Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Saxer Lin on 2025/04/15 17:24
Change comment:
Edits on Nov 7 - Part 1
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 12 added, 0 removed)
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.pradeeka - Content
-
... ... @@ -17,38 +17,32 @@ 17 17 18 18 19 19 20 -= 1.Introduction = 20 += 1. Introduction = 21 21 22 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 23 23 24 24 ((( 25 - 26 - 27 27 ((( 28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 29 -))) 30 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 31 31 32 -((( 33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 34 34 ))) 35 - 36 -((( 37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 38 38 ))) 39 39 40 40 ((( 41 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 42 42 ))) 43 43 44 -((( 45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 46 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 47 47 48 48 ((( 49 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 50 50 51 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 52 52 ))) 53 53 54 54 ((( ... ... @@ -66,12 +66,12 @@ 66 66 * Power Consumption: 67 67 ** Idle: 4mA@12v 68 68 ** 20dB Transmit: 34mA@12v 69 -* Operating Temperature: -40 ~~ 85 Degree, No Dew 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 70 70 71 71 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 72 72 73 73 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 74 -* 2 x Digital Output (NPN output. Max pull 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 75 75 * 2 x Relay Output (5A@250VAC / 30VDC) 76 76 * 2 x 0~~20mA Analog Input (res:0.01mA) 77 77 * 2 x 0~~30V Analog Input (res:0.01v) ... ... @@ -84,7 +84,7 @@ 84 84 ** Band 2 (LF): 410 ~~ 528 Mhz 85 85 * 168 dB maximum link budget. 86 86 * +20 dBm - 100 mW constant RF output vs. 87 -* +14 dBm high 81 +* +14 dBm high-efficiency PA. 88 88 * Programmable bit rate up to 300 kbps. 89 89 * High sensitivity: down to -148 dBm. 90 90 * Bullet-proof front end: IIP3 = -12.5 dBm. ... ... @@ -104,7 +104,7 @@ 104 104 * Optional Customized LoRa Protocol 105 105 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 106 106 * AT Commands to change parameters 107 -* Remote configure parameters via LoRa Downlink 101 +* Remotely configure parameters via LoRaWAN Downlink 108 108 * Firmware upgradable via program port 109 109 * Counting 110 110 ... ... @@ -134,85 +134,140 @@ 134 134 * 1 x Counting Port 135 135 ))) 136 136 137 -= 2. PowerONDevice =131 += 2. Assembling the Device = 138 138 139 - TheLT controller can be powered by 7 ~~24V DC power source.ConnectVINto Power Input V+ andGND to powerinputV-to power theLTcontroller.133 +== 2.1 What is included in the package? == 140 140 141 - PWR will on whendevice isproperlypowered.135 +The package includes the following items: 142 142 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 141 + 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 143 + 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 143 143 [[image:1653297104069-180.png]] 144 144 145 145 146 146 = 3. Operation Mode = 147 147 148 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 149 149 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 150 150 151 -((( 152 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 153 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 154 154 155 -((( 156 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 157 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 158 158 190 +== 3.2 Registering with a LoRaWAN network server == 159 159 160 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 161 161 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 162 162 163 -((( 164 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 165 165 166 - 167 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 168 168 169 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 170 170 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 171 171 172 -((( 173 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 174 174 175 - 176 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 177 177 178 -((( 179 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 180 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 181 181 182 -((( 183 -Each LT is shipped with a sticker with the default device EUI as below: 184 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 185 185 186 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 187 187 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 188 188 189 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 190 190 191 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 192 192 193 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 194 194 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 195 195 196 -**Add APP KEY and DEV EUI** 197 197 198 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 199 199 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 200 200 201 -((( 202 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 203 203 204 - 205 -))) 252 +==== Joining ==== 206 206 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 255 + 207 207 [[image:1653298044601-602.png||height="405" width="709"]] 208 208 209 209 210 -== 3.3 259 +== 3.3 Work Modes and their Uplink Payload formats == 211 211 212 212 213 -The rearefiveworkingmodes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 214 214 215 