Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
From version 133.1
edited by Edwin Chen
on 2024/05/08 22:27
on 2024/05/08 22:27
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- integration-details.png
- lt-22222-device-overview.png
- lt-22222-join-network.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- lt-22222-ul-payload-decoded.png
- lt-22222-ul-payload-fmt.png
- message-1.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- thingseye.io_integrationsCenter_integrations-2.png
- thingseye.io_integrationsCenter_integrations.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.pradeeka - Content
-
... ... @@ -17,38 +17,30 @@ 17 17 18 18 19 19 20 -= 1.Introduction = 20 += 1. Introduction = 21 21 22 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 23 23 24 24 ((( 25 - 26 - 27 27 ((( 28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 29 -))) 30 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 31 31 32 -((( 33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 34 34 ))) 35 - 36 -((( 37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 38 38 ))) 39 39 40 40 ((( 41 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 42 42 ))) 43 43 44 44 ((( 45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 46 -))) 37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 47 47 48 -((( 49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless. 39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 41 +* Setup your own private LoRaWAN network. 50 50 51 - 43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 52 52 ))) 53 53 54 54 ((( ... ... @@ -64,115 +64,57 @@ 64 64 * STM32L072xxxx MCU 65 65 * SX1276/78 Wireless Chip 66 66 * Power Consumption: 59 +** Idle: 4mA@12v 60 +** 20dB Transmit: 34mA@12V 61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 67 67 68 -* Idle: 4mA@12v 69 -* 20dB Transmit: [[34mA@12v>>mailto:34mA@12v]] 70 - 71 - 72 72 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 73 73 74 74 * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 75 -* 2 x Digital Output (NPN output. Max pull 66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 76 76 * 2 x Relay Output (5A@250VAC / 30VDC) 77 77 * 2 x 0~~20mA Analog Input (res:0.01mA) 78 -* 2 x 0~~30V Analog Input (res:0.01 v)69 +* 2 x 0~~30V Analog Input (res:0.01V) 79 79 * Power Input 7~~ 24V DC. 80 80 81 - 82 82 (% style="color:#037691" %)**LoRa Spec:** 83 83 74 +* Frequency Range: 75 +** Band 1 (HF): 862 ~~ 1020 Mhz 76 +** Band 2 (LF): 410 ~~ 528 Mhz 77 +* 168 dB maximum link budget. 78 +* +20 dBm - 100 mW constant RF output vs. 79 +* +14 dBm high-efficiency PA. 80 +* Programmable bit rate up to 300 kbps. 81 +* High sensitivity: down to -148 dBm. 82 +* Bullet-proof front end: IIP3 = -12.5 dBm. 83 +* Excellent blocking immunity. 84 +* Low RX current of 10.3 mA, 200 nA register retention. 85 +* Fully integrated synthesizer with a resolution of 61 Hz. 86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 87 +* Built-in bit synchronizer for clock recovery. 88 +* Preamble detection. 89 +* 127 dB Dynamic Range RSSI. 90 +* Automatic RF Sense and CAD with ultra-fast AFC. 91 +* Packet engine up to 256 bytes with CRC. 84 84 85 -* ((( 86 -((( 87 -Frequency Range: 88 -))) 89 - 90 -* ((( 91 -Band 1 (HF): 862 ~~ 1020 Mhz 92 -))) 93 -* ((( 94 -Band 2 (LF): 410 ~~ 528 Mhz 95 -))) 96 -))) 97 -* ((( 98 -168 dB maximum link budget. 99 -))) 100 -* ((( 101 -+20 dBm - 100 mW constant RF output vs. 102 -))) 103 -* ((( 104 -+14 dBm high efficiency PA. 105 -))) 106 -* ((( 107 -Programmable bit rate up to 300 kbps. 108 -))) 109 -* ((( 110 -High sensitivity: down to -148 dBm. 111 -))) 112 -* ((( 113 -Bullet-proof front end: IIP3 = -12.5 dBm. 114 -))) 115 -* ((( 116 -Excellent blocking immunity. 117 -))) 118 -* ((( 119 -Low RX current of 10.3 mA, 200 nA register retention. 120 -))) 121 -* ((( 122 -Fully integrated synthesizer with a resolution of 61 Hz. 123 -))) 124 -* ((( 125 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 126 -))) 127 -* ((( 128 -Built-in bit synchronizer for clock recovery. 129 -))) 130 -* ((( 131 -Preamble detection. 132 -))) 133 -* ((( 134 -127 dB Dynamic Range RSSI. 135 -))) 136 -* ((( 137 -Automatic RF Sense and CAD with ultra-fast AFC. 138 -))) 139 -* ((( 140 -Packet engine up to 256 bytes with CRC. 141 - 142 - 143 - 144 -))) 145 - 146 146 == 1.3 Features == 147 147 148 - 149 149 * LoRaWAN Class A & Class C protocol 150 - 151 151 * Optional Customized LoRa Protocol 152 - 153 153 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 154 - 155 155 * AT Commands to change parameters 156 - 157 -* Remote configure parameters via LoRa Downlink 158 - 99 +* Remotely configure parameters via LoRaWAN Downlink 159 159 * Firmware upgradable via program port 160 - 161 161 * Counting 162 162 163 163 == 1.4 Applications == 164 164 165 - 166 166 * Smart Buildings & Home Automation 167 - 168 168 * Logistics and Supply Chain Management 169 - 170 170 * Smart Metering 171 - 172 172 * Smart Agriculture 173 - 174 174 * Smart Cities 175 - 176 176 * Smart Factory 177 177 178 178 == 1.5 Hardware Variants == ... ... @@ -192,93 +192,169 @@ 192 192 * 1 x Counting Port 193 193 ))) 194 194 195 -= 2. PowerONDevice =129 += 2. Assembling the Device = 196 196 131 +== 2.1 What is included in the package? == 197 197 198 -((( 199 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 200 -))) 133 +The package includes the following items: 201 201 202 -((( 203 -PWR will on when device is properly powered. 135 +* 1 x LT-22222-L I/O Controller 136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 137 +* 1 x bracket for DIN rail mounting 138 +* 1 x programming cable 204 204 205 - 206 -))) 140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 207 207 142 +== 2.2 Terminals == 143 + 144 +Upper screw terminal block (from left to right): 145 + 146 +(% style="width:634px" %) 147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 154 + 155 +Lower screw terminal block (from left to right): 156 + 157 +(% style="width:633px" %) 158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 169 + 170 +== 2.3 Powering the LT-22222-L == 171 + 172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 173 + 174 + 208 208 [[image:1653297104069-180.png]] 209 209 210 210 211 211 = 3. Operation Mode = 212 212 213 -== 3.1 How it work s? ==180 +== 3.1 How does it work? == 214 214 182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 215 215 216 -((( 217 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 218 -))) 184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status. 219 219 220 -((( 221 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 222 -))) 186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 223 223 188 +== 3.2 Registering with a LoRaWAN network server == 224 224 225 - ==3.2Exampletojoin LoRaWAN network==190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network. 