<
From version < 137.1 >
edited by Mengting Qiu
on 2024/09/12 08:51
To version < 168.1 >
edited by Dilisi S
on 2024/11/08 04:36
>
Change comment: Uploaded new attachment "lt-22222-join-network.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.pradeeka
Content
... ... @@ -17,38 +17,32 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 -(((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
47 47  
48 48  (((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
50 50  
51 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
52 52  )))
53 53  
54 54  (((
... ... @@ -66,12 +66,12 @@
66 66  * Power Consumption:
67 67  ** Idle: 4mA@12v
68 68  ** 20dB Transmit: 34mA@12v
69 -* Operating Temperature: -40 ~~ 85 Degree, No Dew
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
70 70  
71 71  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
72 72  
73 73  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
74 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
75 75  * 2 x Relay Output (5A@250VAC / 30VDC)
76 76  * 2 x 0~~20mA Analog Input (res:0.01mA)
77 77  * 2 x 0~~30V Analog Input (res:0.01v)
... ... @@ -84,7 +84,7 @@
84 84  ** Band 2 (LF): 410 ~~ 528 Mhz
85 85  * 168 dB maximum link budget.
86 86  * +20 dBm - 100 mW constant RF output vs.
87 -* +14 dBm high efficiency PA.
81 +* +14 dBm high-efficiency PA.
88 88  * Programmable bit rate up to 300 kbps.
89 89  * High sensitivity: down to -148 dBm.
90 90  * Bullet-proof front end: IIP3 = -12.5 dBm.
... ... @@ -104,7 +104,7 @@
104 104  * Optional Customized LoRa Protocol
105 105  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
106 106  * AT Commands to change parameters
107 -* Remote configure parameters via LoRa Downlink
101 +* Remotely configure parameters via LoRaWAN Downlink
108 108  * Firmware upgradable via program port
109 109  * Counting
110 110  
... ... @@ -134,85 +134,140 @@
134 134  * 1 x Counting Port
135 135  )))
136 136  
137 -= 2. Power ON Device =
131 += 2. Assembling the Device =
138 138  
139 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
133 +== 2.1 What is included in the package? ==
140 140  
141 -PWR will on when device is properly powered.
135 +The package includes the following items:
142 142  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
141 +
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
143 +
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
143 143  [[image:1653297104069-180.png]]
144 144  
145 145  
146 146  = 3. Operation Mode =
147 147  
148 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
149 149  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
150 150  
151 -(((
152 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
153 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
154 154  
155 -(((
156 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
157 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
158 158  
190 +== 3.2 Registering with a LoRaWAN network server ==
159 159  
160 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
161 161  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
162 162  
163 -(((
164 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
165 165  
166 -
167 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
168 168  
169 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
170 170  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
171 171  
172 -(((
173 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
174 174  
175 -
176 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
177 177  
178 -(((
179 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
180 -)))
210 +==== Using the LoRaWAN Device Repository: ====
181 181  
182 -(((
183 -Each LT is shipped with a sticker with the default device EUI as below:
184 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
185 185  
186 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
187 187  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
188 188  
189 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
190 190  
191 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
192 192  
193 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
194 194  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
195 195  
196 -**Add APP KEY and DEV EUI**
197 197  
198 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
199 199  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
200 200  
201 -(((
202 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
203 203  
204 -
205 -)))
252 +==== Joining ====
206 206  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
207 207  [[image:1653298044601-602.png||height="405" width="709"]]
208 208  
209 209  
210 -== 3.3 Uplink Payload ==
259 +== 3.3 Work Modes and their Uplink Payload formats ==
211 211  
212 212  
213 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
214 214  
215 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
216 216  
217 217  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
218 218  
... ... @@ -226,9 +226,8 @@
226 226  
227 227  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
228 228  
229 -
230 230  (((
231 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
232 232  
233 233  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 234  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -240,29 +240,29 @@
240 240  ACI1 Current
241 241  )))|(((
242 242  ACI2 Current
243 -)))|DIDORO*|(((
291 +)))|**DIDORO***|(((
244 244  Reserve
245 245  )))|MOD
246 246  )))
247 247  
248 248  (((
249 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
250 250  
251 251  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
252 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
253 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
254 254  )))
255 255  
256 -* RO is for relay. ROx=1 : close, ROx=0 always open.