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2xACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO 216 216 217 217 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 218 218 ... ... @@ -226,9 +226,8 @@ 226 226 227 227 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 228 228 229 - 230 230 ((( 231 -The uplink payload i ncludestotally9bytes. UplinkpacketsuseFPORT=2andevery10minutessend one uplinkbydefault. (% style="display:none" %)279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 232 232 233 233 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 234 234 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -240,29 +240,29 @@ 240 240 ACI1 Current 241 241 )))|((( 242 242 ACI2 Current 243 -)))|DIDORO*|((( 291 +)))|**DIDORO***|((( 244 244 Reserve 245 245 )))|MOD 246 246 ))) 247 247 248 248 ((( 249 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below. 250 250 251 251 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 252 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 253 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 254 254 ))) 255 255 256 -* RO is for relay. ROx=1 close, ROx=0 alwaysopen.257 -* DI is for digital input. DIx=1: highorfloat, DIx=0:low.258 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW. 306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 259 259 260 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 261 261 262 -For example if payload is: [[image:image-20220523175847-2.png]] 310 +For example, if the payload is: [[image:image-20220523175847-2.png]] 263 263 264 264 265 -**The value fortheinterfaceis: **313 +**The interface values can be calculated as follows: ** 266 266 267 267 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 268 268 ... ... @@ -272,35 +272,32 @@ 272 272 273 273 ACI2 channel current is 0x1300/1000=4.864mA 274 274 275 -The last byte 0xAA= 10101010( B) means323 +The last byte 0xAA= **10101010**(b) means, 276 276 277 -* [1] RO1 relay channel is close and the RO1 LED is ON. 278 -* [0] RO2 relay channel is open and RO2 LED is OFF; 325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 327 +* [1] DI3 - not used for LT-22222-L. 328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 329 +* [1] DI1 channel input state: 330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 332 +** DI1 LED is ON in both cases. 333 +* [0] DO3 - not used for LT-22222-L. 334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 335 +* [0] DO1 channel output state: 336 +** DO1 is FLOATING when there is no load between DO1 and V+. 337 +** DO1 is HIGH when there is a load between DO1 and V+. 338 +** DO1 LED is OFF in both cases. 279 279 280 -**LT22222-L:** 281 - 282 -* [1] DI2 channel is high input and DI2 LED is ON; 283 -* [0] DI1 channel is low input; 284 - 285 -* [0] DO3 channel output state 286 -** DO3 is float in case no load between DO3 and V+.; 287 -** DO3 is high in case there is load between DO3 and V+. 288 -** DO3 LED is off in both case 289 -* [1] DO2 channel output is low and DO2 LED is ON. 290 -* [0] DO1 channel output state 291 -** DO1 is float in case no load between DO1 and V+.; 292 -** DO1 is high in case there is load between DO1 and V+. 293 -** DO1 LED is off in both case 294 - 295 295 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 296 296 297 297 298 298 ((( 299 -**For LT-22222-L**: this mode the**DI1 and DI2** are used as counting pins.344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins. 300 300 ))) 301 301 302 302 ((( 303 -T otal:11 bytespayload348 +The uplink payload is 11 bytes long. 304 304 305 305 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 306 306 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -310,26 +310,26 @@ 310 310 ))) 311 311 312 312 ((( 313 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below. 314 314 315 315 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 316 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 317 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 318 318 319 -RO is for relay. ROx=1 close, ROx=0 alwaysopen.364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 320 320 ))) 321 321 322 -* FIRST: Indicate this is the first packet after join network. 323 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.367 +* FIRST: Indicates that this is the first packet after joining the network. 368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 324 324 325 325 ((( 326 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 327 327 328 328 329 329 ))) 330 330 331 331 ((( 332 -**To usecountingmode,pleaserun:**377 +**To activate this mode, run the following AT commands:** 333 333 ))) 334 334 335 335 ((( ... ... @@ -350,17 +350,17 @@ 350 350 ((( 351 351 **For LT22222-L:** 352 352 353 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 354 354 355 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 356 356 357 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 358 358 359 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 360 360 361 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 362 362 363 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 364 364 ))) 365 365 366 366 ... ... @@ -367,7 +367,7 @@ 367 367 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 368 368 369 369 370 -**LT22222-L**: This mode the DI1 is used as a counting pin.415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 371 371 372 372 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 373 373 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -378,24 +378,24 @@ 378 378 )))|DIDORO*|Reserve|MOD 379 379 380 380 ((( 381 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 382 382 383 383 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 384 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 385 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 386 386 ))) 387 387 388 -* RO is for relay. ROx=1 389 -* FIRST: Indicate this is the first packet after join network. 