226 226 192 +[[image:image-20220523172350-1.png||height="266" width="864"]] 227 227 228 -((( 229 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 194 +=== 3.2.1 Prerequisites === 230 230 231 - 232 -))) 196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 233 233 234 -[[image:image-202 20523172350-1.png||height="266" width="864"]]198 +[[image:image-20230425173427-2.png||height="246" width="530"]] 235 235 200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 236 236 237 -((( 238 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 202 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 239 239 240 - 241 -))) 204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 205 +* Create an application if you do not have one yet. 206 +* Register LT-22222-L with that application. Two registration options are available: 242 242 243 -((( 244 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 245 -))) 208 +==== ==== 246 246 247 -((( 248 -Each LT is shipped with a sticker with the default device EUI as below: 249 -))) 210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ==== 250 250 251 -[[image:image-20230425173427-2.png||height="246" width="530"]] 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 252 252 218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 253 253 254 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot: 255 255 256 -**Add APP EUI in the application.** 221 +* Page continued... 222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 223 +** Enter the **DevEUI** in the **DevEUI** field. 224 +** Enter the **AppKey** in the **AppKey** field. 225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 226 +** Under **After registration**, select the **View registered end device** option. 257 257 258 -[[image: 1653297955910-247.png||height="321" width="716"]]228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 259 259 230 +==== ==== 260 260 261 - **AddAPPKEYandDEVEUI**232 +==== 3.2.2.2 Entering device information manually ==== 262 262 263 -[[image:1653298023685-319.png]] 234 +* On the **Register end device** page: 235 +** Select the **Enter end device specifies manually** option as the input method. 236 +** Select the **Frequency plan** that matches your device. 237 +** Select the **LoRaWAN version**. 238 +** Select the **Regional Parameters version**. 239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 240 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 264 264 243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 265 265 266 -((( 267 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 268 268 269 - 270 -))) 246 +* Page continued... 247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 248 +** Enter **DevEUI** in the **DevEUI** field. 249 +** Enter **AppKey** in the **AppKey** field. 250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 251 +** Under **After registration**, select the **View registered end device** option. 252 +** Click the **Register end device** button. 271 271 272 -[[image: 1653298044601-602.png||height="405" width="709"]]254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 273 273 274 274 275 - ==3.3 UplinkPayload==257 +You will be navigated to the **Device overview** page. 276 276 277 277 278 - There are five workingmodes + oneinterrupt modeon LT fordifferent typeapplication:260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]] 279 279 280 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO 281 281 263 +==== 3.2.2.3 Joining ==== 264 + 265 +Click on **Live data** in the left navigation. The Live data panel for your application will display. 266 + 267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). 268 + 269 + 270 +[[image:lt-22222-join-network.png||height="625" width="1000"]] 271 + 272 + 273 +By default, you will receive an uplink data message every 10 minutes. 274 + 275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object. 276 + 277 +[[image:lt-22222-ul-payload-decoded.png]] 278 + 279 + 280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes. 281 + 282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]] 283 + 284 + 285 +== 3.3 Work Modes and their Uplink Payload formats == 286 + 287 + 288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 289 + 290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO 291 + 282 282 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 283 283 284 284 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO ... ... @@ -289,12 +289,15 @@ 289 289 290 290 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5 291 291 302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes. 303 + 292 292 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === 293 293 294 - 295 295 ((( 296 -Th e uplink payload includestotally 9 bytes. Uplink packetsuse FPORT=2 and every 10 minutessendoneuplink by default. (%style="display:none" %)307 +This is the default mode. 297 297 309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %) 310 + 298 298 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 299 299 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 300 300 |Value|((( ... ... @@ -305,29 +305,29 @@ 305 305 ACI1 Current 306 306 )))|((( 307 307 ACI2 Current 308 -)))|DIDORO*|((( 321 +)))|**DIDORO***|((( 309 309 Reserve 310 310 )))|MOD 311 311 ))) 312 312 313 313 ((( 314 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below. 315 315 316 316 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 317 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 318 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 319 319 ))) 320 320 321 -* RO is for relay. ROx=1 close, ROx=0 alwaysopen.322 -* DI is for digital input. DIx=1: highorfloat, DIx=0:low.323 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW. 336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 324 324 325 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 326 326 327 -For example if payload is: [[image:image-20220523175847-2.png]] 340 +For example, if the payload is: [[image:image-20220523175847-2.png]] 328 328 329 329 330 -**The value fortheinterfaceis: **343 +**The interface values can be calculated as follows: ** 331 331 332 332 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 333 333 ... ... @@ -337,35 +337,32 @@ 337 337 338 338 ACI2 channel current is 0x1300/1000=4.864mA 339 339 340 -The last byte 0xAA= 10101010( B) means353 +The last byte 0xAA= **10101010**(b) means, 341 341 342 -* [1] RO1 relay channel is close and the RO1 LED is ON. 343 -* [0] RO2 relay channel is open and RO2 LED is OFF; 355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 357 +* **[1] DI3 - not used for LT-22222-L.** 358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 359 +* [1] DI1 channel input state: 360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 362 +** DI1 LED is ON in both cases. 363 +* **[0] DO3 - not used for LT-22222-L.** 364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 365 +* [0] DO1 channel output state: 366 +** DO1 is FLOATING when there is no load between DO1 and V+. 