257 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
258 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
259 259  
260 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
261 261  
262 -For example if payload is: [[image:image-20220523175847-2.png]]
310 +For example, if the payload is: [[image:image-20220523175847-2.png]]
263 263  
264 264  
265 -**The value for the interface is:  **
313 +**The interface values can be calculated as follows:  **
266 266  
267 267  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
268 268  
... ... @@ -272,35 +272,32 @@
272 272  
273 273  ACI2 channel current is 0x1300/1000=4.864mA
274 274  
275 -The last byte 0xAA= 10101010(B) means
323 +The last byte 0xAA= **10101010**(b) means,
276 276  
277 -* [1] RO1 relay channel is close and the RO1 LED is ON.
278 -* [0] RO2 relay channel is open and RO2 LED is OFF;
325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 +* [1] DI3 - not used for LT-22222-L.
328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 +* [1] DI1 channel input state:
330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 +** DI1 LED is ON in both cases.
333 +* [0] DO3 - not used for LT-22222-L.
334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 +* [0] DO1 channel output state:
336 +** DO1 is FLOATING when there is no load between DO1 and V+.
337 +** DO1 is HIGH when there is a load between DO1 and V+.
338 +** DO1 LED is OFF in both cases.
279 279  
280 -**LT22222-L:**
281 -
282 -* [1] DI2 channel is high input and DI2 LED is ON;
283 -* [0] DI1 channel is low input;
284 -
285 -* [0] DO3 channel output state
286 -** DO3 is float in case no load between DO3 and V+.;
287 -** DO3 is high in case there is load between DO3 and V+.
288 -** DO3 LED is off in both case
289 -* [1] DO2 channel output is low and DO2 LED is ON.
290 -* [0] DO1 channel output state
291 -** DO1 is float in case no load between DO1 and V+.;
292 -** DO1 is high in case there is load between DO1 and V+.
293 -** DO1 LED is off in both case
294 -
295 295  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
296 296  
297 297  
298 298  (((
299 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
300 300  )))
301 301  
302 302  (((
303 -Total : 11 bytes payload
348 +The uplink payload is 11 bytes long.
304 304  
305 305  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
306 306  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -310,26 +310,26 @@
310 310  )))
311 311  
312 312  (((
313 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
314 314  
315 315  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
317 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
318 318  
319 -RO is for relay. ROx=1 : close , ROx=0 always open.
364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
320 320  )))
321 321  
322 -* FIRST: Indicate this is the first packet after join network.
323 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367 +* FIRST: Indicates that this is the first packet after joining the network.
368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
324 324  
325 325  (((
326 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
327 327  
328 328  
329 329  )))
330 330  
331 331  (((
332 -**To use counting mode, please run:**
377 +**To activate this mode, run the following AT commands:**
333 333  )))
334 334  
335 335  (((
... ... @@ -350,17 +350,17 @@
350 350  (((
351 351  **For LT22222-L:**
352 352  
353 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
354 354  
355 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
360 360  
361 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
362 362  
363 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
364 364  )))
365 365  
366 366  
... ... @@ -367,7 +367,7 @@
367 367  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
368 368  
369 369  
370 -**LT22222-L**: This mode the DI1 is used as a counting pin.
415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
371 371  
372 372  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
373 373  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -378,24 +378,24 @@
378 378  )))|DIDORO*|Reserve|MOD
379 379  
380 380  (((
381 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
382 382  
383 383  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
385 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
386 386  )))
387 387  
388 -* RO is for relay. ROx=1 : close, ROx=0 always open.
389 -* FIRST: Indicate this is the first packet after join network.
