Last modified by Mengting Qiu on 2025/06/04 18:42

From version 137.2
edited by Dilisi S
on 2024/10/30 02:28
Change comment: There is no comment for this version
To version 162.1
edited by Dilisi S
on 2024/11/05 03:38
Change comment: edits from section 3.6.3

Summary

Details

Page properties
Content
... ... @@ -19,15 +19,13 @@
19 19  
20 20  = 1.Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. The LT-22222-L simplifies and enhances I/O monitoring and controlling.
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
29 29  
30 -The Dragino LT-22222-L I/O Controller is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
31 31  )))
32 32  )))
33 33  
... ... @@ -35,18 +35,16 @@
35 35  With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
36 36  )))
37 37  
38 -(((
39 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
40 -The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
41 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
42 42  
43 43  (((
44 -(% style="line-height:1.38; margin-top:16px; margin-bottom:16px" %)
45 -(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
48 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
49 -* (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Setup your own private LoRaWAN network.
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
50 50  )))
51 51  
52 52  (((
... ... @@ -132,85 +132,140 @@
132 132  * 1 x Counting Port
133 133  )))
134 134  
135 -= 2. Power ON Device =
131 += 2. Assembling the Device =
136 136  
137 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
133 +== 2.1 What is included in the package? ==
138 138  
139 -PWR will on when device is properly powered.
135 +The package includes the following items:
140 140  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
141 +
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 +
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
141 141  [[image:1653297104069-180.png]]
142 142  
143 143  
144 144  = 3. Operation Mode =
145 145  
146 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
147 147  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
148 148  
149 -(((
150 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
151 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
152 152  
153 -(((
154 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
155 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
156 156  
190 +== 3.2 Registering with a LoRaWAN network server ==
157 157  
158 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
159 159  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
160 160  
161 -(((
162 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
163 163  
164 -
165 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
166 166  
167 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
168 168  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
169 169  
170 -(((
171 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
172 172  
173 -
174 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
175 175  
176 -(((
177 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
178 -)))
210 +==== Using the LoRaWAN Device Repository: ====
179 179  
180 -(((
181 -Each LT is shipped with a sticker with the default device EUI as below:
182 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
183 183  
184 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
185 185  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
186 186  
187 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
188 188  
189 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
190 190  
191 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
192 192  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
193 193  
194 -**Add APP KEY and DEV EUI**
195 195  
196 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
197 197  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
198 198  
199 -(((
200 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
201 201  
202 -
203 -)))
252 +==== Joining ====
204 204  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
205 205  [[image:1653298044601-602.png||height="405" width="709"]]
206 206  
207 207  
208 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
209 209  
210 210  
211 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
212 212  
213 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
214 214  
215 215  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
216 216  
... ... @@ -226,7 +226,7 @@
226 226  
227 227  
228 228  (((
229 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
230 230  
231 231  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
232 232  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -244,23 +244,23 @@
244 244  )))
245 245  
246 246  (((
247 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
248 248  
249 249  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
250 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
251 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
252 252  )))
253 253  
254 -* RO is for relay. ROx=1 : close, ROx=0 always open.
255 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
256 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
257 257  
258 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
259 259  
260 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
261 261  
262 262  
263 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
264 264  
265 265  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
266 266  
... ... @@ -270,35 +270,35 @@
270 270  
271 271  ACI2 channel current is 0x1300/1000=4.864mA
272 272  
273 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
274 274  
275 -* [1] RO1 relay channel is close and the RO1 LED is ON.
276 -* [0] RO2 relay channel is open and RO2 LED is OFF;
277 -
278 -**LT22222-L:**
279 -
280 -* [1] DI2 channel is high input and DI2 LED is ON;
281 -* [0] DI1 channel is low input;
282 -
283 -* [0] DO3 channel output state
284 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
285 285  ** DO3 is high in case there is load between DO3 and V+.
286 -** DO3 LED is off in both case
287 -* [1] DO2 channel output is low and DO2 LED is ON.
288 -* [0] DO1 channel output state
289 -** DO1 is float in case no load between DO1 and V+.;
290 -** DO1 is high in case there is load between DO1 and V+.
291 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
292 292  
293 293  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
294 294  
295 295  
296 296  (((
297 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
298 298  )))
299 299  
300 300  (((
301 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
302 302  
303 303  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
304 304  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -308,26 +308,26 @@
308 308  )))
309 309  
310 310  (((
311 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
312 312  
313 313  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
314 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
315 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
316 316  
317 -RO is for relay. ROx=1 : close , ROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
318 318  )))
319 319  
320 -* FIRST: Indicate this is the first packet after join network.
