<
From version < 137.2 >
edited by Dilisi S
on 2024/10/30 02:28
To version < 168.1 >
edited by Dilisi S
on 2024/11/08 04:36
>
Change comment: Uploaded new attachment "lt-22222-join-network.png", version {1}

Summary

Details

Page properties
Content
... ... @@ -17,17 +17,15 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. The LT-22222-L simplifies and enhances I/O monitoring and controlling.
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
29 29  
30 -The Dragino LT-22222-L I/O Controller is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
31 31  )))
32 32  )))
33 33  
... ... @@ -35,18 +35,16 @@
35 35  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
36 36  )))
37 37  
38 -(((
39 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
40 -The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
41 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
42 42  
43 43  (((
44 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
45 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
48 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
49 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
50 50  )))
51 51  
52 52  (((
... ... @@ -64,12 +64,12 @@
64 64  * Power Consumption:
65 65  ** Idle: 4mA@12v
66 66  ** 20dB Transmit: 34mA@12v
67 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
68 68  
69 69  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
70 70  
71 71  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
72 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
73 73  * 2 x Relay Output (5A@250VAC / 30VDC)
74 74  * 2 x 0~~20mA Analog Input (res:0.01mA)
75 75  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -82,7 +82,7 @@
82 82  ** Band 2 (LF): 410 ~~ 528 Mhz
83 83  * 168 dB maximum link budget.
84 84  * +20 dBm - 100 mW constant RF output vs.
85 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
86 86  * Programmable bit rate up to 300 kbps.
87 87  * High sensitivity: down to -148 dBm.
88 88  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -102,7 +102,7 @@
102 102  * Optional Customized LoRa Protocol
103 103  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
104 104  * AT Commands to change parameters
105 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
106 106  * Firmware upgradable via program port
107 107  * Counting
108 108  
... ... @@ -132,85 +132,140 @@
132 132  * 1 x Counting Port
133 133  )))
134 134  
135 -= 2. Power ON Device =
131 += 2. Assembling the Device =
136 136  
137 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
133 +== 2.1 What is included in the package? ==
138 138  
139 -PWR will on when device is properly powered.
135 +The package includes the following items:
140 140  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
141 +
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 +
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
141 141  [[image:1653297104069-180.png]]
142 142  
143 143  
144 144  = 3. Operation Mode =
145 145  
146 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
147 147  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
148 148  
149 -(((
150 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
151 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
152 152  
153 -(((
154 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
155 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
156 156  
190 +== 3.2 Registering with a LoRaWAN network server ==
157 157  
158 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
159 159  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
160 160  
161 -(((
162 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
163 163  
164 -
165 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
166 166  
167 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
168 168  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
169 169  
170 -(((
171 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
172 172  
173 -
174 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
175 175  
176 -(((
177 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
178 -)))
210 +==== Using the LoRaWAN Device Repository: ====
179 179  
180 -(((
181 -Each LT is shipped with a sticker with the default device EUI as below:
182 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
183 183  
184 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
185 185  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
186 186  
187 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
188 188  
189 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
190 190  
191 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
192 192  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
193 193  
194 -**Add APP KEY and DEV EUI**
195 195  
196 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
197 197  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
198 198  
199 -(((
200 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
201 201  
202 -
203 -)))
252 +==== Joining ====
204 204  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
205 205  [[image:1653298044601-602.png||height="405" width="709"]]
206 206  
207 207  
208 -== 3.3 Uplink Payload ==
259 +== 3.3 Work Modes and their Uplink Payload formats ==
209 209  
210 210  
211 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
212 212  
213 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
214 214  
215 215  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
216 216  
... ... @@ -224,9 +224,8 @@
224 224  
225 225  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
226 226  
227 -
228 228  (((
229 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
230 230  
231 231  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
232 232  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -238,29 +238,29 @@
238 238  ACI1 Current
239 239  )))|(((
240 240  ACI2 Current
241 -)))|DIDORO*|(((
291 +)))|**DIDORO***|(((
242 242  Reserve
243 243  )))|MOD
244 244  )))
245 245  
246 246  (((
247 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
248 248  
249 249  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
251 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
252 252  )))
253 253  
254 -* RO is for relay. ROx=1 : close, ROx=0 always open.
