Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Saxer Lin on 2025/04/15 17:24
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- lt-22222-join-network.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Content
-
... ... @@ -17,17 +17,15 @@ 17 17 18 18 19 19 20 -= 1.Introduction = 20 += 1. Introduction = 21 21 22 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 23 23 24 24 ((( 25 - 26 - 27 27 ((( 28 - (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.The LT-22222-L simplifies and enhances I/O monitoring and controlling.26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 29 29 30 -The DraginoLT-22222-L I/O Controller is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 31 31 ))) 32 32 ))) 33 33 ... ... @@ -35,18 +35,16 @@ 35 35 With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 36 36 ))) 37 37 38 -((( 39 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %) 40 -The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 41 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 42 42 43 43 ((( 44 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %) 45 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 48 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 49 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network. 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 50 50 ))) 51 51 52 52 ((( ... ... @@ -64,12 +64,12 @@ 64 64 * Power Consumption: 65 65 ** Idle: 4mA@12v 66 66 ** 20dB Transmit: 34mA@12v 67 -* Operating Temperature: -40 ~~ 85 Degree, No Dew 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 68 68 69 69 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 70 70 71 71 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 72 -* 2 x Digital Output (NPN output. Max pull 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 73 73 * 2 x Relay Output (5A@250VAC / 30VDC) 74 74 * 2 x 0~~20mA Analog Input (res:0.01mA) 75 75 * 2 x 0~~30V Analog Input (res:0.01v) ... ... @@ -82,7 +82,7 @@ 82 82 ** Band 2 (LF): 410 ~~ 528 Mhz 83 83 * 168 dB maximum link budget. 84 84 * +20 dBm - 100 mW constant RF output vs. 85 -* +14 dBm high 81 +* +14 dBm high-efficiency PA. 86 86 * Programmable bit rate up to 300 kbps. 87 87 * High sensitivity: down to -148 dBm. 88 88 * Bullet-proof front end: IIP3 = -12.5 dBm. ... ... @@ -102,7 +102,7 @@ 102 102 * Optional Customized LoRa Protocol 103 103 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 104 104 * AT Commands to change parameters 105 -* Remote configure parameters via LoRa Downlink 101 +* Remotely configure parameters via LoRaWAN Downlink 106 106 * Firmware upgradable via program port 107 107 * Counting 108 108 ... ... @@ -132,85 +132,140 @@ 132 132 * 1 x Counting Port 133 133 ))) 134 134 135 -= 2. PowerONDevice =131 += 2. Assembling the Device = 136 136 137 - TheLT controller can be powered by 7 ~~24V DC power source.ConnectVINto Power Input V+ andGND to powerinputV-to power theLTcontroller.133 +== 2.1 What is included in the package? == 138 138 139 - PWR will on whendevice isproperlypowered.135 +The package includes the following items: 140 140 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 141 + 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 143 + 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 141 141 [[image:1653297104069-180.png]] 142 142 143 143 144 144 = 3. Operation Mode = 145 145 146 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 147 147 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 148 148 149 -((( 150 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 151 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 152 152 153 -((( 154 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 155 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 156 156 190 +== 3.2 Registering with a LoRaWAN network server == 157 157 158 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 159 159 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 160 160 161 -((( 162 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 163 163 164 - 165 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 166 166 167 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 168 168 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 169 169 170 -((( 171 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 172 172 173 - 174 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 175 175 176 -((( 177 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 178 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 179 179 180 -((( 181 -Each LT is shipped with a sticker with the default device EUI as below: 182 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 183 183 184 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 185 185 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 186 186 187 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 188 188 189 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 190 190 191 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 192 192 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 193 193 194 -**Add APP KEY and DEV EUI** 195 195 196 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 197 197 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 198 198 199 -((( 200 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 201 201 202 - 203 -))) 252 +==== Joining ==== 204 204 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 255 + 205 205 [[image:1653298044601-602.png||height="405" width="709"]] 206 206 207 207 208 -== 3.3 259 +== 3.3 Work Modes