390 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 433 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 434 +* FIRST: Indicates that this is the first packet after joining the network. 435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 391 391 392 392 ((( 393 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 394 394 ))) 395 395 396 396 397 397 ((( 398 -**To usecountingmode,pleaserun:**443 +**To activate this mode, run the following AT commands:** 399 399 ))) 400 400 401 401 ((( ... ... @@ -408,7 +408,9 @@ 408 408 ))) 409 409 410 410 ((( 411 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 456 +AT Commands for counting: 457 + 458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 412 412 ))) 413 413 414 414 ... ... @@ -416,11 +416,11 @@ 416 416 417 417 418 418 ((( 419 -**LT22222-L**: This mode the DI1 is used as a counting pin.466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 420 420 ))) 421 421 422 422 ((( 423 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 424 424 425 425 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 426 426 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -430,25 +430,25 @@ 430 430 ))) 431 431 432 432 ((( 433 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 434 434 435 435 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 436 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 437 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 438 438 ))) 439 439 440 -* RO is for relay. ROx=1 441 -* FIRST: Indicate this is the first packet after join network. 442 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 487 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 488 +* FIRST: Indicates that this is the first packet after joining the network. 489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 443 443 444 444 ((( 445 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 446 446 447 447 448 448 ))) 449 449 450 450 ((( 451 -**To use this mode,pleaserun:**498 +**To activate this mode, run the following AT commands:** 452 452 ))) 453 453 454 454 ((( ... ... @@ -461,19 +461,19 @@ 461 461 ))) 462 462 463 463 ((( 464 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 465 465 ))) 466 466 467 467 ((( 468 -** Plusbelow command for AVI1 Counting:**515 +**In addition to that, below are the commands for AVI1 Counting:** 469 469 470 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 471 471 472 472 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 473 473 474 474 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 475 475 476 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 477 477 ))) 478 478 479 479 ... ... @@ -480,7 +480,7 @@ 480 480 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 481 481 482 482 483 -**LT22222-L**: This mode the DI1 is used as a counting pin.530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 484 484 485 485 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 486 486 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -495,25 +495,25 @@ 495 495 )))|MOD 496 496 497 497 ((( 498 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 499 499 500 500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 501 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 502 502 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 503 503 ))) 504 504 505 -* RO is for relay. ROx=1 506 -* FIRST: Indicate this is the first packet after join network. 552 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 553 +* FIRST: Indicates that this is the first packet after joining the network. 507 507 * ((( 508 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 509 509 ))) 510 510 511 511 ((( 512 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 513 513 ))) 514 514 515 515 ((( 516 -**To use this mode,pleaserun:**563 +**To activate this mode, run the following AT commands:** 517 517 ))) 518 518 519 519 ((( ... ... @@ -526,7 +526,7 @@ 526 526 ))) 527 527 528 528 ((( 529 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 530 530 ))) 531 531 532 532 ... ... @@ -533,49 +533,46 @@ 533 533 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 534 534 535 535 536 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 537 537 538 -For example, if u serhasconfiguredbelow commands:585 +For example, if you configured the following commands: 539 539 540 540 * **AT+MOD=1 ** **~-~->** The normal working mode 541 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 588 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 542 542 543 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 544 544 545 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type546 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 547 547 548 548 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 549 549 597 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 550 550 551 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 552 - 553 553 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 554 554 555 555 556 556 **Example:** 557 557 558 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)604 