390 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 +* FIRST: Indicates that this is the first packet after joining the network.
435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
391 391  
392 392  (((
393 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
394 394  )))
395 395  
396 396  
397 397  (((
398 -**To use counting mode, please run:**
443 +**To activate this mode, run the following AT commands:**
399 399  )))
400 400  
401 401  (((
... ... @@ -408,7 +408,9 @@
408 408  )))
409 409  
410 410  (((
411 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
456 +AT Commands for counting:
457 +
458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
412 412  )))
413 413  
414 414  
... ... @@ -416,11 +416,11 @@
416 416  
417 417  
418 418  (((
419 -**LT22222-L**: This mode the DI1 is used as a counting pin.
466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
420 420  )))
421 421  
422 422  (((
423 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
424 424  
425 425  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 426  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -430,25 +430,25 @@
430 430  )))
431 431  
432 432  (((
433 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
434 434  
435 435  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
436 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
437 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
438 438  )))
439 439  
440 -* RO is for relay. ROx=1 : close, ROx=0 always open.
441 -* FIRST: Indicate this is the first packet after join network.
442 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
487 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 +* FIRST: Indicates that this is the first packet after joining the network.
489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
443 443  
444 444  (((
445 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
446 446  
447 447  
448 448  )))
449 449  
450 450  (((
451 -**To use this mode, please run:**
498 +**To activate this mode, run the following AT commands:**
452 452  )))
453 453  
454 454  (((
... ... @@ -461,19 +461,19 @@
461 461  )))
462 462  
463 463  (((
464 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
465 465  )))
466 466  
467 467  (((
468 -**Plus below command for AVI1 Counting:**
515 +**In addition to that, below are the commands for AVI1 Counting:**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
471 471  
472 472  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
473 473  
474 474  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
475 475  
476 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
477 477  )))
478 478  
479 479  
... ... @@ -480,7 +480,7 @@
480 480  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
481 481  
482 482  
483 -**LT22222-L**: This mode the DI1 is used as a counting pin.
530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
484 484  
485 485  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
486 486  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -495,25 +495,25 @@
495 495  )))|MOD
496 496  
497 497  (((
498 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
499 499  
500 500  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
501 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
502 502  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
503 503  )))
504 504  
505 -* RO is for relay. ROx=1 : close, ROx=0 always open.
506 -* FIRST: Indicate this is the first packet after join network.
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
507 507  * (((
508 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
509 509  )))
510 510  
511 511  (((
512 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
513 513  )))
514 514  
515 515  (((
516 -**To use this mode, please run:**
563 +**To activate this mode, run the following AT commands:**
517 517  )))
518 518  
519 519  (((
... ... @@ -526,7 +526,7 @@
526 526  )))
527 527  
528 528  (((
529 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
530 530  )))
531 531  
532 532  
... ... @@ -533,49 +533,46 @@
533 533  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
534 534  
535 535  
536 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
537 537  
538 -For example, if user has configured below commands:
585 +For example, if you configured the following commands:
539 539  
540 540  * **AT+MOD=1 ** **~-~->**  The normal working mode
541 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
588 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
542 542  
543 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
544 544  
545 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
546 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
547 547  
548 548  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
549 549  
597 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
550 550  
551 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
552 -
553 553  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
554 554  
555 555  
556 556  **Example:**
557 557  
558 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
604 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
559 559  
560 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
606 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
561 561  
562 562  
609 +(% style="color:#4f81bd" %)**Trigger based on current**:
563 563  
564 -(% style="color:#4f81bd" %)**Trigger base on current**:
565 -
566 566  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
567 567  
568 568  
569 569  **Example:**
570 570  
571 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
616 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
572 572  
573 573  
619 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
574 574  
575 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
621 +DI status triggers Flag.
576 576  
577 -DI status trigger Flag.