and their Uplink Payload formats == 209 209 210 210 211 -The rearefiveworkingmodes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 212 212 213 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2xACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO 214 214 215 215 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 216 216 ... ... @@ -224,9 +224,8 @@ 224 224 225 225 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 226 226 227 - 228 228 ((( 229 -The uplink payload i ncludestotally9bytes. UplinkpacketsuseFPORT=2andevery10minutessend one uplinkbydefault. (% style="display:none" %)279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 230 230 231 231 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 232 232 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -238,29 +238,29 @@ 238 238 ACI1 Current 239 239 )))|((( 240 240 ACI2 Current 241 -)))|DIDORO*|((( 291 +)))|**DIDORO***|((( 242 242 Reserve 243 243 )))|MOD 244 244 ))) 245 245 246 246 ((( 247 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below. 248 248 249 249 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 250 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 251 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 252 252 ))) 253 253 254 -* RO is for relay. ROx=1 close, ROx=0 alwaysopen.255 -* DI is for digital input. DIx=1: highorfloat, DIx=0:low.256 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW. 306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 257 257 258 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 259 259 260 -For example if payload is: [[image:image-20220523175847-2.png]] 310 +For example, if the payload is: [[image:image-20220523175847-2.png]] 261 261 262 262 263 -**The value fortheinterfaceis: **313 +**The interface values can be calculated as follows: ** 264 264 265 265 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 266 266 ... ... @@ -270,35 +270,32 @@ 270 270 271 271 ACI2 channel current is 0x1300/1000=4.864mA 272 272 273 -The last byte 0xAA= 10101010( B) means323 +The last byte 0xAA= **10101010**(b) means, 274 274 275 -* [1] RO1 relay channel is close and the RO1 LED is ON. 276 -* [0] RO2 relay channel is open and RO2 LED is OFF; 325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 327 +* [1] DI3 - not used for LT-22222-L. 328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 329 +* [1] DI1 channel input state: 330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 332 +** DI1 LED is ON in both cases. 333 +* [0] DO3 - not used for LT-22222-L. 334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 335 +* [0] DO1 channel output state: 336 +** DO1 is FLOATING when there is no load between DO1 and V+. 337 +** DO1 is HIGH when there is a load between DO1 and V+. 338 +** DO1 LED is OFF in both cases. 277 277 278 -**LT22222-L:** 279 - 280 -* [1] DI2 channel is high input and DI2 LED is ON; 281 -* [0] DI1 channel is low input; 282 - 283 -* [0] DO3 channel output state 284 -** DO3 is float in case no load between DO3 and V+.; 285 -** DO3 is high in case there is load between DO3 and V+. 286 -** DO3 LED is off in both case 287 -* [1] DO2 channel output is low and DO2 LED is ON. 288 -* [0] DO1 channel output state 289 -** DO1 is float in case no load between DO1 and V+.; 290 -** DO1 is high in case there is load between DO1 and V+. 291 -** DO1 LED is off in both case 292 - 293 293 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 294 294 295 295 296 296 ((( 297 -**For LT-22222-L**: this mode the**DI1 and DI2** are used as counting pins.344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins. 298 298 ))) 299 299 300 300 ((( 301 -T otal:11 bytespayload348 +The uplink payload is 11 bytes long. 302 302 303 303 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 304 304 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -308,26 +308,26 @@ 308 308 ))) 309 309 310 310 ((( 311 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below. 312 312 313 313 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 314 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 315 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 316 316 317 -RO is for relay. ROx=1 close, ROx=0 alwaysopen.364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 318 318 ))) 319 319 320 -* FIRST: Indicate this is the first packet after join network. 321 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.367 +* FIRST: Indicates that this is the first packet after joining the network. 368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 322 322 323 323 ((( 324 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 325 325 326 326 327 327 ))) 328 328 329 329 ((( 330 -**To usecountingmode,pleaserun:**377 +**To activate this mode, run the following AT commands:** 331 331 ))) 332 332 333 333 ((( ... ... @@ -348,17 +348,17 @@ 348 348 ((( 349 349 **For LT22222-L:** 350 350 351 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 352 352 353 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 354 354 355 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 356 356 357 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 358 358 359 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 360 360 361 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 362 362 ))) 363 363 364 364 ... ... @@ -365,7 +365,7 @@ 365 365 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 366 366 367 367 368 -**LT22222-L**: This mode the DI1 is used as a counting pin.415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 369 369 370 370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 371 371 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -376,24 +376,24 @@ 376 376 )))|DIDORO*|Reserve|MOD 377 377 378 378 ((( 379 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 380 380 381 381 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 382 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 383 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 384 384 ))) 385 385 386 -* RO is for relay. ROx=1 387 -* FIRST: Indicate this is the first packet after join network. 