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 559 559 560 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)606 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 561 561 562 562 609 +(% style="color:#4f81bd" %)**Trigger based on current**: 563 563 564 -(% style="color:#4f81bd" %)**Trigger base on current**: 565 - 566 566 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 567 567 568 568 569 569 **Example:** 570 570 571 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)616 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 572 572 573 573 619 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 574 574 575 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:621 +DI status triggers Flag. 576 576 577 -DI status trigger Flag. 578 - 579 579 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 580 580 581 581 ... ... @@ -584,39 +584,38 @@ 584 584 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 585 585 586 586 587 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 588 588 589 589 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 590 590 591 591 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 592 592 593 - AA: Code for this downlink Command: 637 + AA: Type Code for this downlink Command: 594 594 595 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 596 596 597 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 598 598 599 - yy2 yy2: AC1 or AV1 highlimit.643 + yy2 yy2: AC1 or AV1 HIGH limit. 600 600 601 - yy3 yy3: AC2 or AV2 lowlimit.645 + yy3 yy3: AC2 or AV2 LOW limit. 602 602 603 - Yy4 yy4: AC2 or AV2 highlimit.647 + Yy4 yy4: AC2 or AV2 HIGH limit. 604 604 605 605 606 -**Example1**: AA 00 13 88 00 00 00 00 00 00 650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 607 607 608 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 609 609 610 610 611 -**Example2**: AA 02 01 00 655 +**Example 2**: AA 02 01 00 612 612 613 -Same as AT+ DTRI =1,0 657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 614 614 615 615 616 - 617 617 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 618 618 619 -MOD6 Payload payload662 +MOD6 Payload: total of 11 bytes 620 620 621 621 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 622 622 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -630,10 +630,10 @@ 630 630 MOD(6) 631 631 ))) 632 632 633 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 634 634 635 635 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 636 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 637 637 |((( 638 638 AV1_LOW 639 639 )))|((( ... ... @@ -652,17 +652,17 @@ 652 652 AC2_HIGH 653 653 ))) 654 654 655 -* Each bit sshows if the corresponding trigger has been configured.698 +* Each bit shows if the corresponding trigger has been configured. 656 656 657 657 **Example:** 658 658 659 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 660 660 661 661 662 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 663 663 664 664 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 665 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 666 666 |((( 667 667 AV1_LOW 668 668 )))|((( ... ... @@ -681,11 +681,11 @@ 681 681 AC2_HIGH 682 682 ))) 683 683 684 -* Each bit sshows which status has been trigger on this uplink.727 +* Each bit shows which status has been triggered on this uplink. 685 685 686 686 **Example:** 687 687 688 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 689 689 690 690 691 691 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -694,7 +694,7 @@ 694 694 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 695 695 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 696 696 697 -* Each bits shows which status has been trigger on this uplink. 740 +* Each bits shows which status has been triggered on this uplink. 698 698 699 699 **Example:** 700 700 ... ... @@ -721,11 +721,11 @@ 721 721 ))) 722 722 723 723 724 -== 3.4 Configure LT via AT or Downlink == 767 +== 3.4 Configure LT via AT Commands or Downlinks == 725 725 726 726 727 727 ((( 728 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks. 729 729 ))) 730 730 731 731 ((( ... ... @@ -740,9 +740,8 @@ 740 740 741 741 === 3.4.1 Common Commands === 742 742 743 - 744 744 ((( 745 -The yshould be available foreachofDraginoSensors, such as:change uplink interval,reset device. For firmware v1.5.4, usercan findwhat common commandsit supports:[[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]787 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]. 746 746 ))) 747 747 748 748 ... ... @@ -750,34 +750,37 @@ 750 750 751 751 ==== 3.4.2.1 Set Transmit Interval ==== 752 752 795 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes. 753 753 754 - Setdeviceuplink interval.797 +* (% style="color:#037691" %)**AT command:** 755 755 756 - *(% style="color:#037691" %)**ATommand:**799 +(% style="color:blue" %)**AT+TDC=N** 757 757 758 - (%style="color:blue"%)**AT+TDC=N**801 +where N is the time in milliseconds. 