<
From version < 137.1 >
edited by Mengting Qiu
on 2024/09/12 08:51
To version < 161.1 >
edited by Dilisi S
on 2024/11/04 17:36
>
Change comment: edited 3.6.2

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.pradeeka
Content
... ... @@ -19,36 +19,30 @@
19 19  
20 20  = 1.Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 -(((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
47 47  
48 48  (((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
50 50  
51 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
52 52  )))
53 53  
54 54  (((
... ... @@ -134,85 +134,140 @@
134 134  * 1 x Counting Port
135 135  )))
136 136  
137 -= 2. Power ON Device =
131 += 2. Assembling the Device =
138 138  
139 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
133 +== 2.1 What is included in the package? ==
140 140  
141 -PWR will on when device is properly powered.
135 +The package includes the following items:
142 142  
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
141 +
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
143 +
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
143 143  [[image:1653297104069-180.png]]
144 144  
145 145  
146 146  = 3. Operation Mode =
147 147  
148 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
149 149  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
150 150  
151 -(((
152 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
153 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
154 154  
155 -(((
156 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
157 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
158 158  
190 +== 3.2 Registering with a LoRaWAN network server ==
159 159  
160 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
161 161  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
162 162  
163 -(((
164 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
165 165  
166 -
167 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
168 168  
169 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
170 170  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
171 171  
172 -(((
173 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
174 174  
175 -
176 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
177 177  
178 -(((
179 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
180 -)))
210 +==== Using the LoRaWAN Device Repository: ====
181 181  
182 -(((
183 -Each LT is shipped with a sticker with the default device EUI as below:
184 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
185 185  
186 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
187 187  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
188 188  
189 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
190 190  
191 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
192 192  
193 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
194 194  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
195 195  
196 -**Add APP KEY and DEV EUI**
197 197  
198 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
199 199  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
200 200  
201 -(((
202 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
203 203  
204 -
205 -)))
252 +==== Joining ====
206 206  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
207 207  [[image:1653298044601-602.png||height="405" width="709"]]
208 208  
209 209  
210 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
211 211  
212 212  
213 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
214 214  
215 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
216 216  
217 217  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
218 218  
... ... @@ -228,7 +228,7 @@
228 228  
229 229  
230 230  (((
231 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
232 232  
233 233  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
234 234  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -246,23 +246,23 @@
246 246  )))
247 247  
248 248  (((
249 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
250 250  
251 251  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
252 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
253 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
254 254  )))
255 255  
256 -* RO is for relay. ROx=1 : close, ROx=0 always open.
257 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
258 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
259 259  
260 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
261 261  
262 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
263 263  
264 264  
265 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
266 266  
267 267  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
268 268  
... ... @@ -272,35 +272,35 @@
272 272  
273 273  ACI2 channel current is 0x1300/1000=4.864mA
274 274  
275 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
276 276  
277 -* [1] RO1 relay channel is close and the RO1 LED is ON.
278 -* [0] RO2 relay channel is open and RO2 LED is OFF;
279 -
280 -**LT22222-L:**
281 -
282 -* [1] DI2 channel is high input and DI2 LED is ON;
283 -* [0] DI1 channel is low input;
284 -
285 -* [0] DO3 channel output state
286 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
287 287  ** DO3 is high in case there is load between DO3 and V+.
288 -** DO3 LED is off in both case
289 -* [1] DO2 channel output is low and DO2 LED is ON.
290 -* [0] DO1 channel output state
291 -** DO1 is float in case no load between DO1 and V+.;
292 -** DO1 is high in case there is load between DO1 and V+.
293 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
294 294  
295 295  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
296 296  
297 297  
298 298  (((
299 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
300 300  )))
301 301  
302 302  (((
303 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
304 304  
305 305  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
306 306  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -310,26 +310,26 @@
310 310  )))
311 311  
312 312  (((
313 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
314 314  
315 315  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
316 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
317 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
318 318  
319 -RO is for relay. ROx=1 : close , ROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
320 320  )))
321 321  
322 -* FIRST: Indicate this is the first packet after join network.
323 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
324 324  
325 325  (((
326 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
327 327  
328 328  
329 329  )))
330 330  
331 331  (((
332 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
333 333  )))
334 334  
335 335  (((
... ... @@ -350,17 +350,17 @@
350 350  (((
351 351  **For LT22222-L:**
352 352  
353 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
354 354  
355 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
356 356  
357 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
358 358  
359 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
360 360  
361 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
362 362  
363 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
364 364  )))
365 365  
366 366  
... ... @@ -367,7 +367,7 @@
367 367  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
368 368  
369 369  
370 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
371 371  
372 372  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
373 373  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -378,16 +378,16 @@
378 378  )))|DIDORO*|Reserve|MOD
379 379  
380 380  (((
381 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
382 382  
383 383  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
384 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
385 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
386 386  )))
387 387  
388 -* RO is for relay. ROx=1 : close, ROx=0 always open.
389 -* FIRST: Indicate this is the first packet after join network.