255 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
256 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
257 257  
258 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
259 259  
260 -For example if payload is: [[image:image-20220523175847-2.png]]
310 +For example, if the payload is: [[image:image-20220523175847-2.png]]
261 261  
262 262  
263 -**The value for the interface is:  **
313 +**The interface values can be calculated as follows:  **
264 264  
265 265  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
266 266  
... ... @@ -270,35 +270,32 @@
270 270  
271 271  ACI2 channel current is 0x1300/1000=4.864mA
272 272  
273 -The last byte 0xAA= 10101010(B) means
323 +The last byte 0xAA= **10101010**(b) means,
274 274  
275 -* [1] RO1 relay channel is close and the RO1 LED is ON.
276 -* [0] RO2 relay channel is open and RO2 LED is OFF;
325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 +* [1] DI3 - not used for LT-22222-L.
328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 +* [1] DI1 channel input state:
330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 +** DI1 LED is ON in both cases.
333 +* [0] DO3 - not used for LT-22222-L.
334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 +* [0] DO1 channel output state:
336 +** DO1 is FLOATING when there is no load between DO1 and V+.
337 +** DO1 is HIGH when there is a load between DO1 and V+.
338 +** DO1 LED is OFF in both cases.
277 277  
278 -**LT22222-L:**
279 -
280 -* [1] DI2 channel is high input and DI2 LED is ON;
281 -* [0] DI1 channel is low input;
282 -
283 -* [0] DO3 channel output state
284 -** DO3 is float in case no load between DO3 and V+.;
285 -** DO3 is high in case there is load between DO3 and V+.
286 -** DO3 LED is off in both case
287 -* [1] DO2 channel output is low and DO2 LED is ON.
288 -* [0] DO1 channel output state
289 -** DO1 is float in case no load between DO1 and V+.;
290 -** DO1 is high in case there is load between DO1 and V+.
291 -** DO1 LED is off in both case
292 -
293 293  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
294 294  
295 295  
296 296  (((
297 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
298 298  )))
299 299  
300 300  (((
301 -Total : 11 bytes payload
348 +The uplink payload is 11 bytes long.
302 302  
303 303  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
304 304  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -308,26 +308,26 @@
308 308  )))
309 309  
310 310  (((
311 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
312 312  
313 313  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
314 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
315 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
316 316  
317 -RO is for relay. ROx=1 : close , ROx=0 always open.
364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
318 318  )))
319 319  
320 -* FIRST: Indicate this is the first packet after join network.
321 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367 +* FIRST: Indicates that this is the first packet after joining the network.
368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
322 322  
323 323  (((
324 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
325 325  
326 326  
327 327  )))
328 328  
329 329  (((
330 -**To use counting mode, please run:**
377 +**To activate this mode, run the following AT commands:**
331 331  )))
332 332  
333 333  (((
... ... @@ -348,17 +348,17 @@
348 348  (((
349 349  **For LT22222-L:**
350 350  
351 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
352 352  
353 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
354 354  
355 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
360 360  
361 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
362 362  )))
363 363  
364 364  
... ... @@ -365,7 +365,7 @@
365 365  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
366 366  
367 367  
368 -**LT22222-L**: This mode the DI1 is used as a counting pin.
415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
369 369  
370 370  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
371 371  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -376,24 +376,24 @@
376 376  )))|DIDORO*|Reserve|MOD
377 377  
378 378  (((
379 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
380 380  
381 381  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
382 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
383 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
384 384  )))
385 385  
386 -* RO is for relay. ROx=1 : close, ROx=0 always open.
387 -* FIRST: Indicate this is the first packet after join network.