321 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
322 322  
323 323  (((
324 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
325 325  
326 326  
327 327  )))
328 328  
329 329  (((
330 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
331 331  )))
332 332  
333 333  (((
... ... @@ -348,17 +348,17 @@
348 348  (((
349 349  **For LT22222-L:**
350 350  
351 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
352 352  
353 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
354 354  
355 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
360 360  
361 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
362 362  )))
363 363  
364 364  
... ... @@ -365,7 +365,7 @@
365 365  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
366 366  
367 367  
368 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
369 369  
370 370  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
371 371  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -376,16 +376,16 @@
376 376  )))|DIDORO*|Reserve|MOD
377 377  
378 378  (((
379 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
380 380  
381 381  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
382 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
383 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
384 384  )))
385 385  
386 -* RO is for relay. ROx=1 : close, ROx=0 always open.
387 -* FIRST: Indicate this is the first packet after join network.
388 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
389 389  
390 390  (((
391 391  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -393,7 +393,7 @@
393 393  
394 394  
395 395  (((
396 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
397 397  )))
398 398  
399 399  (((
... ... @@ -406,7 +406,9 @@
406 406  )))
407 407  
408 408  (((
409 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
410 410  )))
411 411  
412 412  
... ... @@ -414,11 +414,11 @@
414 414  
415 415  
416 416  (((
417 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
418 418  )))
419 419  
420 420  (((
421 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
422 422  
423 423  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
424 424  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -428,16 +428,16 @@
428 428  )))
429 429  
430 430  (((
431 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
432 432  
433 433  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
434 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
435 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
436 436  )))
437 437  
438 -* RO is for relay. ROx=1 : close, ROx=0 always open.
439 -* FIRST: Indicate this is the first packet after join network.
440 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
441 441  
442 442  (((
443 443  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -446,7 +446,7 @@
446 446  )))
447 447  
448 448  (((
449 -**To use this mode, please run:**
502 +**To activate this mode, please run the following AT command:**
450 450  )))
451 451  
452 452  (((
... ... @@ -463,9 +463,9 @@
463 463  )))
464 464  
465 465  (((
466 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
467 467  
468 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
469 469  
470 470  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
471 471  
... ... @@ -1302,56 +1302,73 @@
1302 1302  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1303 1303  
1304 1304  
1305 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1306 1306  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1307 1307  
1308 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1309 1309  
1310 -(((
1311 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1312 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1313 1313  
1314 -(((
1315 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1316 1316  
1317 -
1318 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1319 1319  
1320 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1321 1321  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1322 1322  
1323 1323  
1324 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1325 1325  
1381 +Basic settings:
1326 1326  
1327 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1328 1328  
1329 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1330 1330  
1331 -Search under The things network
1389 +Uplink Data converter:
1332 1332  
1333 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1334 1334  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1335 1335  
1336 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398 +Downlink Data converter (this is an optional step):
1337 1337  
1338 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1339 1339  
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1340 1340  
1341 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1407 +Connection:
1342 1342  
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1343 1343  
1344 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1345 1345  
1346 1346  
1347 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1348 1348  
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1349 1349  
1350 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1351 1351  
1423 +== 3.6 Interface Details ==
1352 1352  
1353 -== 3.6 Interface Detail ==
1354 -
1355 1355  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1356 1356  
1357 1357  
... ... @@ -1360,16 +1360,16 @@
1360 1360  [[image:1653356991268-289.png]]
1361 1361  
1362 1362  
1363 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1433 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1364 1364  
1365 1365  
1366 1366  (((
1367 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1368 1368  )))
1369 1369  
1370 1370  (((
1371 1371  (((
1372 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1373 1373  
1374 1374  
1375 1375  )))
... ... @@ -1379,7 +1379,7 @@
1379 1379  
1380 1380  (((
1381 1381  (((
1382 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1383 1383  )))
1384 1384  )))
1385 1385  
... ... @@ -1388,22 +1388,22 @@