388 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 433 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 434 +* FIRST: Indicates that this is the first packet after joining the network. 435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 389 389 390 390 ((( 391 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 392 392 ))) 393 393 394 394 395 395 ((( 396 -**To usecountingmode,pleaserun:**443 +**To activate this mode, run the following AT commands:** 397 397 ))) 398 398 399 399 ((( ... ... @@ -406,7 +406,9 @@ 406 406 ))) 407 407 408 408 ((( 409 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 456 +AT Commands for counting: 457 + 458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 410 410 ))) 411 411 412 412 ... ... @@ -414,11 +414,11 @@ 414 414 415 415 416 416 ((( 417 -**LT22222-L**: This mode the DI1 is used as a counting pin.466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 418 418 ))) 419 419 420 420 ((( 421 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 422 422 423 423 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 424 424 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -428,25 +428,25 @@ 428 428 ))) 429 429 430 430 ((( 431 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 432 432 433 433 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 434 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 435 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 436 436 ))) 437 437 438 -* RO is for relay. ROx=1 439 -* FIRST: Indicate this is the first packet after join network. 440 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 487 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 488 +* FIRST: Indicates that this is the first packet after joining the network. 489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 441 441 442 442 ((( 443 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 444 444 445 445 446 446 ))) 447 447 448 448 ((( 449 -**To use this mode,pleaserun:**498 +**To activate this mode, run the following AT commands:** 450 450 ))) 451 451 452 452 ((( ... ... @@ -459,19 +459,19 @@ 459 459 ))) 460 460 461 461 ((( 462 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 463 463 ))) 464 464 465 465 ((( 466 -** Plusbelow command for AVI1 Counting:**515 +**In addition to that, below are the commands for AVI1 Counting:** 467 467 468 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 469 469 470 470 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 471 471 472 472 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 473 473 474 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 475 475 ))) 476 476 477 477 ... ... @@ -478,7 +478,7 @@ 478 478 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 479 479 480 480 481 -**LT22222-L**: This mode the DI1 is used as a counting pin.530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 482 482 483 483 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 484 484 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -493,25 +493,25 @@ 493 493 )))|MOD 494 494 495 495 ((( 496 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 497 497 498 498 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 499 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 500 500 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 501 501 ))) 502 502 503 -* RO is for relay. ROx=1 504 -* FIRST: Indicate this is the first packet after join network. 552 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 553 +* FIRST: Indicates that this is the first packet after joining the network. 505 505 * ((( 506 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 507 507 ))) 508 508 509 509 ((( 510 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 511 511 ))) 512 512 513 513 ((( 514 -**To use this mode,pleaserun:**563 +**To activate this mode, run the following AT commands:** 515 515 ))) 516 516 517 517 ((( ... ... @@ -524,7 +524,7 @@ 524 524 ))) 525 525 526 526 ((( 527 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 528 528 ))) 529 529 530 530 ... ... @@ -531,49 +531,46 @@ 531 531 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 532 532 533 533 534 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 535 535 536 -For example, if u serhasconfiguredbelow commands:585 +For example, if you configured the following commands: 537 537 538 538 * **AT+MOD=1 ** **~-~->** The normal working mode 539 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 588 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 540 540 541 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 542 542 543 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type544 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 545 545 546 546 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 547 547 597 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 548 548 549 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 550 - 551 551 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 