367 +** DO1 is HIGH when there is a load between DO1 and V+. 368 +** DO1 LED is OFF in both cases. 344 344 345 -**LT22222-L:** 346 - 347 -* [1] DI2 channel is high input and DI2 LED is ON; 348 -* [0] DI1 channel is low input; 349 - 350 -* [0] DO3 channel output state 351 -** DO3 is float in case no load between DO3 and V+.; 352 -** DO3 is high in case there is load between DO3 and V+. 353 -** DO3 LED is off in both case 354 -* [1] DO2 channel output is low and DO2 LED is ON. 355 -* [0] DO1 channel output state 356 -** DO1 is float in case no load between DO1 and V+.; 357 -** DO1 is high in case there is load between DO1 and V+. 358 -** DO1 LED is off in both case 359 - 360 360 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 361 361 362 362 363 363 ((( 364 -**For LT-22222-L**: this mode the**DI1 and DI2** are used as counting pins.374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins. 365 365 ))) 366 366 367 367 ((( 368 -T otal:11 bytespayload378 +The uplink payload is 11 bytes long. 369 369 370 370 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 371 371 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -375,26 +375,26 @@ 375 375 ))) 376 376 377 377 ((( 378 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below. 379 379 380 380 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 381 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 382 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 383 383 384 -RO is for relay. ROx=1 close, ROx=0 alwaysopen.394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN. 385 385 ))) 386 386 387 -* FIRST: Indicate this is the first packet after join network. 388 -* DO is for reverse digital output. DOx=1: output low, DOx=0:highorfloat.397 +* FIRST: Indicates that this is the first packet after joining the network. 398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING. 389 389 390 390 ((( 391 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 392 392 393 393 394 394 ))) 395 395 396 396 ((( 397 -**To usecountingmode,pleaserun:**407 +**To activate this mode, run the following AT commands:** 398 398 ))) 399 399 400 400 ((( ... ... @@ -415,17 +415,17 @@ 415 415 ((( 416 416 **For LT22222-L:** 417 417 418 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 419 419 420 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 421 421 422 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 423 423 424 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 425 425 426 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 427 427 428 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 429 429 ))) 430 430 431 431 ... ... @@ -432,7 +432,7 @@ 432 432 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 433 433 434 434 435 -**LT22222-L**: This mode the DI1 is used as a counting pin.445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 436 436 437 437 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 438 438 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -443,24 +443,24 @@ 443 443 )))|DIDORO*|Reserve|MOD 444 444 445 445 ((( 446 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 447 447 448 448 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 449 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 450 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 451 451 ))) 452 452 453 -* RO is for relay. ROx=1 454 -* FIRST: Indicate this is the first packet after join network. 455 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 463 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 464 +* FIRST: Indicates that this is the first packet after joining the network. 465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 456 456 457 457 ((( 458 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 459 459 ))) 460 460 461 461 462 462 ((( 463 -**To usecountingmode,pleaserun:**473 +**To activate this mode, run the following AT commands:** 464 464 ))) 465 465 466 466 ((( ... ... @@ -473,7 +473,9 @@ 473 473 ))) 474 474 475 475 ((( 476 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 486 +AT Commands for counting: 487 + 488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 477 477 ))) 478 478 479 479 ... ... @@ -481,11 +481,11 @@ 481 481 482 482 483 483 ((( 484 -**LT22222-L**: This mode the DI1 is used as a counting pin.496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 485 485 ))) 486 486 487 487 ((( 488 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 489 489 490 490 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 491 491 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -495,25 +495,25 @@ 495 495 ))) 496 496 497 497 ((( 498 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 499 499 500 500 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 501 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 502 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 503 503 ))) 504 504 505 -* RO is for relay. ROx=1 506 -* FIRST: Indicate this is the first packet after join network. 507 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 517 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 518 +* FIRST: Indicates that this is the first packet after joining the network. 519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 508 508 509 509 ((( 510 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 511 511 512 512 513 513 ))) 514 514 515 515 ((( 516 -**To use this mode,pleaserun:**528 +**To activate this mode, run the following AT commands:** 517 517 ))) 518 518 519 519 ((( ... ... @@ -526,19 +526,19 @@ 526 526 ))) 527 527 528 528 ((( 529 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 530 530 ))) 531 531 532 532 ((( 533 -** Plusbelow command for AVI1 Counting:**545 +**In addition to that, below are the commands for AVI1 Counting:** 534 534 535 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 536 536 537 537 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 538 538 539 539 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 540 540 541 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 542 542 ))) 543 543 544 544 ... ... @@ -545,7 +545,7 @@ 545 545 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 546 546 547 547 548 -**LT22222-L**: This mode the DI1 is used as a counting pin.560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 549 549 550 550 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 551 551 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -560,25 +560,25 @@ 560 560 )))|MOD 561 561 562 562 ((( 563 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 564 564 565 565 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 566 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 567 567 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 568 568 ))) 569 569 570 -* RO is for relay. ROx=1 571 -* FIRST: Indicate this is the first packet after join network. 582 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 583 +* FIRST: Indicates that this is the first packet after joining the network. 