578 -
579 579  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
580 580  
581 581  
... ... @@ -584,39 +584,38 @@
584 584  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
585 585  
586 586  
587 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
588 588  
589 589  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
590 590  
591 591  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
592 592  
593 - AA: Code for this downlink Command:
637 + AA: Type Code for this downlink Command:
594 594  
595 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
596 596  
597 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
598 598  
599 - yy2 yy2: AC1 or AV1 high limit.
643 + yy2 yy2: AC1 or AV1 HIGH limit.
600 600  
601 - yy3 yy3: AC2 or AV2 low limit.
645 + yy3 yy3: AC2 or AV2 LOW limit.
602 602  
603 - Yy4 yy4: AC2 or AV2 high limit.
647 + Yy4 yy4: AC2 or AV2 HIGH limit.
604 604  
605 605  
606 -**Example1**: AA 00 13 88 00 00 00 00 00 00
650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
607 607  
608 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
609 609  
610 610  
611 -**Example2**: AA 02 01 00
655 +**Example 2**: AA 02 01 00
612 612  
613 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
614 614  
615 615  
616 -
617 617  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
618 618  
619 -MOD6 Payload : total 11 bytes payload
662 +MOD6 Payload: total of 11 bytes
620 620  
621 621  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
622 622  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -630,10 +630,10 @@
630 630  MOD(6)
631 631  )))
632 632  
633 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
634 634  
635 635  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
636 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
637 637  |(((
638 638  AV1_LOW
639 639  )))|(((
... ... @@ -652,17 +652,17 @@
652 652  AC2_HIGH
653 653  )))
654 654  
655 -* Each bits shows if the corresponding trigger has been configured.
698 +* Each bit shows if the corresponding trigger has been configured.
656 656  
657 657  **Example:**
658 658  
659 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
660 660  
661 661  
662 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
663 663  
664 664  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
665 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
666 666  |(((
667 667  AV1_LOW
668 668  )))|(((
... ... @@ -681,11 +681,11 @@
681 681  AC2_HIGH
682 682  )))
683 683  
684 -* Each bits shows which status has been trigger on this uplink.
727 +* Each bit shows which status has been triggered on this uplink.
685 685  
686 686  **Example:**
687 687  
688 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
689 689  
690 690  
691 691  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -694,7 +694,7 @@
694 694  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
695 695  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
696 696  
697 -* Each bits shows which status has been trigger on this uplink.
740 +* Each bits shows which status has been triggered on this uplink.
698 698  
699 699  **Example:**
700 700  
... ... @@ -721,11 +721,11 @@
721 721  )))
722 722  
723 723  
724 -== 3.4 ​Configure LT via AT or Downlink ==
767 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
725 725  
726 726  
727 727  (((
728 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
729 729  )))
730 730  
731 731  (((
... ... @@ -740,9 +740,8 @@
740 740  
741 741  === 3.4.1 Common Commands ===
742 742  
743 -
744 744  (((
745 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
787 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
746 746  )))
747 747  
748 748  
... ... @@ -750,34 +750,37 @@
750 750  
751 751  ==== 3.4.2.1 Set Transmit Interval ====
752 752  
795 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
753 753  
754 -Set device uplink interval.
797 +* (% style="color:#037691" %)**AT command:**
755 755  
756 -* (% style="color:#037691" %)**AT Command:**
799 +(% style="color:blue" %)**AT+TDC=N**
757 757  
758 -(% style="color:blue" %)**AT+TDC=N **
801 +where N is the time in milliseconds.
759 759  
803 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
760 760  
761 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
762 762  
806 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
763 763  
764 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
765 -
766 766  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
767 767  
768 768  
769 769  
770 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
771 771  
772 772  
773 -Set work mode.
815 +Sets the work mode.
774 774  
775 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
776 776  
777 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
819 +Where N is the work mode.
778 778  
779 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
821 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
780 780  
823 +
824 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
825 +
781 781  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
782 782  
783 783  
... ... @@ -785,10 +785,12 @@
785 785  ==== 3.4.2.3 Poll an uplink ====
786 786  
787 787  
788 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
833 +Asks the device to send an uplink.