552 552 553 553 554 554 **Example:** 555 555 556 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)604 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 557 557 558 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)606 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 559 559 560 560 609 +(% style="color:#4f81bd" %)**Trigger based on current**: 561 561 562 -(% style="color:#4f81bd" %)**Trigger base on current**: 563 - 564 564 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 565 565 566 566 567 567 **Example:** 568 568 569 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)616 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 570 570 571 571 619 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 572 572 573 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:621 +DI status triggers Flag. 574 574 575 -DI status trigger Flag. 576 - 577 577 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 578 578 579 579 ... ... @@ -582,39 +582,38 @@ 582 582 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 583 583 584 584 585 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 586 586 587 587 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 588 588 589 589 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 590 590 591 - AA: Code for this downlink Command: 637 + AA: Type Code for this downlink Command: 592 592 593 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 594 594 595 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 596 596 597 - yy2 yy2: AC1 or AV1 highlimit.643 + yy2 yy2: AC1 or AV1 HIGH limit. 598 598 599 - yy3 yy3: AC2 or AV2 lowlimit.645 + yy3 yy3: AC2 or AV2 LOW limit. 600 600 601 - Yy4 yy4: AC2 or AV2 highlimit.647 + Yy4 yy4: AC2 or AV2 HIGH limit. 602 602 603 603 604 -**Example1**: AA 00 13 88 00 00 00 00 00 00 650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 605 605 606 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 607 607 608 608 609 -**Example2**: AA 02 01 00 655 +**Example 2**: AA 02 01 00 610 610 611 -Same as AT+ DTRI =1,0 657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 612 612 613 613 614 - 615 615 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 616 616 617 -MOD6 Payload payload662 +MOD6 Payload: total of 11 bytes 618 618 619 619 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 620 620 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -628,10 +628,10 @@ 628 628 MOD(6) 629 629 ))) 630 630 631 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 632 632 633 633 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 634 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 635 635 |((( 636 636 AV1_LOW 637 637 )))|((( ... ... @@ -650,17 +650,17 @@ 650 650 AC2_HIGH 651 651 ))) 652 652 653 -* Each bit sshows if the corresponding trigger has been configured.698 +* Each bit shows if the corresponding trigger has been configured. 654 654 655 655 **Example:** 656 656 657 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 658 658 659 659 660 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 661 661 662 662 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 663 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 664 664 |((( 665 665 AV1_LOW 666 666 )))|((( ... ... @@ -679,11 +679,11 @@ 679 679 AC2_HIGH 680 680 ))) 681 681 682 -* Each bit sshows which status has been trigger on this uplink.727 +* Each bit shows which status has been triggered on this uplink. 683 683 684 684 **Example:** 685 685 686 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 687 687 688 688 689 689 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -692,7 +692,7 @@ 692 692 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 693 693 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 694 694 695 -* Each bits shows which status has been trigger on this uplink. 740 +* Each bits shows which status has been triggered on this uplink. 696 696 697 697 **Example:** 698 698 ... ... @@ -719,11 +719,11 @@ 719 719 ))) 720 720 721 721 722 -== 3.4 Configure LT via AT or Downlink == 767 +== 3.4 Configure LT via AT Commands or Downlinks == 723 723 724 724 725 725 ((( 726 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks. 727 727 ))) 728 728 729 729 ((( ... ... @@ -738,9 +738,8 @@ 738 738 739 739 === 3.4.1 Common Commands === 740 740 741 - 742 742 ((( 743 -The yshould be available foreachofDraginoSensors, such as:change uplink interval,reset device. For firmware v1.5.4, usercan findwhat common commandsit supports:[[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]787 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]. 744 744 ))) 745 745 746 746 ... ... @@ -748,34 +748,37 @@ 748 748 749 749 ==== 3.4.2.1 Set Transmit Interval ==== 750 750 795 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes. 751 751 752 - Setdeviceuplink interval.797 +* (% style="color:#037691" %)**AT command:** 753 753 754 - *(% style="color:#037691" %)**ATommand:**799 +(% style="color:blue" %)**AT+TDC=N** 755 755 756 - (%style="color:blue"%)**AT+TDC=N**801 +where N is the time in milliseconds. 