572 572 * ((( 573 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 574 574 ))) 575 575 576 576 ((( 577 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 578 578 ))) 579 579 580 580 ((( 581 -**To use this mode,pleaserun:**593 +**To activate this mode, run the following AT commands:** 582 582 ))) 583 583 584 584 ((( ... ... @@ -591,7 +591,7 @@ 591 591 ))) 592 592 593 593 ((( 594 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 595 595 ))) 596 596 597 597 ... ... @@ -598,49 +598,46 @@ 598 598 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 599 599 600 600 601 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 602 602 603 -For example, if u serhasconfiguredbelow commands:615 +For example, if you configured the following commands: 604 604 605 605 * **AT+MOD=1 ** **~-~->** The normal working mode 606 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 618 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 607 607 608 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 609 609 610 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type611 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 612 612 613 613 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 614 614 627 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 615 615 616 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 617 - 618 618 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 619 619 620 620 621 621 **Example:** 622 622 623 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)634 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 624 624 625 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)636 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 626 626 627 627 639 +(% style="color:#4f81bd" %)**Trigger based on current**: 628 628 629 -(% style="color:#4f81bd" %)**Trigger base on current**: 630 - 631 631 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 632 632 633 633 634 634 **Example:** 635 635 636 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)646 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 637 637 638 638 649 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 639 639 640 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:651 +DI status triggers Flag. 641 641 642 -DI status trigger Flag. 643 - 644 644 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 645 645 646 646 ... ... @@ -649,39 +649,38 @@ 649 649 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 650 650 651 651 652 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 653 653 654 654 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 655 655 656 656 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 657 657 658 - AA: Code for this downlink Command: 667 + AA: Type Code for this downlink Command: 659 659 660 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 661 661 662 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 663 663 664 - yy2 yy2: AC1 or AV1 highlimit.673 + yy2 yy2: AC1 or AV1 HIGH limit. 665 665 666 - yy3 yy3: AC2 or AV2 lowlimit.675 + yy3 yy3: AC2 or AV2 LOW limit. 667 667 668 - Yy4 yy4: AC2 or AV2 highlimit.677 + Yy4 yy4: AC2 or AV2 HIGH limit. 669 669 670 670 671 -**Example1**: AA 00 13 88 00 00 00 00 00 00 680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 672 672 673 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 674 674 675 675 676 -**Example2**: AA 02 01 00 685 +**Example 2**: AA 02 01 00 677 677 678 -Same as AT+ DTRI =1,0 687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 679 679 680 680 681 - 682 682 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 683 683 684 -MOD6 Payload payload692 +MOD6 Payload: total of 11 bytes 685 685 686 686 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 687 687 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -695,10 +695,10 @@ 695 695 MOD(6) 696 696 ))) 697 697 698 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 699 699 700 700 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 701 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 702 702 |((( 703 703 AV1_LOW 704 704 )))|((( ... ... @@ -717,17 +717,17 @@ 717 717 AC2_HIGH 718 718 ))) 719 719 720 -* Each bit sshows if the corresponding trigger has been configured.728 +* Each bit shows if the corresponding trigger has been configured. 721 721 722 722 **Example:** 723 723 724 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 725 725 726 726 727 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 728 728 729 729 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 730 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 731 731 |((( 732 732 AV1_LOW 733 733 )))|((( ... ... @@ -746,11 +746,11 @@ 746 746 AC2_HIGH 747 747 ))) 748 748 749 -* Each bit sshows which status has been trigger on this uplink.757 +* Each bit shows which status has been triggered on this uplink. 750 750 751 751 **Example:** 752 752 753 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 754 754 755 755 756 756 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -759,7 +759,7 @@ 759 759 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 760 760 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 761 761 762 -* Each bits shows which status has been trigger on this uplink. 770 +* Each bits shows which status has been triggered on this uplink. 763 763 764 764 **Example:** 765 765 ... ... @@ -786,11 +786,11 @@ 786 786 ))) 787 787 788 788 789 -== 3.4 Configure LT via AT or Downlink == 797 +== 3.4 Configure LT via AT Commands or Downlinks == 790 790 791 791 792 792 ((( 793 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks. 794 794 ))) 795 795 796 796 ((( ... ... @@ -805,9 +805,8 @@ 805 805 806 806 === 3.4.1 Common Commands === 807 807 808 - 809 809 ((( 810 -The yshould be available foreachofDraginoSensors, such as:change uplink interval,reset device. For firmware v1.5.4, usercan findwhat common commandsit supports:[[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]. 811 811 ))) 812 812 813 813 ... ... @@ -815,34 +815,37 @@ 815 815 816 816 ==== 3.4.2.1 Set Transmit Interval ==== 817 817 825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes. 818 818 819 - Setdeviceuplink interval.827 +* (% style="color:#037691" %)**AT command:** 820 820 821 - *(% style="color:#037691" %)**ATommand:**829 +(% style="color:blue" %)**AT+TDC=N** 822 822 823 - (%style="color:blue"%)**AT+TDC=N**831 +where N is the time in milliseconds. 824 824 833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 825 825 826 -**Example: **AT+TDC=30000. Means set interval to 30 seconds 827 827 836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 828 828 829 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):** 830 - 831 831 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 832 832 833 833 834 834 835 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 836 836 837 837 838 -Set work mode. 845 +Sets the work mode. 839 839 840 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 841 841 842 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode849 +Where N is the work mode. 843 843 844 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 845 845 853 + 854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 855 + 846 846 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 847 847 848 848 ... ... @@ -850,10 +850,12 @@ 850 850 ==== 3.4.2.3 Poll an uplink ==== 851 851 852 852 853 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink863 +Asks the device to send an uplink. 