388 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 +* FIRST: Indicates that this is the first packet after joining the network.
435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
389 389  
390 390  (((
391 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
392 392  )))
393 393  
394 394  
395 395  (((
396 -**To use counting mode, please run:**
443 +**To activate this mode, run the following AT commands:**
397 397  )))
398 398  
399 399  (((
... ... @@ -406,7 +406,9 @@
406 406  )))
407 407  
408 408  (((
409 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
456 +AT Commands for counting:
457 +
458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
410 410  )))
411 411  
412 412  
... ... @@ -414,11 +414,11 @@
414 414  
415 415  
416 416  (((
417 -**LT22222-L**: This mode the DI1 is used as a counting pin.
466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
418 418  )))
419 419  
420 420  (((
421 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
424 424  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -428,25 +428,25 @@
428 428  )))
429 429  
430 430  (((
431 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
432 432  
433 433  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
435 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
436 436  )))
437 437  
438 -* RO is for relay. ROx=1 : close, ROx=0 always open.
439 -* FIRST: Indicate this is the first packet after join network.
440 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
487 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 +* FIRST: Indicates that this is the first packet after joining the network.
489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
441 441  
442 442  (((
443 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
444 444  
445 445  
446 446  )))
447 447  
448 448  (((
449 -**To use this mode, please run:**
498 +**To activate this mode, run the following AT commands:**
450 450  )))
451 451  
452 452  (((
... ... @@ -459,19 +459,19 @@
459 459  )))
460 460  
461 461  (((
462 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
463 463  )))
464 464  
465 465  (((
466 -**Plus below command for AVI1 Counting:**
515 +**In addition to that, below are the commands for AVI1 Counting:**
467 467  
468 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
469 469  
470 470  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
471 471  
472 472  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
473 473  
474 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
475 475  )))
476 476  
477 477  
... ... @@ -478,7 +478,7 @@
478 478  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
479 479  
480 480  
481 -**LT22222-L**: This mode the DI1 is used as a counting pin.
530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
482 482  
483 483  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 484  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -493,25 +493,25 @@
493 493  )))|MOD
494 494  
495 495  (((
496 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
497 497  
498 498  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
499 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
500 500  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
501 501  )))
502 502  
503 -* RO is for relay. ROx=1 : close, ROx=0 always open.
504 -* FIRST: Indicate this is the first packet after join network.
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
505 505  * (((
506 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
507 507  )))
508 508  
509 509  (((
510 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
511 511  )))
512 512  
513 513  (((
514 -**To use this mode, please run:**
563 +**To activate this mode, run the following AT commands:**
515 515  )))
516 516  
517 517  (((
... ... @@ -524,7 +524,7 @@
524 524  )))
525 525  
526 526  (((
527 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
528 528  )))
529 529  
530 530  
... ... @@ -531,49 +531,46 @@
531 531  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
532 532  
533 533  
534 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
535 535  
536 -For example, if user has configured below commands:
585 +For example, if you configured the following commands:
537 537  
538 538  * **AT+MOD=1 ** **~-~->**  The normal working mode
539 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
588 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
540 540  
541 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
542 542  
543 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
544 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
545 545  
546 546  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
547 547  
597 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
548 548  
549 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
550 -
551 551  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
552 552  
553 553  
554 554  **Example:**
555 555  
556 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
604 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
557 557  
558 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
606 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
559 559  
560 560  
609 +(% style="color:#4f81bd" %)**Trigger based on current**:
561 561  
562 -(% style="color:#4f81bd" %)**Trigger base on current**:
563 -
564 564  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
565 565  
566 566  
567 567  **Example:**
568 568  
569 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
616 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
570 570  
571 571  
619 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
572 572  
573 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
621 +DI status triggers Flag.
574 574  
575 -DI status trigger Flag.