759 759 803 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 760 760 761 -**Example: **AT+TDC=30000. Means set interval to 30 seconds 762 762 806 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 763 763 764 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):** 765 - 766 766 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 767 767 768 768 769 769 770 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 812 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 771 771 772 772 773 -Set work mode. 815 +Sets the work mode. 774 774 775 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **817 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 776 776 777 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode819 +Where N is the work mode. 778 778 779 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**821 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 780 780 823 + 824 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 825 + 781 781 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 782 782 783 783 ... ... @@ -785,10 +785,12 @@ 785 785 ==== 3.4.2.3 Poll an uplink ==== 786 786 787 787 788 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink833 +Asks the device to send an uplink. 789 789 790 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**835 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 791 791 837 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 838 + 792 792 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 793 793 794 794 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -795,16 +795,16 @@ 795 795 796 796 797 797 798 -==== 3.4.2.4 Enable Trigger Mode ==== 845 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 799 799 800 800 801 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]848 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 802 802 803 803 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 804 804 805 -(% style="color:red" %)**1:** (%%)Enable TriggerMode852 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 806 806 807 -(% style="color:red" %)**0: **(%%)Disable TriggerMode854 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 808 808 809 809 810 810 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -816,7 +816,7 @@ 816 816 ==== 3.4.2.5 Poll trigger settings ==== 817 817 818 818 819 -Poll trigger settings 866 +Polls the trigger settings 820 820 821 821 * (% style="color:#037691" %)**AT Command:** 822 822 ... ... @@ -824,7 +824,7 @@ 824 824 825 825 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 826 826 827 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command874 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 828 828 829 829 830 830 ... ... @@ -831,11 +831,11 @@ 831 831 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 832 832 833 833 834 -Enable Disable DI1/DI2/DI2 as trigger, 881 +Enable or Disable DI1/DI2/DI2 as trigger, 835 835 836 836 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 837 837 838 -**Example:** AT+ DTRI =1,0 885 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 839 839 840 840 841 841 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -867,15 +867,15 @@ 867 867 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 868 868 869 869 870 -Set DI2 trigger. 917 +Sets DI2 trigger. 871 871 872 872 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 873 873 874 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 921 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 875 875 876 876 (% style="color:red" %)**b :** (%%)delay timing. 877 877 878 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 925 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 879 879 880 880 881 881 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -913,7 +913,7 @@ 913 913 ==== 3.4.2.11 Trigger – Set minimum interval ==== 914 914 915 915 916 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.963 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 917 917 918 918 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 919 919 ... ... @@ -1061,7 +1061,7 @@ 1061 1061 ))) 1062 1062 1063 1063 ((( 1064 -00: Close , 01: Open , 11: No action 1111 +00: Closed , 01: Open , 11: No action 1065 1065 1066 1066 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1067 1067 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** ... ... @@ -1183,7 +1183,7 @@ 1183 1183 1184 1184 1185 1185 1186 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1233 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1187 1187 1188 1188 1189 1189 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1304,74 +1304,131 @@ 1304 1304 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1305 1305 1306 1306 1307 -== 3.5 Integrat ewithMydevice==1354 +== 3.5 Integrating with ThingsEye.io == 1308 1308 1356 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1309 1309 1310 - Mydevicesprovidesa humanendlyinterfacetoshow the sensordata,oncewehavedatainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1358 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox === 1311 1311 1312 -((( 1313 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 1314 -))) 1360 +* In **The Things Stack Sandbox**, select your application under **Applications**. 1361 +* Select **MQTT** under **Integrations**. 1362 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one. 1363 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. 1315 1315 1316 -((( 1317 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1365 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1318 1318 1319 - 1320 -))) 1367 +=== 3.5.2 Configuring ThingsEye.io === 1321 1321 1322 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1369 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account. 1370 +* Under the **Integrations center**, click **Integrations**. 1371 +* Click the **Add integration** button (the button with the **+** symbol). 