854 854 855 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 856 856 867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 868 + 857 857 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 858 858 859 859 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -860,16 +860,16 @@ 860 860 861 861 862 862 863 -==== 3.4.2.4 Enable Trigger Mode ==== 875 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 864 864 865 865 866 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 867 867 868 868 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 869 869 870 -(% style="color:red" %)**1:** (%%)Enable TriggerMode882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 871 871 872 -(% style="color:red" %)**0: **(%%)Disable TriggerMode884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 873 873 874 874 875 875 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -881,7 +881,7 @@ 881 881 ==== 3.4.2.5 Poll trigger settings ==== 882 882 883 883 884 -Poll trigger settings 896 +Polls the trigger settings 885 885 886 886 * (% style="color:#037691" %)**AT Command:** 887 887 ... ... @@ -889,7 +889,7 @@ 889 889 890 890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 891 891 892 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command904 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 893 893 894 894 895 895 ... ... @@ -896,11 +896,11 @@ 896 896 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 897 897 898 898 899 -Enable Disable DI1/DI2/DI2 as trigger, 911 +Enable or Disable DI1/DI2/DI2 as trigger, 900 900 901 901 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 902 902 903 -**Example:** AT+ DTRI =1,0 915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 904 904 905 905 906 906 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -932,15 +932,15 @@ 932 932 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 933 933 934 934 935 -Set DI2 trigger. 947 +Sets DI2 trigger. 936 936 937 937 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 938 938 939 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 940 940 941 941 (% style="color:red" %)**b :** (%%)delay timing. 942 942 943 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 944 944 945 945 946 946 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -978,7 +978,7 @@ 978 978 ==== 3.4.2.11 Trigger – Set minimum interval ==== 979 979 980 980 981 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 982 982 983 983 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 984 984 ... ... @@ -1126,7 +1126,7 @@ 1126 1126 ))) 1127 1127 1128 1128 ((( 1129 -00: Close , 01: Open , 11: No action 1141 +00: Closed , 01: Open , 11: No action 1130 1130 1131 1131 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1132 1132 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** ... ... @@ -1248,7 +1248,7 @@ 1248 1248 1249 1249 1250 1250 1251 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1252 1252 1253 1253 1254 1254 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1369,74 +1369,144 @@ 1369 1369 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1370 1370 1371 1371 1372 -== 3.5 Integrat ewithMydevice==1384 +== 3.5 Integrating with ThingsEye.io == 1373 1373 1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1374 1374 1375 - Mydevicesprovidesa humanendlyinterfacetoshow the sensordata,oncewehavedatainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox === 1376 1376 1377 -((( 1378 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 1379 -))) 1390 +We use The Things Stack Sandbox for demonstating the configuration but other 1380 1380 1381 -((( 1382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1392 +* In **The Things Stack Sandbox**, select your application under **Applications**. 1393 +* Select **MQTT** under **Integrations**. 1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one. 1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password. 1383 1383 1384 - 1385 -))) 1397 +NOTE. The username and password (API key) you created here are required in the next section. 1386 1386 1387 -[[image: image-20220719105525-1.png||height="377" width="677"]]1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1388 1388 1401 +=== 3.5.2 Configuring ThingsEye.io === 1389 1389 1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server. 1390 1390 1391 -[[image:image-20220719110247-2.png||height="388" width="683"]] 1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account. 1406 +* Under the **Integrations center**, click **Integrations**. 1407 +* Click the **Add integration** button (the button with the **+** symbol). 1392 1392 1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1393 1393 1394 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1395 1395 1396 - (%style="color:blue"%)**Step 4**(%%):Search LT-22222-L(forbothLT-22222-L) and add DevEUI.(%style="display:none" %)1412 +On the **Add integration** window, configure the following: 1397 1397 1398 - Searchunder Thethingsnetwork1414 +**Basic settings:** 1399 1399 1400 -[[image:1653356838789-523.png||height="337" width="740"]] 1416 +* Select **The Things Stack Community** from the **Integration type** list. 1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name. 1418 +* Ensure the following options are turned on. 1419 +** Enable integration 1420 +** Debug mode 1421 +** Allow create devices or assets 1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab. 1401 1401 1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1402 1402 1403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1404 1404 1405 - [[image:image-20220524094909-1.png||height="335" width="729"]]1427 +**Uplink data converter:** 1406 1406 1429 +* Click the **Create new** button if it is not selected by default. 1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name. 1431 +* Click the **JavaScript** button. 1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]]. 1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab. 1407 1407 1408 -[[image:i mage-20220524094909-2.png||height="337" width="729"]]1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1409 1409 1410 1410 1411 - [[image:image-20220524094909-3.png||height="338"width="727"]]1438 +**Downlink data converter (this is an optional step):** 1412 1412 1440 +* Click the **Create new** button if it is not selected by default. 1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name 1442 +* Click the **JavaScript** button. 