1388 1388  )))
1389 1389  
1390 1390  (((
1391 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1392 1392  )))
1393 1393  
1394 1394  (((
1395 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1396 1396  )))
1397 1397  
1398 1398  * (((
1399 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1400 1400  )))
1401 1401  * (((
1402 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1403 1403  )))
1404 1404  
1405 1405  (((
1406 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1407 1407  )))
1408 1408  
1409 1409  (((
... ... @@ -1411,7 +1411,7 @@
1411 1411  )))
1412 1412  
1413 1413  (((
1414 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1415 1415  )))
1416 1416  
1417 1417  (((
... ... @@ -1419,22 +1419,22 @@
1419 1419  )))
1420 1420  
1421 1421  (((
1422 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1423 1423  )))
1424 1424  
1425 1425  (((
1426 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1427 1427  )))
1428 1428  
1429 1429  * (((
1430 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1431 1431  )))
1432 1432  * (((
1433 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1434 1434  )))
1435 1435  
1436 1436  (((
1437 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1438 1438  )))
1439 1439  
1440 1440  (((
... ... @@ -1442,7 +1442,7 @@
1442 1442  )))
1443 1443  
1444 1444  (((
1445 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1446 1446  )))
1447 1447  
1448 1448  (((
... ... @@ -1450,22 +1450,22 @@
1450 1450  )))
1451 1451  
1452 1452  (((
1453 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1454 1454  )))
1455 1455  
1456 1456  (((
1457 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1458 1458  )))
1459 1459  
1460 1460  * (((
1461 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1462 1462  )))
1463 1463  * (((
1464 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1465 1465  )))
1466 1466  
1467 1467  (((
1468 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1469 1469  )))
1470 1470  
1471 1471  (((
... ... @@ -1473,37 +1473,37 @@
1473 1473  )))
1474 1474  
1475 1475  (((
1476 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1477 1477  )))
1478 1478  
1479 1479  
1480 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1481 1481  
1482 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1483 1483  
1484 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1485 1485  
1486 1486  [[image:image-20230616235145-1.png]]
1487 1487  
1488 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1489 1489  
1490 1490  [[image:image-20240219115718-1.png]]
1491 1491  
1492 1492  
1493 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1563 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1494 1494  
1495 1495  
1496 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1566 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1497 1497  
1498 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1499 1499  
1500 1500  [[image:1653357531600-905.png]]
1501 1501  
1502 1502  
1503 -=== 3.6.4 Analog Input Interface ===
1573 +=== 3.6.4 Analog Input Interfaces ===
1504 1504  
1505 1505  
1506 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1507 1507  
1508 1508  
1509 1509  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1510,14 +1510,14 @@
1510 1510  
1511 1511  [[image:1653357592296-182.png]]
1512 1512  
1513 -Example to connect a 4~~20mA sensor
1583 +Example: Connecting a 4~~20mA sensor
1514 1514  
1515 -We take the wind speed sensor as an example for reference only.
1585 +We will use the wind speed sensor as an example for reference only.
1516 1516  
1517 1517  
1518 1518  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1519 1519  
1520 -(% style="color:red" %)**Red:  12~~24v**
1590 +(% style="color:red" %)**Red:  12~~24V**
1521 1521  
1522 1522  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1523 1523  
... ... @@ -1530,7 +1530,7 @@
1530 1530  [[image:1653357648330-671.png||height="155" width="733"]]
1531 1531  
1532 1532  
1533 -Example connected to a regulated power supply to measure voltage
1603 +Example: Connecting to a regulated power supply to measure voltage
1534 1534  
1535 1535  [[image:image-20230608101532-1.png||height="606" width="447"]]
1536 1536  
... ... @@ -1539,7 +1539,7 @@
1539 1539  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1540 1540  
1541 1541  
1542 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1543 1543  
1544 1544  (% style="color:red" %)**Red:  12~~24v**
1545 1545  
... ... @@ -1550,9 +1550,9 @@
1550 1550  
1551 1551  
1552 1552  (((
1553 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1623 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1554 1554  
1555 -**Note**: RO pins go to Open(NO) when device is power off.
1625 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1556 1556  )))
1557 1557  
1558 1558  [[image:image-20220524100215-9.png]]
... ... @@ -1592,13 +1592,13 @@
1592 1592  |**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1593 1593  |**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1594 1594  
1595 -= 4. Use AT Command =
1665 += 4. Using AT Command =
1596 1596  
1597 -== 4.1 Access AT Command ==
1667 +== 4.1 Connecting the LT-22222-L to a computer ==
1598 1598  
1599 1599  
1600 1600  (((
1601 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1671 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1602 1602  )))
1603 1603  
1604 1604  [[image:1653358238933-385.png]]
... ... @@ -1605,7 +1605,7 @@
1605 1605  
1606 1606  
1607 1607  (((
1608 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1609 1609  )))
1610 1610  
1611 1611  [[image:1653358355238-883.png]]
... ... @@ -1612,10 +1612,12 @@
1612 1612  
1613 1613  
1614 1614  (((
1615 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1685 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1616 1616  )))
1617 1617  
1618 1618  (((
1689 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1690 +
1619 1619  AT+<CMD>?        : Help on <CMD>
1620 1620  )))
1621 1621  
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content