789 789  
790 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
835 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
791 791  
837 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
838 +
792 792  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
793 793  
794 794  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -795,16 +795,16 @@
795 795  
796 796  
797 797  
798 -==== 3.4.2.4 Enable Trigger Mode ====
845 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
799 799  
800 800  
801 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
848 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
802 802  
803 803  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
804 804  
805 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
852 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
806 806  
807 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
854 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
808 808  
809 809  
810 810  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -816,7 +816,7 @@
816 816  ==== 3.4.2.5 Poll trigger settings ====
817 817  
818 818  
819 -Poll trigger settings
866 +Polls the trigger settings
820 820  
821 821  * (% style="color:#037691" %)**AT Command:**
822 822  
... ... @@ -824,7 +824,7 @@
824 824  
825 825  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
826 826  
827 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
874 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
828 828  
829 829  
830 830  
... ... @@ -831,11 +831,11 @@
831 831  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
832 832  
833 833  
834 -Enable Disable DI1/DI2/DI2 as trigger,
881 +Enable or Disable DI1/DI2/DI2 as trigger,
835 835  
836 836  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
837 837  
838 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
885 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
839 839  
840 840  
841 841  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -867,15 +867,15 @@
867 867  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
868 868  
869 869  
870 -Set DI2 trigger.
917 +Sets DI2 trigger.
871 871  
872 872  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
873 873  
874 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
921 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
875 875  
876 876  (% style="color:red" %)**b :** (%%)delay timing.
877 877  
878 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
925 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
879 879  
880 880  
881 881  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -913,7 +913,7 @@
913 913  ==== 3.4.2.11 Trigger – Set minimum interval ====
914 914  
915 915  
916 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
963 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
917 917  
918 918  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
919 919  
... ... @@ -1061,7 +1061,7 @@
1061 1061  )))
1062 1062  
1063 1063  (((
1064 -00: Close ,  01: Open , 11: No action
1111 +00: Closed ,  01: Open , 11: No action
1065 1065  
1066 1066  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1067 1067  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1183,7 +1183,7 @@
1183 1183  
1184 1184  
1185 1185  
1186 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1187 1187  
1188 1188  
1189 1189  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1304,74 +1304,131 @@
1304 1304  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1305 1305  
1306 1306  
1307 -== 3.5 Integrate with Mydevice ==
1354 +== 3.5 Integrating with ThingsEye.io ==
1308 1308  
1356 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1309 1309  
1310 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1358 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1311 1311  
1312 -(((
1313 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1314 -)))
1360 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1361 +* Select **MQTT** under **Integrations**.
1362 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1363 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button.
1315 1315  
1316 -(((
1317 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1365 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1318 1318  
1319 -
1320 -)))
1367 +=== 3.5.2 Configuring ThingsEye.io ===
1321 1321  
1322 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1369 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1370 +* Under the **Integrations center**, click **Integrations**.
1371 +* Click the **Add integration** button (the button with the **+** symbol).
1323 1323  
1373 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1324 1324  
1325 1325  
1326 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1376 +On the **Add integration** window, configure the following:
1327 1327  
1378 +~1. **Basic settings:**
1328 1328  
1329 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1380 +* Select **The Things Stack Community** from the **Integration type** list.
1381 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1382 +* Ensure the following options are turned on.
1383 +** Enable integration
1384 +** Debug mode
1385 +** Allow create devices or assets
1386 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1330 1330  
1331 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1388 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1332 1332  
1333 -Search under The things network
1334 1334  
1335 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +2. **Uplink data converter:**
1336 1336  
1393 +* Click the **Create new** button if it is not selected by default.
1394 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1395 +* Click the **JavaScript** button.
1396 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1397 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1337 1337  
1338 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1339 1339  
1340 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1401 +3.** Downlink data converter (this is an optional step):**
1341 1341  
1403 +* Click the **Create new** button if it is not selected by default.