1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here. 1444 +* Click the **Next** button. You will be navigated to the **Connection** tab. 1413 1413 1414 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1415 1415 1416 1416 1417 - [[image:image-20220524094909-5.png||height="341" width="734"]]1449 +**Connection:** 1418 1418 1451 +* Choose **Region** from the **Host type**. 1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...). 1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox). 1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**. 1419 1419 1420 - == 3.6 InterfaceDetail ==1456 +[[image:message-1.png]] 1421 1421 1458 + 1459 +* Click the **Add** button. 1460 + 1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1462 + 1463 + 1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings. 1465 + 1466 + 1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]] 1468 + 1469 + 1470 +**Viewing integration details**: 1471 + 1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration. 1473 + 1474 +[[image:integration-details.png||height="686" width="1000"]] 1475 + 1476 + 1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button. 1478 + 1479 +Note: See also ThingsEye documentation. 1480 + 1481 + 1482 +**Viewing events:** 1483 + 1484 +This tab displays all the uplink messages from the LT-22222-L. 1485 + 1486 +* Click on the **Events **tab. 1487 +* Select **Debug **from the **Event type** dropdown. 1488 +* Select the** time frame** from the **time window**. 1489 + 1490 +[insert image] 1491 + 1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message. 1493 + 1494 +[insert image] 1495 + 1496 + 1497 +**Deleting the integration**: 1498 + 1499 +If you want to delete this integration, click the **Delete integratio**n button. 1500 + 1501 + 1502 +== 3.6 Interface Details == 1503 + 1422 1422 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1423 1423 1424 1424 1425 -Support NPN Type sensor1507 +Support NPN-type sensor 1426 1426 1427 1427 [[image:1653356991268-289.png]] 1428 1428 1429 1429 1430 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1431 1431 1432 1432 1433 1433 ((( 1434 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1435 1435 ))) 1436 1436 1437 1437 ((( 1438 1438 ((( 1439 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1440 1440 1441 1441 1442 1442 ))) ... ... @@ -1446,7 +1446,7 @@ 1446 1446 1447 1447 ((( 1448 1448 ((( 1449 - When use need1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1450 1450 ))) 1451 1451 ))) 1452 1452 ... ... @@ -1455,22 +1455,22 @@ 1455 1455 ))) 1456 1456 1457 1457 ((( 1458 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1459 1459 ))) 1460 1460 1461 1461 ((( 1462 -This type of sensor willoutput a low signalGNDwhen active.1544 +This type of sensor outputs a low (GND) signal when active. 1463 1463 ))) 1464 1464 1465 1465 * ((( 1466 -Connect sensor's output to DI1- 1548 +Connect the sensor's output to DI1- 1467 1467 ))) 1468 1468 * ((( 1469 -Connect sensor's VCC to DI1+. 1551 +Connect the sensor's VCC to DI1+. 1470 1470 ))) 1471 1471 1472 1472 ((( 1473 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1474 1474 ))) 1475 1475 1476 1476 ((( ... ... @@ -1478,7 +1478,7 @@ 1478 1478 ))) 1479 1479 1480 1480 ((( 1481 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1482 1482 ))) 1483 1483 1484 1484 ((( ... ... @@ -1486,22 +1486,22 @@ 1486 1486 ))) 1487 1487 1488 1488 ((( 1489 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1490 1490 ))) 1491 1491 1492 1492 ((( 1493 -This type of sensor willoutput a high signal (example24v) when active.1575 +This type of sensor outputs a high signal (e.g., 24V) when active. 1494 1494 ))) 1495 1495 1496 1496 * ((( 1497 -Connect sensor's output to DI1+ 1579 +Connect the sensor's output to DI1+ 1498 1498 ))) 1499 1499 * ((( 1500 -Connect sensor's GND DI1-. 1582 +Connect the sensor's GND DI1-. 1501 1501 ))) 1502 1502 1503 1503 ((( 1504 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1505 1505 ))) 1506 1506 1507 1507 ((( ... ... @@ -1509,7 +1509,7 @@ 1509 1509 ))) 1510 1510 1511 1511 ((( 1512 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1513 1513 ))) 1514 1514 1515 1515 ((( ... ... @@ -1517,22 +1517,22 @@ 1517 1517 ))) 1518 1518 1519 1519 ((( 1520 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1521 1521 ))) 1522 1522 1523 1523 ((( 1524 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1525 1525 ))) 1526 1526 1527 1527 * ((( 1528 -Connect sensor's output to DI1+ with a serial50K resistor1610 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1529 1529 ))) 1530 1530 * ((( 1531 -Connect sensor's GND DI1-. 1613 +Connect the sensor's GND DI1-. 1532 1532 ))) 1533 1533 1534 1534 ((( 1535 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1536 1536 ))) 1537 1537 1538 1538 ((( ... ... @@ -1540,37 +1540,37 @@ 1540 1540 ))) 1541 1541 1542 1542 ((( 1543 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1625 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1544 1544 ))) 1545 1545 1546 1546 1547 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1548 1548 1549 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1550 1550 1551 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1552 1552 1553 1553 [[image:image-20230616235145-1.png]] 1554 1554 1555 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colle actor1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1556 1556 1557 1557 [[image:image-20240219115718-1.png]] 1558 1558 1559 1559 1560 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1561 1561 1562 1562 1563 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can applyto output pin is 36v.1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1564 1564 1565 -(% style="color:red" %)**Note: DO pins gotofloat when device is power off.**1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1566 1566 1567 1567 [[image:1653357531600-905.png]] 1568 1568 1569 1569 1570 -=== 3.6.4 Analog Input Interface === 1652 +=== 3.6.4 Analog Input Interfaces === 1571 1571 1572 1572 1573 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1574 1574 1575 1575 1576 1576 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1577,14 +1577,14 @@ 1577 1577 1578 1578 [[image:1653357592296-182.png]] 1579 1579 1580 -Example toconnect a 4~~20mA sensor1662 +Example: Connecting a 4~~20mA sensor 1581 1581 1582 -We take the wind speed sensor as an example for reference only.1664 +We will use the wind speed sensor as an example for reference only. 1583 1583 1584 1584 1585 1585 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1586 1586 1587 -(% style="color:red" %)**Red: 12~~24 v**1669 +(% style="color:red" %)**Red: 12~~24V** 1588 1588 1589 1589 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1590 1590 ... ... @@ -1597,7 +1597,7 @@ 1597 1597 [[image:1653357648330-671.png||height="155" width="733"]] 1598 1598 1599 1599 1600 -Example connectedto a regulated power supply to measure voltage1682 +Example: Connecting to a regulated power supply to measure voltage 1601 