576 -
577 577  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
578 578  
579 579  
... ... @@ -582,39 +582,38 @@
582 582  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
583 583  
584 584  
585 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
586 586  
587 587  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
588 588  
589 589  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
590 590  
591 - AA: Code for this downlink Command:
637 + AA: Type Code for this downlink Command:
592 592  
593 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
594 594  
595 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
596 596  
597 - yy2 yy2: AC1 or AV1 high limit.
643 + yy2 yy2: AC1 or AV1 HIGH limit.
598 598  
599 - yy3 yy3: AC2 or AV2 low limit.
645 + yy3 yy3: AC2 or AV2 LOW limit.
600 600  
601 - Yy4 yy4: AC2 or AV2 high limit.
647 + Yy4 yy4: AC2 or AV2 HIGH limit.
602 602  
603 603  
604 -**Example1**: AA 00 13 88 00 00 00 00 00 00
650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
605 605  
606 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
607 607  
608 608  
609 -**Example2**: AA 02 01 00
655 +**Example 2**: AA 02 01 00
610 610  
611 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
612 612  
613 613  
614 -
615 615  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
616 616  
617 -MOD6 Payload : total 11 bytes payload
662 +MOD6 Payload: total of 11 bytes
618 618  
619 619  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
620 620  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -628,10 +628,10 @@
628 628  MOD(6)
629 629  )))
630 630  
631 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
632 632  
633 633  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
634 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
635 635  |(((
636 636  AV1_LOW
637 637  )))|(((
... ... @@ -650,17 +650,17 @@
650 650  AC2_HIGH
651 651  )))
652 652  
653 -* Each bits shows if the corresponding trigger has been configured.
698 +* Each bit shows if the corresponding trigger has been configured.
654 654  
655 655  **Example:**
656 656  
657 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
658 658  
659 659  
660 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
661 661  
662 662  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
663 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
664 664  |(((
665 665  AV1_LOW
666 666  )))|(((
... ... @@ -679,11 +679,11 @@
679 679  AC2_HIGH
680 680  )))
681 681  
682 -* Each bits shows which status has been trigger on this uplink.
727 +* Each bit shows which status has been triggered on this uplink.
683 683  
684 684  **Example:**
685 685  
686 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
687 687  
688 688  
689 689  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -692,7 +692,7 @@
692 692  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
693 693  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
694 694  
695 -* Each bits shows which status has been trigger on this uplink.
740 +* Each bits shows which status has been triggered on this uplink.
696 696  
697 697  **Example:**
698 698  
... ... @@ -719,11 +719,11 @@
719 719  )))
720 720  
721 721  
722 -== 3.4 ​Configure LT via AT or Downlink ==
767 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
723 723  
724 724  
725 725  (((
726 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
727 727  )))
728 728  
729 729  (((
... ... @@ -738,9 +738,8 @@
738 738  
739 739  === 3.4.1 Common Commands ===
740 740  
741 -
742 742  (((
743 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
787 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
744 744  )))
745 745  
746 746  
... ... @@ -748,34 +748,37 @@
748 748  
749 749  ==== 3.4.2.1 Set Transmit Interval ====
750 750  
795 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
751 751  
752 -Set device uplink interval.
797 +* (% style="color:#037691" %)**AT command:**
753 753  
754 -* (% style="color:#037691" %)**AT Command:**
799 +(% style="color:blue" %)**AT+TDC=N**
755 755  
756 -(% style="color:blue" %)**AT+TDC=N **
801 +where N is the time in milliseconds.
757 757  
803 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
758 758  
759 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
760 760  
806 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
761 761  
762 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
763 -
764 764  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
765 765  
766 766  
767 767  
768 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
769 769  
770 770  
771 -Set work mode.
815 +Sets the work mode.
772 772  
773 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
774 774  
775 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
819 +Where N is the work mode.
776 776  
777 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
821 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
778 778  
823 +
824 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
825 +
779 779  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
780 780  
781 781  
... ... @@ -783,10 +783,12 @@
783 783  ==== 3.4.2.3 Poll an uplink ====
784 784  
785 785  
786 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
833 +Asks the device to send an uplink.