1404 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1405 +* Click the **JavaScript** button.
1406 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1407 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1342 1342  
1343 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1409 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1344 1344  
1411 +4. **Connection:**
1345 1345  
1346 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1413 +* Choose **Region** from the **Host type**.
1414 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1415 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1416 +* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**.
1417 +* Click the **Add** button.
1347 1347  
1419 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1348 1348  
1349 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1350 1350  
1422 +Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again.
1351 1351  
1352 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1424 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1353 1353  
1354 1354  
1355 -== 3.6 Interface Detail ==
1427 +Viewing integration details:
1356 1356  
1429 +Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1430 +
1431 +[add image here]
1432 +
1433 +If you want to edit the settings you have provided, click on the Toggle edit mode button.
1434 +
1435 +[add image here]
1436 +
1437 +Once you have done click on the Apply changes button.
1438 +
1439 +Note: See also ThingsEye documentation.
1440 +
1441 +Click on the Events tab.
1442 +
1443 +- Select Debug from the Event type dropdown.
1444 +
1445 +- Select the time frame from the time window.
1446 +
1447 +[insert image]
1448 +
1449 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1450 +
1451 +[insert image]
1452 +
1453 +
1454 +Deleting the integration:
1455 +
1456 +If you want to delete this integration, click the Delete integration button.
1457 +
1458 +
1459 +== 3.6 Interface Details ==
1460 +
1357 1357  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1358 1358  
1359 1359  
1360 -Support NPN Type sensor
1464 +Support NPN-type sensor
1361 1361  
1362 1362  [[image:1653356991268-289.png]]
1363 1363  
1364 1364  
1365 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1469 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1366 1366  
1367 1367  
1368 1368  (((
1369 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1473 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1370 1370  )))
1371 1371  
1372 1372  (((
1373 1373  (((
1374 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1478 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1375 1375  
1376 1376  
1377 1377  )))
... ... @@ -1381,7 +1381,7 @@
1381 1381  
1382 1382  (((
1383 1383  (((
1384 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1488 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1385 1385  )))
1386 1386  )))
1387 1387  
... ... @@ -1390,22 +1390,22 @@
1390 1390  )))
1391 1391  
1392 1392  (((
1393 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1497 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1394 1394  )))
1395 1395  
1396 1396  (((
1397 -This type of sensor will output a low signal GND when active.
1501 +This type of sensor outputs a low (GND) signal when active.
1398 1398  )))
1399 1399  
1400 1400  * (((
1401 -Connect sensor's output to DI1-
1505 +Connect the sensor's output to DI1-
1402 1402  )))
1403 1403  * (((
1404 -Connect sensor's VCC to DI1+.
1508 +Connect the sensor's VCC to DI1+.
1405 1405  )))
1406 1406  
1407 1407  (((
1408 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1512 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1409 1409  )))
1410 1410  
1411 1411  (((
... ... @@ -1413,7 +1413,7 @@
1413 1413  )))
1414 1414  
1415 1415  (((
1416 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1520 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1417 1417  )))
1418 1418  
1419 1419  (((
... ... @@ -1421,22 +1421,22 @@
1421 1421  )))
1422 1422  
1423 1423  (((
1424 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1528 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1425 1425  )))
1426 1426  
1427 1427  (((
1428 -This type of sensor will output a high signal (example 24v) when active.
1532 +This type of sensor outputs a high signal (e.g., 24V) when active.
1429 1429  )))
1430 1430  
1431 1431  * (((
1432 -Connect sensor's output to DI1+
1536 +Connect the sensor's output to DI1+
1433 1433  )))
1434 1434  * (((
1435 -Connect sensor's GND DI1-.
1539 +Connect the sensor's GND DI1-.