757 757 803 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 758 758 759 -**Example: **AT+TDC=30000. Means set interval to 30 seconds 760 760 806 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 761 761 762 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):** 763 - 764 764 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 765 765 766 766 767 767 768 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 812 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 769 769 770 770 771 -Set work mode. 815 +Sets the work mode. 772 772 773 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **817 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 774 774 775 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode819 +Where N is the work mode. 776 776 777 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**821 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 778 778 823 + 824 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 825 + 779 779 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 780 780 781 781 ... ... @@ -783,10 +783,12 @@ 783 783 ==== 3.4.2.3 Poll an uplink ==== 784 784 785 785 786 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink833 +Asks the device to send an uplink. 787 787 788 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**835 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 789 789 837 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 838 + 790 790 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 791 791 792 792 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -793,16 +793,16 @@ 793 793 794 794 795 795 796 -==== 3.4.2.4 Enable Trigger Mode ==== 845 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 797 797 798 798 799 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]848 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 800 800 801 801 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 802 802 803 -(% style="color:red" %)**1:** (%%)Enable TriggerMode852 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 804 804 805 -(% style="color:red" %)**0: **(%%)Disable TriggerMode854 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 806 806 807 807 808 808 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -814,7 +814,7 @@ 814 814 ==== 3.4.2.5 Poll trigger settings ==== 815 815 816 816 817 -Poll trigger settings 866 +Polls the trigger settings 818 818 819 819 * (% style="color:#037691" %)**AT Command:** 820 820 ... ... @@ -822,7 +822,7 @@ 822 822 823 823 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 824 824 825 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command874 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 826 826 827 827 828 828 ... ... @@ -829,11 +829,11 @@ 829 829 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 830 830 831 831 832 -Enable Disable DI1/DI2/DI2 as trigger, 881 +Enable or Disable DI1/DI2/DI2 as trigger, 833 833 834 834 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 835 835 836 -**Example:** AT+ DTRI =1,0 885 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 837 837 838 838 839 839 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -865,15 +865,15 @@ 865 865 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 866 866 867 867 868 -Set DI2 trigger. 917 +Sets DI2 trigger. 869 869 870 870 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 871 871 872 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 921 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 873 873 874 874 (% style="color:red" %)**b :** (%%)delay timing. 875 875 876 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 925 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 877 877 878 878 879 879 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -911,7 +911,7 @@ 911 911 ==== 3.4.2.11 Trigger – Set minimum interval ==== 912 912 913 913 914 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.963 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 915 915 916 916 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 917 917 ... ... @@ -1059,7 +1059,7 @@ 1059 1059 ))) 1060 1060 1061 1061 ((( 1062 -00: Close , 01: Open , 11: No action 1111 +00: Closed , 01: Open , 11: No action 1063 1063 1064 1064 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1065 1065 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** ... ... @@ -1181,7 +1181,7 @@ 1181 1181 1182 1182 1183 1183 1184 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1233 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1185 1185 1186 1186 1187 1187 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1302,74 +1302,131 @@ 1302 1302 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1303 1303 1304 1304 1305 -== 3.5 Integrat ewithMydevice==1354 +== 3.5 Integrating with ThingsEye.io == 1306 1306 1356 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1307 1307 1308 - Mydevicesprovidesa humanendlyinterfacetoshow the sensordata,oncewehavedatainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1358 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox === 1309 1309 1310 -((( 1311 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 1312 -))) 1360 +* In **The Things Stack Sandbox**, select your application under **Applications**. 1361 +* Select **MQTT** under **Integrations**. 1362 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one. 1363 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. 1313 1313 1314 -((( 1315 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1365 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1316 1316 1317 - 1318 -))) 1367 +=== 3.5.2 Configuring ThingsEye.io === 1319 1319 1320 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1369 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account. 1370 +* Under the **Integrations center**, click **Integrations**. 1371 +* Click the **Add integration** button (the button with the **+** symbol). 