787 787  
788 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
835 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
789 789  
837 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
838 +
790 790  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
791 791  
792 792  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -793,16 +793,16 @@
793 793  
794 794  
795 795  
796 -==== 3.4.2.4 Enable Trigger Mode ====
845 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
797 797  
798 798  
799 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
848 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
800 800  
801 801  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
802 802  
803 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
852 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
804 804  
805 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
854 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
806 806  
807 807  
808 808  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -814,7 +814,7 @@
814 814  ==== 3.4.2.5 Poll trigger settings ====
815 815  
816 816  
817 -Poll trigger settings
866 +Polls the trigger settings
818 818  
819 819  * (% style="color:#037691" %)**AT Command:**
820 820  
... ... @@ -822,7 +822,7 @@
822 822  
823 823  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
824 824  
825 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
874 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
826 826  
827 827  
828 828  
... ... @@ -829,11 +829,11 @@
829 829  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
830 830  
831 831  
832 -Enable Disable DI1/DI2/DI2 as trigger,
881 +Enable or Disable DI1/DI2/DI2 as trigger,
833 833  
834 834  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
835 835  
836 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
885 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
837 837  
838 838  
839 839  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -865,15 +865,15 @@
865 865  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
866 866  
867 867  
868 -Set DI2 trigger.
917 +Sets DI2 trigger.
869 869  
870 870  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
871 871  
872 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
921 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
873 873  
874 874  (% style="color:red" %)**b :** (%%)delay timing.
875 875  
876 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
925 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
877 877  
878 878  
879 879  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -911,7 +911,7 @@
911 911  ==== 3.4.2.11 Trigger – Set minimum interval ====
912 912  
913 913  
914 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
963 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
915 915  
916 916  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
917 917  
... ... @@ -1059,7 +1059,7 @@
1059 1059  )))
1060 1060  
1061 1061  (((
1062 -00: Close ,  01: Open , 11: No action
1111 +00: Closed ,  01: Open , 11: No action
1063 1063  
1064 1064  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1065 1065  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1181,7 +1181,7 @@
1181 1181  
1182 1182  
1183 1183  
1184 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1185 1185  
1186 1186  
1187 1187  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1302,74 +1302,131 @@
1302 1302  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1303 1303  
1304 1304  
1305 -== 3.5 Integrate with Mydevice ==
1354 +== 3.5 Integrating with ThingsEye.io ==
1306 1306  
1356 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1307 1307  
1308 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1358 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1309 1309  
1310 -(((
1311 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1312 -)))
1360 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1361 +* Select **MQTT** under **Integrations**.
1362 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1363 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button.
1313 1313  
1314 -(((
1315 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1365 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1316 1316  
1317 -
1318 -)))
1367 +=== 3.5.2 Configuring ThingsEye.io ===
1319 1319  
1320 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1369 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1370 +* Under the **Integrations center**, click **Integrations**.
1371 +* Click the **Add integration** button (the button with the **+** symbol).
1321 1321  
1373 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1322 1322  
1323 1323  
1324 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1376 +On the **Add integration** window, configure the following:
1325 1325  
1378 +~1. **Basic settings:**
1326 1326  
1327 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1380 +* Select **The Things Stack Community** from the **Integration type** list.
1381 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1382 +* Ensure the following options are turned on.
1383 +** Enable integration
1384 +** Debug mode
1385 +** Allow create devices or assets
1386 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1328 1328  
1329 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1388 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1330 1330  
1331 -Search under The things network
1332 1332  
1333 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +2. **Uplink data converter:**
1334 1334  
1393 +* Click the **Create new** button if it is not selected by default.
1394 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1395 +* Click the **JavaScript** button.
1396 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1397 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1335 1335  
1336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1337 1337  
1338 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1401 +3.** Downlink data converter (this is an optional step):**
1339 1339  
1403 +* Click the **Create new** button if it is not selected by default.