1601 1602 1602 [[image:image-20230608101532-1.png||height="606" width="447"]] 1603 1603 ... ... @@ -1606,7 +1606,7 @@ 1606 1606 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1607 1607 1608 1608 1609 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1610 1610 1611 1611 (% style="color:red" %)**Red: 12~~24v** 1612 1612 ... ... @@ -1617,9 +1617,9 @@ 1617 1617 1618 1618 1619 1619 ((( 1620 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1621 1621 1622 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1623 1623 ))) 1624 1624 1625 1625 [[image:image-20220524100215-9.png]] ... ... @@ -1634,9 +1634,6 @@ 1634 1634 (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1635 1635 |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1636 1636 |**PWR**|Always on if there is power 1637 -|**SYS**|((( 1638 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1639 -))) 1640 1640 |**TX**|((( 1641 1641 ((( 1642 1642 Device boot: TX blinks 5 times. ... ... @@ -1650,29 +1650,25 @@ 1650 1650 Transmit a LoRa packet: TX blinks once 1651 1651 ))) 1652 1652 ))) 1653 -|**RX**|RX blinks once when receive a packet. 1654 -|**DO1**| 1655 -|**DO2**| 1656 -|**DO3**| 1657 -|**DI2**|((( 1658 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1732 +|**RX**|RX blinks once when receiving a packet. 1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1735 +|**DI1**|((( 1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1659 1659 ))) 1660 1660 |**DI2**|((( 1661 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1662 1662 ))) 1663 -|**DI2**|((( 1664 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1665 -))) 1666 -|**RO1**| 1667 -|**RO2**| 1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1668 1668 1669 -= 4. Us eAT Command =1744 += 4. Using AT Command = 1670 1670 1671 -== 4.1 AccessATCommand==1746 +== 4.1 Connecting the LT-22222-L to a computer == 1672 1672 1673 1673 1674 1674 ((( 1675 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1750 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1676 1676 ))) 1677 1677 1678 1678 [[image:1653358238933-385.png]] ... ... @@ -1679,7 +1679,7 @@ 1679 1679 1680 1680 1681 1681 ((( 1682 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]],SecureCRT) baud ratetoo accessserial consoleforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1757 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1683 1683 ))) 1684 1684 1685 1685 [[image:1653358355238-883.png]] ... ... @@ -1686,10 +1686,12 @@ 1686 1686 1687 1687 1688 1688 ((( 1689 - More detailAT Commandmanual can be found at1764 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1690 1690 ))) 1691 1691 1692 1692 ((( 1768 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1769 + 1693 1693 AT+<CMD>? : Help on <CMD> 1694 1694 ))) 1695 1695 ... ... @@ -2014,37 +2014,49 @@ 2014 2014 2015 2015 = 5. Case Study = 2016 2016 2017 -== 5.1 Counting how many objects pass inFlow Line ==2094 +== 5.1 Counting how many objects pass through the flow Line == 2018 2018 2019 2019 2020 -Reference Link: [[How to set up to count objects pass 2097 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2021 2021 2022 2022 2023 2023 = 6. FAQ = 2024 2024 2025 -== 6.1 How to up grade the image? ==2102 +== 6.1 How to update the firmware? == 2026 2026 2027 2027 2028 - The LT LoRaWAN Controller isshippedwith a 3.5mm cable,the cable isused to uploadimageto LTto:2105 +Dragino frequently releases firmware updates for the LT-22222-L. 2029 2029 2107 +Updating your LT-22222-L with the latest firmware version helps to: 2108 + 2030 2030 * Support new features 2031 -* F orbugfix2032 -* Change LoRaWAN bands .2110 +* Fix bugs 2111 +* Change LoRaWAN frequency bands 2033 2033 2034 - Belowshowsthe hardwareconnection forhow to uploadanimage to the LT:2113 +You will need the following things before proceeding: 2035 2035 2115 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory) 2116 +* USB to TTL adapter 2117 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer) 2118 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region. 2119 + 2120 +{{info}} 2121 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1. 2122 +{{/info}} 2123 + 2124 +Below is the hardware setup for uploading a firmware image to the LT-22222-L: 2125 + 2126 + 2036 2036 [[image:1653359603330-121.png]] 2037 2037 2038 2038 2039 -((( 2040 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2041 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2042 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update. 2043 - 2130 +Start the STM32 Flash Loader and choose the correct COM port to update. 2044 2044 2045 2045 ((( 2133 +((( 2046 2046 (% style="color:blue" %)**For LT-22222-L**(%%): 2047 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode. 2135 + 2136 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode. 2048 2048 ))) 2049 2049 2050 2050 ... ... @@ -2059,7 +2059,7 @@ 2059 2059 [[image:image-20220524104033-15.png]] 2060 2060 2061 2061 2062 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2151 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 2063 2063 2064 2064 [[image:1653360054704-518.png||height="186" width="745"]] 2065 2065 ... ... @@ -2066,7 +2066,7 @@ 2066 2066 2067 2067 ((( 2068 2068 ((( 2069 -== 6.2 How to change the LoRa FrequencyBands/Region? ==2158 +== 6.2 How to change the LoRaWAN frequency band/region? == 2070 2070 2071 2071 2072 2072 ))) ... ... @@ -2073,13 +2073,13 @@ 2073 2073 ))) 2074 2074 2075 2075 ((( 2076 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2165 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2077 2077 ))) 2078 2078 2079 2079 ((( 2080 2080 2081 2081 2082 -== 6.3 How to set 2171 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? == 2083 2083 2084 2084 2085 2085 ))) ... ... @@ -2086,13 +2086,13 @@ 2086 2086 2087 2087 ((( 2088 2088 ((( 2089 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2178 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2090 2090 ))) 2091 2091 ))) 2092 2092 2093 2093 ((( 2094 2094 ((( 2095 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2184 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2096 2096 2097 2097 2098 2098 ))) ... ... @@ -2099,7 +2099,7 @@ 2099 2099 ))) 2100 2100 2101 2101 ((( 2102 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2191 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2103 2103 2104 2104 2105 2105 ))) ... ... @@ -2156,61 +2156,56 @@ 2156 2156 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2157 2157 2158 2158 2159 -== 6.5 Can I see counting event in Serial? ==2248 +== 6.5 Can I see the counting event in the serial output? == 2160 2160 2161 2161 2162 2162 ((( 2163 - Usercan run AT+DEBUGcommandseethe counting event in serial. If firmware too old and doesn't support.User canupdate to latest firmware first.2252 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first. 