LoRaWAN bands.
1963 1963  
1964 -Below shows the hardware connection for how to upload an image to the LT:
2027 +Below is the hardware connection for how to upload an image to the LT:
1965 1965  
1966 1966  [[image:1653359603330-121.png]]
1967 1967  
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0