1404 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1405 +* Click the **JavaScript** button.
1406 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1407 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1340 1340  
1341 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1409 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1342 1342  
1411 +4. **Connection:**
1343 1343  
1344 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1413 +* Choose **Region** from the **Host type**.
1414 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1415 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1416 +* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**.
1417 +* Click the **Add** button.
1345 1345  
1419 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1346 1346  
1347 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1348 1348  
1422 +Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again.
1349 1349  
1350 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1424 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1351 1351  
1352 1352  
1353 -== 3.6 Interface Detail ==
1427 +Viewing integration details:
1354 1354  
1429 +Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1430 +
1431 +[add image here]
1432 +
1433 +If you want to edit the settings you have provided, click on the Toggle edit mode button.
1434 +
1435 +[add image here]
1436 +
1437 +Once you have done click on the Apply changes button.
1438 +
1439 +Note: See also ThingsEye documentation.
1440 +
1441 +Click on the Events tab.
1442 +
1443 +- Select Debug from the Event type dropdown.
1444 +
1445 +- Select the time frame from the time window.
1446 +
1447 +[insert image]
1448 +
1449 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1450 +
1451 +[insert image]
1452 +
1453 +
1454 +Deleting the integration:
1455 +
1456 +If you want to delete this integration, click the Delete integration button.
1457 +
1458 +
1459 +== 3.6 Interface Details ==
1460 +
1355 1355  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1356 1356  
1357 1357  
1358 -Support NPN Type sensor
1464 +Support NPN-type sensor
1359 1359  
1360 1360  [[image:1653356991268-289.png]]
1361 1361  
1362 1362  
1363 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1469 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1364 1364  
1365 1365  
1366 1366  (((
1367 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1473 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1368 1368  )))
1369 1369  
1370 1370  (((
1371 1371  (((
1372 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1478 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1373 1373  
1374 1374  
1375 1375  )))
... ... @@ -1379,7 +1379,7 @@
1379 1379  
1380 1380  (((
1381 1381  (((
1382 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1488 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1383 1383  )))
1384 1384  )))
1385 1385  
... ... @@ -1388,22 +1388,22 @@
1388 1388  )))
1389 1389  
1390 1390  (((
1391 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1497 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1392 1392  )))
1393 1393  
1394 1394  (((
1395 -This type of sensor will output a low signal GND when active.
1501 +This type of sensor outputs a low (GND) signal when active.
1396 1396  )))
1397 1397  
1398 1398  * (((
1399 -Connect sensor's output to DI1-
1505 +Connect the sensor's output to DI1-
1400 1400  )))
1401 1401  * (((
1402 -Connect sensor's VCC to DI1+.
1508 +Connect the sensor's VCC to DI1+.
1403 1403  )))
1404 1404  
1405 1405  (((
1406 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1512 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1407 1407  )))
1408 1408  
1409 1409  (((
... ... @@ -1411,7 +1411,7 @@
1411 1411  )))
1412 1412  
1413 1413  (((
1414 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1520 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1415 1415  )))
1416 1416  
1417 1417  (((
... ... @@ -1419,22 +1419,22 @@
1419 1419  )))
1420 1420  
1421 1421  (((
1422 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1528 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1423 1423  )))
1424 1424  
1425 1425  (((
1426 -This type of sensor will output a high signal (example 24v) when active.
1532 +This type of sensor outputs a high signal (e.g., 24V) when active.
1427 1427  )))
1428 1428  
1429 1429  * (((
1430 -Connect sensor's output to DI1+
1536 +Connect the sensor's output to DI1+
1431 1431  )))
1432 1432  * (((
1433 -Connect sensor's GND DI1-.
1539 +Connect the sensor's GND DI1-.