1436 1436  )))
1437 1437  
1438 1438  (((
1439 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1543 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1440 1440  )))
1441 1441  
1442 1442  (((
... ... @@ -1444,7 +1444,7 @@
1444 1444  )))
1445 1445  
1446 1446  (((
1447 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1551 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1448 1448  )))
1449 1449  
1450 1450  (((
... ... @@ -1452,22 +1452,22 @@
1452 1452  )))
1453 1453  
1454 1454  (((
1455 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1559 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1456 1456  )))
1457 1457  
1458 1458  (((
1459 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1563 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1460 1460  )))
1461 1461  
1462 1462  * (((
1463 -Connect sensor's output to DI1+ with a serial 50K resistor
1567 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1464 1464  )))
1465 1465  * (((
1466 -Connect sensor's GND DI1-.
1570 +Connect the sensor's GND DI1-.
1467 1467  )))
1468 1468  
1469 1469  (((
1470 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1574 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1471 1471  )))
1472 1472  
1473 1473  (((
... ... @@ -1475,37 +1475,37 @@
1475 1475  )))
1476 1476  
1477 1477  (((
1478 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1582 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1479 1479  )))
1480 1480  
1481 1481  
1482 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1586 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1483 1483  
1484 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1588 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1485 1485  
1486 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1590 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1487 1487  
1488 1488  [[image:image-20230616235145-1.png]]
1489 1489  
1490 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1594 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1491 1491  
1492 1492  [[image:image-20240219115718-1.png]]
1493 1493  
1494 1494  
1495 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1599 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1496 1496  
1497 1497  
1498 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1602 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1499 1499  
1500 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1604 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1501 1501  
1502 1502  [[image:1653357531600-905.png]]
1503 1503  
1504 1504  
1505 -=== 3.6.4 Analog Input Interface ===
1609 +=== 3.6.4 Analog Input Interfaces ===
1506 1506  
1507 1507  
1508 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1612 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1509 1509  
1510 1510  
1511 1511  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1512,14 +1512,14 @@
1512 1512  
1513 1513  [[image:1653357592296-182.png]]
1514 1514  
1515 -Example to connect a 4~~20mA sensor
1619 +Example: Connecting a 4~~20mA sensor
1516 1516  
1517 -We take the wind speed sensor as an example for reference only.
1621 +We will use the wind speed sensor as an example for reference only.
1518 1518  
1519 1519  
1520 1520  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1521 1521  
1522 -(% style="color:red" %)**Red:  12~~24v**
1626 +(% style="color:red" %)**Red:  12~~24V**
1523 1523  
1524 1524  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1525 1525  
... ... @@ -1532,7 +1532,7 @@
1532 1532  [[image:1653357648330-671.png||height="155" width="733"]]
1533 1533  
1534 1534  
1535 -Example connected to a regulated power supply to measure voltage
1639 +Example: Connecting to a regulated power supply to measure voltage
1536 1536  
1537 1537  [[image:image-20230608101532-1.png||height="606" width="447"]]
1538 1538  
... ... @@ -1541,7 +1541,7 @@
1541 1541  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1542 1542  
1543 1543  
1544 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1648 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1545 1545  
1546 1546  (% style="color:red" %)**Red:  12~~24v**
1547 1547  
... ... @@ -1552,9 +1552,9 @@
1552 1552  
1553 1553  
1554 1554  (((
1555 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1659 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1556 1556  
1557 -**Note**: RO pins go to Open(NO) when device is power off.
1661 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1558 1558  )))
1559 1559  
1560 1560  [[image:image-20220524100215-9.png]]
... ... @@ -1582,25 +1582,25 @@
1582 1582  Transmit a LoRa packet: TX blinks once
1583 1583  )))
1584 1584  )))
1585 -|**RX**|RX blinks once when receive a packet.
1586 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1587 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1689 +|**RX**|RX blinks once when receiving a packet.