1323 1323 1373 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1324 1324 1325 1325 1326 - [[image:image-20220719110247-2.png||height="388"width="683"]]1376 +On the **Add integration** window, configure the following: 1327 1327 1378 +~1. **Basic settings:** 1328 1328 1329 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1380 +* Select **The Things Stack Community** from the **Integration type** list. 1381 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name. 1382 +* Ensure the following options are turned on. 1383 +** Enable integration 1384 +** Debug mode 1385 +** Allow create devices or assets 1386 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 1330 1330 1331 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1388 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1332 1332 1333 -Search under The things network 1334 1334 1335 - [[image:1653356838789-523.png||height="337"width="740"]]1391 +2. **Uplink data converter:** 1336 1336 1393 +* Click the **Create new** button if it is not selected by default. 1394 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name. 1395 +* Click the **JavaScript** button. 1396 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]]. 1397 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab. 1337 1337 1338 - Afteradded,the sensor data arriveTTN,it will also arrive andshow in Mydevices.1399 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1339 1339 1340 - [[image:image-20220524094909-1.png||height="335"width="729"]]1401 +3.** Downlink data converter (this is an optional step):** 1341 1341 1403 +* Click the **Create new** button if it is not selected by default. 1404 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name 1405 +* Click the **JavaScript** button. 1406 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1407 +* Click the **Next** button. You will be navigated to the **Connection** tab. 1342 1342 1343 -[[image:i mage-20220524094909-2.png||height="337" width="729"]]1409 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1344 1344 1411 +4. **Connection:** 1345 1345 1346 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1413 +* Choose **Region** from the **Host type**. 1414 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...). 1415 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox). 1416 +* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**. 1417 +* Click the **Add** button. 1347 1347 1419 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1348 1348 1349 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %) 1350 1350 1422 +Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again. 1351 1351 1352 -[[image:i mage-20220524094909-5.png||height="341" width="734"]]1424 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1353 1353 1354 1354 1355 - ==3.6 InterfaceDetail==1427 +Viewing integration details: 1356 1356 1429 +Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration. 1430 + 1431 +[add image here] 1432 + 1433 +If you want to edit the settings you have provided, click on the Toggle edit mode button. 1434 + 1435 +[add image here] 1436 + 1437 +Once you have done click on the Apply changes button. 1438 + 1439 +Note: See also ThingsEye documentation. 1440 + 1441 +Click on the Events tab. 1442 + 1443 +- Select Debug from the Event type dropdown. 1444 + 1445 +- Select the time frame from the time window. 1446 + 1447 +[insert image] 1448 + 1449 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message. 1450 + 1451 +[insert image] 1452 + 1453 + 1454 +Deleting the integration: 1455 + 1456 +If you want to delete this integration, click the Delete integration button. 1457 + 1458 + 1459 +== 3.6 Interface Details == 1460 + 1357 1357 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1358 1358 1359 1359 1360 -Support NPN Type sensor1464 +Support NPN-type sensor 1361 1361 1362 1362 [[image:1653356991268-289.png]] 1363 1363 1364 1364 1365 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1469 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1366 1366 1367 1367 1368 1368 ((( 1369 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1473 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1370 1370 ))) 1371 1371 1372 1372 ((( 1373 1373 ((( 1374 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1478 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1375 1375 1376 1376 1377 1377 ))) ... ... @@ -1381,7 +1381,7 @@ 1381 1381 1382 1382 ((( 1383 1383 ((( 1384 - When use need1488 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1385 1385 ))) 1386 1386 ))) 1387 1387 ... ... @@ -1390,22 +1390,22 @@ 1390 1390 ))) 1391 1391 1392 1392 ((( 1393 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1497 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1394 1394 ))) 1395 1395 1396 1396 ((( 1397 -This type of sensor willoutput a low signalGNDwhen active.1501 +This type of sensor outputs a low (GND) signal when active. 1398 1398 ))) 1399 1399 1400 1400 * ((( 1401 -Connect sensor's output to DI1- 1505 +Connect the sensor's output to DI1- 1402 1402 ))) 1403 1403 * ((( 1404 -Connect sensor's VCC to DI1+. 1508 +Connect the sensor's VCC to DI1+. 1405 1405 ))) 1406 1406 1407 1407 ((( 1408 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1512 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1409 1409 ))) 1410 1410 1411 1411 ((( ... ... @@ -1413,7 +1413,7 @@ 1413 1413 ))) 1414 1414 1415 1415 ((( 1416 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1520 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1417 1417 ))) 1418 1418 1419 1419 ((( ... ... @@ -1421,22 +1421,22 @@ 1421 1421 ))) 1422 1422 1423 1423 ((( 1424 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1528 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1425 1425 ))) 1426 1426 1427 1427 ((( 1428 -This type of sensor willoutput a high signal (example24v) when active.1532 +This type of sensor outputs a high signal (e.g., 24V) when active. 