1434 1434  )))
1435 1435  
1436 1436  (((
1437 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1543 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1438 1438  )))
1439 1439  
1440 1440  (((
... ... @@ -1442,7 +1442,7 @@
1442 1442  )))
1443 1443  
1444 1444  (((
1445 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1551 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1446 1446  )))
1447 1447  
1448 1448  (((
... ... @@ -1450,22 +1450,22 @@
1450 1450  )))
1451 1451  
1452 1452  (((
1453 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1559 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1454 1454  )))
1455 1455  
1456 1456  (((
1457 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1563 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1458 1458  )))
1459 1459  
1460 1460  * (((
1461 -Connect sensor's output to DI1+ with a serial 50K resistor
1567 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1462 1462  )))
1463 1463  * (((
1464 -Connect sensor's GND DI1-.
1570 +Connect the sensor's GND DI1-.
1465 1465  )))
1466 1466  
1467 1467  (((
1468 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1574 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1469 1469  )))
1470 1470  
1471 1471  (((
... ... @@ -1473,37 +1473,37 @@
1473 1473  )))
1474 1474  
1475 1475  (((
1476 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1582 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1477 1477  )))
1478 1478  
1479 1479  
1480 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1586 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1481 1481  
1482 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1588 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1483 1483  
1484 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1590 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1485 1485  
1486 1486  [[image:image-20230616235145-1.png]]
1487 1487  
1488 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1594 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1489 1489  
1490 1490  [[image:image-20240219115718-1.png]]
1491 1491  
1492 1492  
1493 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1599 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1494 1494  
1495 1495  
1496 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1602 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1497 1497  
1498 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1604 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1499 1499  
1500 1500  [[image:1653357531600-905.png]]
1501 1501  
1502 1502  
1503 -=== 3.6.4 Analog Input Interface ===
1609 +=== 3.6.4 Analog Input Interfaces ===
1504 1504  
1505 1505  
1506 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1612 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1507 1507  
1508 1508  
1509 1509  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1510,14 +1510,14 @@
1510 1510  
1511 1511  [[image:1653357592296-182.png]]
1512 1512  
1513 -Example to connect a 4~~20mA sensor
1619 +Example: Connecting a 4~~20mA sensor
1514 1514  
1515 -We take the wind speed sensor as an example for reference only.
1621 +We will use the wind speed sensor as an example for reference only.
1516 1516  
1517 1517  
1518 1518  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1519 1519  
1520 -(% style="color:red" %)**Red:  12~~24v**
1626 +(% style="color:red" %)**Red:  12~~24V**
1521 1521  
1522 1522  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1523 1523  
... ... @@ -1530,7 +1530,7 @@
1530 1530  [[image:1653357648330-671.png||height="155" width="733"]]
1531 1531  
1532 1532  
1533 -Example connected to a regulated power supply to measure voltage
1639 +Example: Connecting to a regulated power supply to measure voltage
1534 1534  
1535 1535  [[image:image-20230608101532-1.png||height="606" width="447"]]
1536 1536  
... ... @@ -1539,7 +1539,7 @@
1539 1539  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1540 1540  
1541 1541  
1542 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1648 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1543 1543  
1544 1544  (% style="color:red" %)**Red:  12~~24v**
1545 1545  
... ... @@ -1550,9 +1550,9 @@
1550 1550  
1551 1551  
1552 1552  (((
1553 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1659 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1554 1554  
1555 -**Note**: RO pins go to Open(NO) when device is power off.
1661 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1556 1556  )))
1557 1557  
1558 1558  [[image:image-20220524100215-9.png]]
... ... @@ -1580,25 +1580,25 @@
1580 1580  Transmit a LoRa packet: TX blinks once
1581 1581  )))
1582 1582  )))
1583 -|**RX**|RX blinks once when receive a packet.
1584 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1585 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1689 +|**RX**|RX blinks once when receiving a packet.