1690 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1691 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1588 1588  |**DI1**|(((
1589 -For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1693 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1590 1590  )))
1591 1591  |**DI2**|(((
1592 -For LT-22222-L: ON when DI2 is high, LOwhen DI2 is low
1696 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1593 1593  )))
1594 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1595 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1698 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1699 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1596 1596  
1597 -= 4. Use AT Command =
1701 += 4. Using AT Command =
1598 1598  
1599 -== 4.1 Access AT Command ==
1703 +== 4.1 Connecting the LT-22222-L to a computer ==
1600 1600  
1601 1601  
1602 1602  (((
1603 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1707 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1604 1604  )))
1605 1605  
1606 1606  [[image:1653358238933-385.png]]
... ... @@ -1607,7 +1607,7 @@
1607 1607  
1608 1608  
1609 1609  (((
1610 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1714 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1611 1611  )))
1612 1612  
1613 1613  [[image:1653358355238-883.png]]
... ... @@ -1614,10 +1614,12 @@
1614 1614  
1615 1615  
1616 1616  (((
1617 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1721 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1618 1618  )))
1619 1619  
1620 1620  (((
1725 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1726 +
1621 1621  AT+<CMD>?        : Help on <CMD>
1622 1622  )))
1623 1623  
... ... @@ -1942,10 +1942,10 @@
1942 1942  
1943 1943  = 5. Case Study =
1944 1944  
1945 -== 5.1 Counting how many objects pass in Flow Line ==
2051 +== 5.1 Counting how many objects pass through the flow Line ==
1946 1946  
1947 1947  
1948 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2054 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1949 1949  
1950 1950  
1951 1951  = 6. FAQ =
... ... @@ -1953,26 +1953,26 @@
1953 1953  == 6.1 How to upgrade the image? ==
1954 1954  
1955 1955  
1956 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2062 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
1957 1957  
1958 -* Support new features
1959 -* For bug fix
2064 +* Support new features.
2065 +* Fix bugs.
1960 1960  * Change LoRaWAN bands.
1961 1961  
1962 -Below shows the hardware connection for how to upload an image to the LT:
2068 +Below is the hardware connection setup for uploading an image to the LT:
1963 1963  
1964 1964  [[image:1653359603330-121.png]]
1965 1965  
1966 1966  
1967 1967  (((
1968 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1969 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1970 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2074 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
1971 1971  
1972 1972  
1973 1973  (((
1974 1974  (% style="color:blue" %)**For LT-22222-L**(%%):
1975 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2081 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
1976 1976  )))
1977 1977  
1978 1978  
... ... @@ -1987,7 +1987,7 @@
1987 1987  [[image:image-20220524104033-15.png]]
1988 1988  
1989 1989  
1990 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2096 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
1991 1991  
1992 1992  [[image:1653360054704-518.png||height="186" width="745"]]
1993 1993  
... ... @@ -2001,13 +2001,13 @@
2001 2001  )))
2002 2002  
2003 2003  (((
2004 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2110 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2005 2005  )))
2006 2006  
2007 2007  (((
2008 2008  
2009 2009  
2010 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2116 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2011 2011  
2012 2012  
2013 2013  )))
... ... @@ -2014,13 +2014,13 @@
2014 2014  
2015 2015  (((
2016 2016  (((
2017 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2123 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2018 2018  )))
2019 2019  )))
2020 2020  
2021 2021  (((
2022 2022  (((
2023 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2129 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2024 2024  
2025 2025  
2026 2026  )))
... ... @@ -2027,7 +2027,7 @@
2027 2027  )))
2028 2028  
2029 2029  (((
2030 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2136 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2031 2031  
2032 2032  
2033 2033  )))
... ... @@ -2084,7 +2084,7 @@
2084 2084  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2085 2085  
2086 2086  
2087 -== 6.5 Can I see counting event in Serial? ==
2193 +== 6.5 Can I see the counting event in Serial? ==
2088 2088  
2089 2089  
2090 2090  (((
... ... @@ -2091,10 +2091,10 @@
2091 2091  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2092 2092  
2093 2093  
2094 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2200 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2095 2095  
2096 2096  
2097 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2203 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2098 2098  
2099 2099  
2100 2100  )))
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0