1429 1429 ))) 1430 1430 1431 1431 * ((( 1432 -Connect sensor's output to DI1+ 1536 +Connect the sensor's output to DI1+ 1433 1433 ))) 1434 1434 * ((( 1435 -Connect sensor's GND DI1-. 1539 +Connect the sensor's GND DI1-. 1436 1436 ))) 1437 1437 1438 1438 ((( 1439 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1543 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1440 1440 ))) 1441 1441 1442 1442 ((( ... ... @@ -1444,7 +1444,7 @@ 1444 1444 ))) 1445 1445 1446 1446 ((( 1447 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1551 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1448 1448 ))) 1449 1449 1450 1450 ((( ... ... @@ -1452,22 +1452,22 @@ 1452 1452 ))) 1453 1453 1454 1454 ((( 1455 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1559 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1456 1456 ))) 1457 1457 1458 1458 ((( 1459 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1563 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1460 1460 ))) 1461 1461 1462 1462 * ((( 1463 -Connect sensor's output to DI1+ with a serial50K resistor1567 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1464 1464 ))) 1465 1465 * ((( 1466 -Connect sensor's GND DI1-. 1570 +Connect the sensor's GND DI1-. 1467 1467 ))) 1468 1468 1469 1469 ((( 1470 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1574 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1471 1471 ))) 1472 1472 1473 1473 ((( ... ... @@ -1475,37 +1475,37 @@ 1475 1475 ))) 1476 1476 1477 1477 ((( 1478 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1582 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1479 1479 ))) 1480 1480 1481 1481 1482 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1586 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1483 1483 1484 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1588 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1485 1485 1486 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1590 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1487 1487 1488 1488 [[image:image-20230616235145-1.png]] 1489 1489 1490 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colle actor1594 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1491 1491 1492 1492 [[image:image-20240219115718-1.png]] 1493 1493 1494 1494 1495 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1599 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1496 1496 1497 1497 1498 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can applyto output pin is 36v.1602 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1499 1499 1500 -(% style="color:red" %)**Note: DO pins gotofloat when device is power off.**1604 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1501 1501 1502 1502 [[image:1653357531600-905.png]] 1503 1503 1504 1504 1505 -=== 3.6.4 Analog Input Interface === 1609 +=== 3.6.4 Analog Input Interfaces === 1506 1506 1507 1507 1508 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1612 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1509 1509 1510 1510 1511 1511 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1512,14 +1512,14 @@ 1512 1512 1513 1513 [[image:1653357592296-182.png]] 1514 1514 1515 -Example toconnect a 4~~20mA sensor1619 +Example: Connecting a 4~~20mA sensor 1516 1516 1517 -We take the wind speed sensor as an example for reference only.1621 +We will use the wind speed sensor as an example for reference only. 1518 1518 1519 1519 1520 1520 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1521 1521 1522 -(% style="color:red" %)**Red: 12~~24 v**1626 +(% style="color:red" %)**Red: 12~~24V** 1523 1523 1524 1524 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1525 1525 ... ... @@ -1532,7 +1532,7 @@ 1532 1532 [[image:1653357648330-671.png||height="155" width="733"]] 1533 1533 1534 1534 1535 -Example connectedto a regulated power supply to measure voltage1639 +Example: Connecting to a regulated power supply to measure voltage 1536 1536 1537 1537 [[image:image-20230608101532-1.png||height="606" width="447"]] 1538 1538 ... ... @@ -1541,7 +1541,7 @@ 1541 1541 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1542 1542 1543 1543 1544 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1648 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1545 1545 1546 1546 (% style="color:red" %)**Red: 12~~24v** 1547 1547 ... ... @@ -1552,9 +1552,9 @@ 1552 1552 1553 1553 1554 1554 ((( 1555 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1659 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1556 1556 1557 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1661 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1558 1558 ))) 1559 1559 1560 1560 [[image:image-20220524100215-9.png]] ... ... @@ -1582,25 +1582,25 @@ 1582 1582 Transmit a LoRa packet: TX blinks once 1583 1583 ))) 1584 1584 ))) 1585 -|**RX**|RX blinks once when receiv ea packet.1586 -|**DO1**|For LT-22222-L: ON when DO1 is low, LOWwhen DO1 is high1587 -|**DO2**|For LT-22222-L: ON when DO2 is low, LOWwhen DO2 is high1689 +|**RX**|RX blinks once when receiving a packet. 