1690 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1691 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1586 1586  |**DI1**|(((
1587 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1693 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1588 1588  )))
1589 1589  |**DI2**|(((
1590 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1696 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1591 1591  )))
1592 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1593 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1698 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1699 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1594 1594  
1595 -= 4. Use AT Command =
1701 += 4. Using AT Command =
1596 1596  
1597 -== 4.1 Access AT Command ==
1703 +== 4.1 Connecting the LT-22222-L to a computer ==
1598 1598  
1599 1599  
1600 1600  (((
1601 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1707 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1602 1602  )))
1603 1603  
1604 1604  [[image:1653358238933-385.png]]
... ... @@ -1605,7 +1605,7 @@
1605 1605  
1606 1606  
1607 1607  (((
1608 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1714 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1609 1609  )))
1610 1610  
1611 1611  [[image:1653358355238-883.png]]
... ... @@ -1612,10 +1612,12 @@
1612 1612  
1613 1613  
1614 1614  (((
1615 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1721 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1616 1616  )))
1617 1617  
1618 1618  (((
1725 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1726 +
1619 1619  AT+<CMD>?        : Help on <CMD>
1620 1620  )))
1621 1621  
... ... @@ -1940,10 +1940,10 @@
1940 1940  
1941 1941  = 5. Case Study =
1942 1942  
1943 -== 5.1 Counting how many objects pass in Flow Line ==
2051 +== 5.1 Counting how many objects pass through the flow Line ==
1944 1944  
1945 1945  
1946 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2054 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1947 1947  
1948 1948  
1949 1949  = 6. FAQ =
... ... @@ -1951,26 +1951,26 @@
1951 1951  == 6.1 How to upgrade the image? ==
1952 1952  
1953 1953  
1954 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2062 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
1955 1955  
1956 -* Support new features
1957 -* For bug fix
2064 +* Support new features.
2065 +* Fix bugs.
1958 1958  * Change LoRaWAN bands.
1959 1959  
1960 -Below shows the hardware connection for how to upload an image to the LT:
2068 +Below is the hardware connection setup for uploading an image to the LT:
1961 1961  
1962 1962  [[image:1653359603330-121.png]]
1963 1963  
1964 1964  
1965 1965  (((
1966 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1967 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1968 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2074 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
1969 1969  
1970 1970  
1971 1971  (((
1972 1972  (% style="color:blue" %)**For LT-22222-L**(%%):
1973 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2081 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
1974 1974  )))
1975 1975  
1976 1976  
... ... @@ -1985,7 +1985,7 @@
1985 1985  [[image:image-20220524104033-15.png]]
1986 1986  
1987 1987  
1988 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2096 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
1989 1989  
1990 1990  [[image:1653360054704-518.png||height="186" width="745"]]
1991 1991  
... ... @@ -1999,13 +1999,13 @@
1999 1999  )))
2000 2000  
2001 2001  (((
2002 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2110 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2003 2003  )))
2004 2004  
2005 2005  (((
2006 2006  
2007 2007  
2008 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2116 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2009 2009  
2010 2010  
2011 2011  )))
... ... @@ -2012,13 +2012,13 @@
2012 2012  
2013 2013  (((
2014 2014  (((
2015 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2123 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2016 2016  )))
2017 2017  )))
2018 2018  
2019 2019  (((
2020 2020  (((
2021 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2129 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2022 2022  
2023 2023  
2024 2024  )))
... ... @@ -2025,7 +2025,7 @@
2025 2025  )))
2026 2026  
2027 2027  (((
2028 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2136 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2029 2029  
2030 2030  
2031 2031  )))
... ... @@ -2082,7 +2082,7 @@
2082 2082  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2083 2083  
2084 2084  
2085 -== 6.5 Can I see counting event in Serial? ==
2193 +== 6.5 Can I see the counting event in Serial? ==
2086 2086  
2087 2087  
2088 2088  (((
... ... @@ -2089,10 +2089,10 @@
2089 2089  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2090 2090  
2091 2091  
2092 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2200 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2093 2093  
2094 2094  
2095 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2203 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2096 2096  
2097 2097  
2098 2098  )))
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0