1321 1321 1373 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1322 1322 1323 1323 1324 - [[image:image-20220719110247-2.png||height="388"width="683"]]1376 +On the **Add integration** window, configure the following: 1325 1325 1378 +~1. **Basic settings:** 1326 1326 1327 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1380 +* Select **The Things Stack Community** from the **Integration type** list. 1381 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name. 1382 +* Ensure the following options are turned on. 1383 +** Enable integration 1384 +** Debug mode 1385 +** Allow create devices or assets 1386 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 1328 1328 1329 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1388 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1330 1330 1331 -Search under The things network 1332 1332 1333 - [[image:1653356838789-523.png||height="337"width="740"]]1391 +2. **Uplink data converter:** 1334 1334 1393 +* Click the **Create new** button if it is not selected by default. 1394 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name. 1395 +* Click the **JavaScript** button. 1396 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]]. 1397 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab. 1335 1335 1336 - Afteradded,the sensor data arriveTTN,it will also arrive andshow in Mydevices.1399 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1337 1337 1338 - [[image:image-20220524094909-1.png||height="335"width="729"]]1401 +3.** Downlink data converter (this is an optional step):** 1339 1339 1403 +* Click the **Create new** button if it is not selected by default. 1404 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name 1405 +* Click the **JavaScript** button. 1406 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1407 +* Click the **Next** button. You will be navigated to the **Connection** tab. 1340 1340 1341 -[[image:i mage-20220524094909-2.png||height="337" width="729"]]1409 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1342 1342 1411 +4. **Connection:** 1343 1343 1344 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1413 +* Choose **Region** from the **Host type**. 1414 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...). 1415 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox). 1416 +* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**. 1417 +* Click the **Add** button. 1345 1345 1419 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1346 1346 1347 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %) 1348 1348 1422 +Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again. 1349 1349 1350 -[[image:i mage-20220524094909-5.png||height="341" width="734"]]1424 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1351 1351 1352 1352 1353 - ==3.6 InterfaceDetail==1427 +Viewing integration details: 1354 1354 1429 +Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration. 1430 + 1431 +[add image here] 1432 + 1433 +If you want to edit the settings you have provided, click on the Toggle edit mode button. 1434 + 1435 +[add image here] 1436 + 1437 +Once you have done click on the Apply changes button. 1438 + 1439 +Note: See also ThingsEye documentation. 1440 + 1441 +Click on the Events tab. 1442 + 1443 +- Select Debug from the Event type dropdown. 1444 + 1445 +- Select the time frame from the time window. 1446 + 1447 +[insert image] 1448 + 1449 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message. 1450 + 1451 +[insert image] 1452 + 1453 + 1454 +Deleting the integration: 1455 + 1456 +If you want to delete this integration, click the Delete integration button. 1457 + 1458 + 1459 +== 3.6 Interface Details == 1460 + 1355 1355 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1356 1356 1357 1357 1358 -Support NPN Type sensor1464 +Support NPN-type sensor 1359 1359 1360 1360 [[image:1653356991268-289.png]] 1361 1361 1362 1362 1363 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1469 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1364 1364 1365 1365 1366 1366 ((( 1367 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1473 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1368 1368 ))) 1369 1369 1370 1370 ((( 1371 1371 ((( 1372 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1478 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1373 1373 1374 1374 1375 1375 ))) ... ... @@ -1379,7 +1379,7 @@ 1379 1379 1380 1380 ((( 1381 1381 ((( 1382 - When use need1488 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1383 1383 ))) 1384 1384 ))) 1385 1385 ... ... @@ -1388,22 +1388,22 @@ 1388 1388 ))) 1389 1389 1390 1390 ((( 1391 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1497 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1392 1392 ))) 1393 1393 1394 1394 ((( 1395 -This type of sensor willoutput a low signalGNDwhen active.1501 +This type of sensor outputs a low (GND) signal when active. 1396 1396 ))) 1397 1397 1398 1398 * ((( 1399 -Connect sensor's output to DI1- 1505 +Connect the sensor's output to DI1- 1400 1400 ))) 1401 1401 * ((( 1402 -Connect sensor's VCC to DI1+. 1508 +Connect the sensor's VCC to DI1+. 1403 1403 ))) 1404 1404 1405 1405 ((( 1406 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1512 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1407 1407 ))) 1408 1408 1409 1409 ((( ... ... @@ -1411,7 +1411,7 @@ 1411 1411 ))) 1412 1412 1413 1413 ((( 1414 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1520 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1415 1415 ))) 1416 1416 1417 1417 ((( ... ... @@ -1419,22 +1419,22 @@ 1419 1419 ))) 1420 1420 1421 1421 ((( 1422 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1528 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1423 1423 ))) 1424 1424 1425 1425 ((( 1426 -This type of sensor willoutput a high signal (example24v) when active.1532 +This type of sensor outputs a high signal (e.g., 24V) when active. 