2164 2164 2165 2165 2166 -== 6.6 Can iuse pointforLT-22222-L? ==2255 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2167 2167 2168 2168 2169 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2170 - 2171 - 2258 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]]. 2172 2172 ))) 2173 2173 2174 2174 ((( 2175 -== 6.7 Why does the relay output become thedefault andopen relay after thelt22222 is powered off? ==2262 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? == 2176 2176 2177 2177 2178 -If the device is not shut down, but directly powered off. 2265 +* If the device is not properly shut down and is directly powered off. 2266 +* It will default to a power-off state. 2267 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory. 2268 +* After a restart, the status before the power failure will be read from flash. 2179 2179 2180 -It will default that this is a power-off state. 2181 2181 2182 - Inmodes2to5, DO ROstatus andpulsecount aresavedin flash.2271 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? == 2183 2183 2184 -After restart, the status before power failure will be read from flash. 2185 2185 2274 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below: 2186 2186 2187 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? == 2188 2188 2189 - 2190 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below: 2191 - 2192 - 2193 2193 [[image:image-20221006170630-1.png||height="610" width="945"]] 2194 2194 2195 2195 2196 -== 6.9 Can LT22222-L save RO state? == 2280 +== 6.9 Can the LT-22222-L save the RO state? == 2197 2197 2198 2198 2199 - Firmware versionneedsobenolessthan1.6.0.2283 +The firmware version must be at least 1.6.0. 2200 2200 2201 2201 2202 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2286 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? == 2203 2203 2204 2204 2205 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2289 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose. 2206 2206 2207 2207 2208 -= 7. Trouble Shooting =2292 += 7. Troubleshooting = 2209 2209 ))) 2210 2210 2211 2211 ((( 2212 2212 ((( 2213 -== 7.1 Downlink doesn't work,howtosolveit? ==2297 +== 7.1 Downlink isn't working. How can I solve this? == 2214 2214 2215 2215 2216 2216 ))) ... ... @@ -2217,42 +2217,42 @@ 2217 2217 ))) 2218 2218 2219 2219 ((( 2220 -Please see this link forhow todebug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]2304 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]] 2221 2221 ))) 2222 2222 2223 2223 ((( 2224 2224 2225 2225 2226 -== 7.2 Hav etroubletoupload image.==2310 +== 7.2 Having trouble uploading an image? == 2227 2227 2228 2228 2229 2229 ))) 2230 2230 2231 2231 ((( 2232 - See this link for trouble2316 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 2233 2233 ))) 2234 2234 2235 2235 ((( 2236 2236 2237 2237 2238 -== 7.3 Why Ican't join TTN in US915 /AU915 bands? ==2322 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? == 2239 2239 2240 2240 2241 2241 ))) 2242 2242 2243 2243 ((( 2244 -It might be a bout the channelsmapping. [[Pleasesee this link for detail>>doc:Main.LoRaWAN CommunicationDebug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]2328 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] 2245 2245 ))) 2246 2246 2247 2247 2248 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2332 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? == 2249 2249 2250 2250 2251 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.2252 -Use this command to bringtheir countsback together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]2335 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue. 2336 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2253 2253 2254 2254 2255 -= 8. Order Info =2339 += 8. Ordering information = 2256 2256 2257 2257 2258 2258 (% style="color:#4f81bd" %)**LT-22222-L-XXX:** ... ... @@ -2259,43 +2259,44 @@ 2259 2259 2260 2260 (% style="color:#4f81bd" %)**XXX:** 2261 2261 2262 -* (% style="color:red" %)**EU433**(%%): 2263 -* (% style="color:red" %)**EU868**(%%): 2264 -* (% style="color:red" %)**KR920**(%%): 2265 -* (% style="color:red" %)**CN470**(%%): 2266 -* (% style="color:red" %)**AS923**(%%): 2267 -* (% style="color:red" %)**AU915**(%%): 2268 -* (% style="color:red" %)**US915**(%%): 2269 -* (% style="color:red" %)**IN865**(%%): 2270 -* (% style="color:red" %)**CN779**(%%): 2346 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433 2347 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868 2348 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920 2349 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470 2350 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923 2351 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915 2352 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915 2353 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865 2354 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779 2271 2271 2272 -= 9. Packing Info = 2273 2273 2357 += 9. Packing information = 2274 2274 2275 -**Package Includes**: 2276 2276 2360 +**Package includes**: 2361 + 2277 2277 * LT-22222-L I/O Controller x 1 2278 2278 * Stick Antenna for LoRa RF part x 1 2279 2279 * Bracket for controller x1 2280 -* Program cable x 1 2365 +* 3.5mm Programming cable x 1 2281 2281 2282 2282 **Dimension and weight**: 2283 2283 2284 2284 * Device Size: 13.5 x 7 x 3 cm 2285 -* Device Weight: 105g 2370 +* Device Weight: 105 g 2286 2286 * Package Size / pcs : 14.5 x 8 x 5 cm 2287 -* Weight / pcs : 170g 2372 +* Weight / pcs : 170 g 2288 2288 2374 + 2289 2289 = 10. Support = 2290 2290 2291 2291 2292 2292 * ((( 2293 -Support is providedMonday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in thebefore-mentioned schedule.2379 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule. 2294 2294 ))) 2295 2295 * ((( 2296 -Provide as much information as possible regarding your enquiry (product models, accuratelydescribeyourproblemandsteps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]2382 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]] 2297 2297 2298 - 2299 2299 2300 2300 ))) 2301 2301
- integration-details.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +463.9 KB - Content
- lt-22222-device-overview.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +497.2 KB - Content
- lt-22222-join-network.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +340.6 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- lt-22222-ul-payload-decoded.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +48.7 KB - Content
- lt-22222-ul-payload-fmt.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +438.6 KB - Content
- message-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +20.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- thingseye.io_integrationsCenter_integrations-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +469.3 KB - Content
- thingseye.io_integrationsCenter_integrations.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +302.3 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content