390 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
391 391  
392 392  (((
393 393  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -395,7 +395,7 @@
395 395  
396 396  
397 397  (((
398 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
399 399  )))
400 400  
401 401  (((
... ... @@ -408,7 +408,9 @@
408 408  )))
409 409  
410 410  (((
411 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
412 412  )))
413 413  
414 414  
... ... @@ -416,11 +416,11 @@
416 416  
417 417  
418 418  (((
419 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
420 420  )))
421 421  
422 422  (((
423 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
424 424  
425 425  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
426 426  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -430,16 +430,16 @@
430 430  )))
431 431  
432 432  (((
433 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
434 434  
435 435  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
436 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
437 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
438 438  )))
439 439  
440 -* RO is for relay. ROx=1 : close, ROx=0 always open.
441 -* FIRST: Indicate this is the first packet after join network.
442 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
443 443  
444 444  (((
445 445  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -448,7 +448,7 @@
448 448  )))
449 449  
450 450  (((
451 -**To use this mode, please run:**
502 +**To activate this mode, please run the following AT command:**
452 452  )))
453 453  
454 454  (((
... ... @@ -465,9 +465,9 @@
465 465  )))
466 466  
467 467  (((
468 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
471 471  
472 472  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
473 473  
... ... @@ -1304,56 +1304,73 @@
1304 1304  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1305 1305  
1306 1306  
1307 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1308 1308  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1309 1309  
1310 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1311 1311  
1312 -(((
1313 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1314 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1315 1315  
1316 -(((
1317 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1318 1318  
1319 -
1320 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1321 1321  
1322 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1323 1323  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1324 1324  
1325 1325  
1326 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1327 1327  
1381 +Basic settings:
1328 1328  
1329 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1330 1330  
1331 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1332 1332  
1333 -Search under The things network
1389 +Uplink Data converter:
1334 1334  
1335 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1336 1336  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1337 1337  
1338 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398 +Downlink Data converter (this is an optional step):
1339 1339  
1340 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1341 1341  
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1342 1342  
1343 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1407 +Connection:
1344 1344  
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1345 1345  
1346 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1347 1347  
1348 1348  
1349 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1350 1350  
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1351 1351  
1352 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1353 1353  
1423 +== 3.6 Interface Details ==
1354 1354  
1355 -== 3.6 Interface Detail ==
1356 -
1357 1357  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1358 1358  
1359 1359  
... ... @@ -1366,12 +1366,12 @@
1366 1366  
1367 1367  
1368 1368  (((
1369 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1370 1370  )))
1371 1371  
1372 1372  (((
1373 1373  (((
1374 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1375 1375  
1376 1376  
1377 1377  )))
... ... @@ -1381,7 +1381,7 @@
1381 1381  
1382 1382  (((
1383 1383  (((
1384 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1385 1385  )))
1386 1386  )))
1387 1387  
... ... @@ -1390,22 +1390,22 @@
1390 1390  )))
1391 1391  
1392 1392  (((
1393 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1394 1394  )))
1395 1395  
1396 1396  (((
1397 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1398 1398  )))
1399 1399  
1400 1400  * (((
1401 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1402 1402  )))
1403 1403  * (((
1404 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1405 1405  )))
1406 1406  
1407 1407  (((
1408 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1409 1409  )))
1410 1410  
1411 1411  (((
... ... @@ -1413,7 +1413,7 @@
1413 1413  )))
1414 1414  
1415 1415  (((
1416 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1417 1417  )))
1418 1418  
1419 1419  (((
... ... @@ -1421,22 +1421,22 @@
1421 1421  )))
1422 1422  
1423 1423  (((
1424 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1425 1425  )))
1426 1426  
1427 1427  (((
1428 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1429 1429  )))
1430 1430  
1431 1431  * (((
1432 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1433 1433  )))
1434 1434  * (((
1435 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1436 1436  )))
1437 1437  
1438 1438  (((
1439 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1440 1440  )))
1441 1441  
1442 1442  (((
... ... @@ -1444,7 +1444,7 @@
1444 1444  )))
1445 1445  
1446 1446  (((
1447 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1448 1448  )))
1449 1449  
1450 1450  (((
... ... @@ -1452,22 +1452,22 @@
1452 1452  )))
1453 1453  
1454 1454  (((
1455 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1456 1456  )))
1457 1457  
1458 1458  (((
1459 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1460 1460  )))
1461 1461  
1462 1462  * (((
1463 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1464 1464  )))
1465 1465  * (((
1466 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1467 1467  )))
1468 1468  
1469 1469  (((
1470 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1471 1471  )))
1472 1472  
1473 1473  (((
... ... @@ -1475,19 +1475,19 @@
1475 1475  )))
1476 1476  
1477 1477  (((
1478 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1479 1479  )))
1480 1480  
1481 1481  
1482 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1483 1483  
1484 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1485 1485  
1486 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1487 1487  
1488 1488  [[image:image-20230616235145-1.png]]
1489 1489  
1490 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1491 1491  
1492 1492  [[image:image-20240219115718-1.png]]
1493 1493  
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0