1427 1427 ))) 1428 1428 1429 1429 * ((( 1430 -Connect sensor's output to DI1+ 1536 +Connect the sensor's output to DI1+ 1431 1431 ))) 1432 1432 * ((( 1433 -Connect sensor's GND DI1-. 1539 +Connect the sensor's GND DI1-. 1434 1434 ))) 1435 1435 1436 1436 ((( 1437 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1543 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1438 1438 ))) 1439 1439 1440 1440 ((( ... ... @@ -1442,7 +1442,7 @@ 1442 1442 ))) 1443 1443 1444 1444 ((( 1445 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1551 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1446 1446 ))) 1447 1447 1448 1448 ((( ... ... @@ -1450,22 +1450,22 @@ 1450 1450 ))) 1451 1451 1452 1452 ((( 1453 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1559 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1454 1454 ))) 1455 1455 1456 1456 ((( 1457 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1563 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1458 1458 ))) 1459 1459 1460 1460 * ((( 1461 -Connect sensor's output to DI1+ with a serial50K resistor1567 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1462 1462 ))) 1463 1463 * ((( 1464 -Connect sensor's GND DI1-. 1570 +Connect the sensor's GND DI1-. 1465 1465 ))) 1466 1466 1467 1467 ((( 1468 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1574 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1469 1469 ))) 1470 1470 1471 1471 ((( ... ... @@ -1473,37 +1473,37 @@ 1473 1473 ))) 1474 1474 1475 1475 ((( 1476 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1582 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1477 1477 ))) 1478 1478 1479 1479 1480 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1586 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1481 1481 1482 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1588 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1483 1483 1484 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1590 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1485 1485 1486 1486 [[image:image-20230616235145-1.png]] 1487 1487 1488 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colle actor1594 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1489 1489 1490 1490 [[image:image-20240219115718-1.png]] 1491 1491 1492 1492 1493 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1599 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1494 1494 1495 1495 1496 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can applyto output pin is 36v.1602 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1497 1497 1498 -(% style="color:red" %)**Note: DO pins gotofloat when device is power off.**1604 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1499 1499 1500 1500 [[image:1653357531600-905.png]] 1501 1501 1502 1502 1503 -=== 3.6.4 Analog Input Interface === 1609 +=== 3.6.4 Analog Input Interfaces === 1504 1504 1505 1505 1506 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1612 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1507 1507 1508 1508 1509 1509 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1510,14 +1510,14 @@ 1510 1510 1511 1511 [[image:1653357592296-182.png]] 1512 1512 1513 -Example toconnect a 4~~20mA sensor1619 +Example: Connecting a 4~~20mA sensor 1514 1514 1515 -We take the wind speed sensor as an example for reference only.1621 +We will use the wind speed sensor as an example for reference only. 1516 1516 1517 1517 1518 1518 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1519 1519 1520 -(% style="color:red" %)**Red: 12~~24 v**1626 +(% style="color:red" %)**Red: 12~~24V** 1521 1521 1522 1522 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1523 1523 ... ... @@ -1530,7 +1530,7 @@ 1530 1530 [[image:1653357648330-671.png||height="155" width="733"]] 1531 1531 1532 1532 1533 -Example connectedto a regulated power supply to measure voltage1639 +Example: Connecting to a regulated power supply to measure voltage 1534 1534 1535 1535 [[image:image-20230608101532-1.png||height="606" width="447"]] 1536 1536 ... ... @@ -1539,7 +1539,7 @@ 1539 1539 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1540 1540 1541 1541 1542 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1648 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1543 1543 1544 1544 (% style="color:red" %)**Red: 12~~24v** 1545 1545 ... ... @@ -1550,9 +1550,9 @@ 1550 1550 1551 1551 1552 1552 ((( 1553 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1659 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1554 1554 1555 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1661 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1556 1556 ))) 1557 1557 1558 1558 [[image:image-20220524100215-9.png]] ... ... @@ -1580,25 +1580,25 @@ 1580 1580 Transmit a LoRa packet: TX blinks once 1581 1581 ))) 1582 1582 ))) 1583 -|**RX**|RX blinks once when receiv ea packet.1584 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOWwhen DO1 is high1585 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOWwhen DO2 is high1689 +|**RX**|RX blinks once when receiving a packet. 