1690 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1691 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1588 1588 |**DI1**|((( 1589 -For LT-22222-L: ON when DI1 is high, LOWwhen DI1 is low1693 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1590 1590 ))) 1591 1591 |**DI2**|((( 1592 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1696 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1593 1593 ))) 1594 -|**RO1**|For LT-22222-L: ON when RO1 is closed, LOWwhen RO1 is open1595 -|**RO2**|For LT-22222-L: ON when RO2 is closed, LOWwhen RO2 is open1698 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1699 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1596 1596 1597 -= 4. Us eAT Command =1701 += 4. Using AT Command = 1598 1598 1599 -== 4.1 AccessATCommand==1703 +== 4.1 Connecting the LT-22222-L to a computer == 1600 1600 1601 1601 1602 1602 ((( 1603 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1707 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1604 1604 ))) 1605 1605 1606 1606 [[image:1653358238933-385.png]] ... ... @@ -1607,7 +1607,7 @@ 1607 1607 1608 1608 1609 1609 ((( 1610 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1714 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1611 1611 ))) 1612 1612 1613 1613 [[image:1653358355238-883.png]] ... ... @@ -1614,10 +1614,12 @@ 1614 1614 1615 1615 1616 1616 ((( 1617 - More detailAT Commandmanual can be found at1721 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1618 1618 ))) 1619 1619 1620 1620 ((( 1725 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1726 + 1621 1621 AT+<CMD>? : Help on <CMD> 1622 1622 ))) 1623 1623 ... ... @@ -1942,10 +1942,10 @@ 1942 1942 1943 1943 = 5. Case Study = 1944 1944 1945 -== 5.1 Counting how many objects pass inFlow Line ==2051 +== 5.1 Counting how many objects pass through the flow Line == 1946 1946 1947 1947 1948 -Reference Link: [[How to set up to count objects pass 2054 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 1949 1949 1950 1950 1951 1951 = 6. FAQ = ... ... @@ -1953,26 +1953,26 @@ 1953 1953 == 6.1 How to upgrade the image? == 1954 1954 1955 1955 1956 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2062 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 1957 1957 1958 -* Support new features 1959 -* F orbugfix2064 +* Support new features. 2065 +* Fix bugs. 1960 1960 * Change LoRaWAN bands. 1961 1961 1962 -Below s howsthe hardware connection forhow toupload an image to the LT:2068 +Below is the hardware connection setup for uploading an image to the LT: 1963 1963 1964 1964 [[image:1653359603330-121.png]] 1965 1965 1966 1966 1967 1967 ((( 1968 -(% style="color: blue" %)**Step1**(%%)**:** Download [[flashloader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].1969 -(% style="color: blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].1970 -(% style="color: blue" %)**Step3**(%%)**:** Openflashloader;choose the correct COM port to update.2074 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2075 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2076 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 1971 1971 1972 1972 1973 1973 ((( 1974 1974 (% style="color:blue" %)**For LT-22222-L**(%%): 1975 -Hold down the PRO button andthen momentarily press the RST reset buttonand the (% style="color:red" %)**DO1led**(%%)on, itmeans the device is in download mode.2081 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode. 1976 1976 ))) 1977 1977 1978 1978 ... ... @@ -1987,7 +1987,7 @@ 1987 1987 [[image:image-20220524104033-15.png]] 1988 1988 1989 1989 1990 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2096 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 1991 1991 1992 1992 [[image:1653360054704-518.png||height="186" width="745"]] 1993 1993 ... ... @@ -2001,13 +2001,13 @@ 2001 2001 ))) 2002 2002 2003 2003 ((( 2004 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2110 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2005 2005 ))) 2006 2006 2007 2007 ((( 2008 2008 2009 2009 2010 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2116 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2011 2011 2012 2012 2013 2013 ))) ... ... @@ -2014,13 +2014,13 @@ 2014 2014 2015 2015 ((( 2016 2016 ((( 2017 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2123 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2018 2018 ))) 2019 2019 ))) 2020 2020 2021 2021 ((( 2022 2022 ((( 2023 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2129 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2024 2024 2025 2025 2026 2026 ))) ... ... @@ -2027,7 +2027,7 @@ 2027 2027 ))) 2028 2028 2029 2029 ((( 2030 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2136 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2031 2031 2032 2032 2033 2033 ))) ... ... @@ -2084,7 +2084,7 @@ 2084 2084 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2085 2085 2086 2086 2087 -== 6.5 Can I see counting event in Serial? == 2193 +== 6.5 Can I see the counting event in Serial? == 2088 2088 2089 2089 2090 2090 ((( ... ... @@ -2091,10 +2091,10 @@ 2091 2091 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2092 2092 2093 2093 2094 -== 6.6 Can iuse pointforLT-22222-L? ==2200 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2095 2095 2096 2096 2097 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2203 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2098 2098 2099 2099 2100 2100 )))
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content