1690 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1691 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1586 1586 |**DI1**|((( 1587 -For LT-22222-L: ON when DI1 is high, LOWwhen DI1 is low1693 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1588 1588 ))) 1589 1589 |**DI2**|((( 1590 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1696 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1591 1591 ))) 1592 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOWwhen RO1 is open1593 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOWwhen RO2 is open1698 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1699 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1594 1594 1595 -= 4. Us eAT Command =1701 += 4. Using AT Command = 1596 1596 1597 -== 4.1 AccessATCommand==1703 +== 4.1 Connecting the LT-22222-L to a computer == 1598 1598 1599 1599 1600 1600 ((( 1601 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1707 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1602 1602 ))) 1603 1603 1604 1604 [[image:1653358238933-385.png]] ... ... @@ -1605,7 +1605,7 @@ 1605 1605 1606 1606 1607 1607 ((( 1608 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1714 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1609 1609 ))) 1610 1610 1611 1611 [[image:1653358355238-883.png]] ... ... @@ -1612,10 +1612,12 @@ 1612 1612 1613 1613 1614 1614 ((( 1615 - More detailAT Commandmanual can be found at1721 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1616 1616 ))) 1617 1617 1618 1618 ((( 1725 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1726 + 1619 1619 AT+<CMD>? : Help on <CMD> 1620 1620 ))) 1621 1621 ... ... @@ -1940,10 +1940,10 @@ 1940 1940 1941 1941 = 5. Case Study = 1942 1942 1943 -== 5.1 Counting how many objects pass inFlow Line ==2051 +== 5.1 Counting how many objects pass through the flow Line == 1944 1944 1945 1945 1946 -Reference Link: [[How to set up to count objects pass 2054 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 1947 1947 1948 1948 1949 1949 = 6. FAQ = ... ... @@ -1951,26 +1951,26 @@ 1951 1951 == 6.1 How to upgrade the image? == 1952 1952 1953 1953 1954 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2062 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 1955 1955 1956 -* Support new features 1957 -* F orbugfix2064 +* Support new features. 2065 +* Fix bugs. 1958 1958 * Change LoRaWAN bands. 1959 1959 1960 -Below s howsthe hardware connection forhow toupload an image to the LT:2068 +Below is the hardware connection setup for uploading an image to the LT: 1961 1961 1962 1962 [[image:1653359603330-121.png]] 1963 1963 1964 1964 1965 1965 ((( 1966 -(% style="color: blue" %)**Step1**(%%)**:** Download [[flashloader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].1967 -(% style="color: blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].1968 -(% style="color: blue" %)**Step3**(%%)**:** Openflashloader;choose the correct COM port to update.2074 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2075 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2076 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 1969 1969 1970 1970 1971 1971 ((( 1972 1972 (% style="color:blue" %)**For LT-22222-L**(%%): 1973 -Hold down the PRO button andthen momentarily press the RST reset buttonand the (% style="color:red" %)**DO1led**(%%)on, itmeans the device is in download mode.2081 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode. 1974 1974 ))) 1975 1975 1976 1976 ... ... @@ -1985,7 +1985,7 @@ 1985 1985 [[image:image-20220524104033-15.png]] 1986 1986 1987 1987 1988 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2096 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 1989 1989 1990 1990 [[image:1653360054704-518.png||height="186" width="745"]] 1991 1991 ... ... @@ -1999,13 +1999,13 @@ 1999 1999 ))) 2000 2000 2001 2001 ((( 2002 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2110 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2003 2003 ))) 2004 2004 2005 2005 ((( 2006 2006 2007 2007 2008 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2116 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2009 2009 2010 2010 2011 2011 ))) ... ... @@ -2012,13 +2012,13 @@ 2012 2012 2013 2013 ((( 2014 2014 ((( 2015 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2123 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2016 2016 ))) 2017 2017 ))) 2018 2018 2019 2019 ((( 2020 2020 ((( 2021 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2129 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2022 2022 2023 2023 2024 2024 ))) ... ... @@ -2025,7 +2025,7 @@ 2025 2025 ))) 2026 2026 2027 2027 ((( 2028 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2136 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2029 2029 2030 2030 2031 2031 ))) ... ... @@ -2082,7 +2082,7 @@ 2082 2082 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2083 2083 2084 2084 2085 -== 6.5 Can I see counting event in Serial? == 2193 +== 6.5 Can I see the counting event in Serial? == 2086 2086 2087 2087 2088 2088 ((( ... ... @@ -2089,10 +2089,10 @@ 2089 2089 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2090 2090 2091 2091 2092 -== 6.6 Can iuse pointforLT-22222-L? ==2200 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2093 2093 2094 2094 2095 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2203 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2096 2096 2097 2097 2098 2098 )))
- lt-22222-join-network.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +340.6 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content