Last modified by Mengting Qiu on 2025/06/04 18:42

From version 133.1
edited by Edwin Chen
on 2024/05/08 22:27
Change comment: There is no comment for this version
To version 168.1
edited by Dilisi S
on 2024/11/08 04:36
Change comment: Uploaded new attachment "lt-22222-join-network.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.pradeeka
Content
... ... @@ -17,38 +17,32 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 -(((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
47 47  
48 48  (((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
50 50  
51 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
52 52  )))
53 53  
54 54  (((
... ... @@ -64,115 +64,57 @@
64 64  * STM32L072xxxx MCU
65 65  * SX1276/78 Wireless Chip 
66 66  * Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
67 67  
68 -* Idle: 4mA@12v
69 -* 20dB Transmit: [[34mA@12v>>mailto:34mA@12v]]
70 -
71 -
72 72  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
73 73  
74 74  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
75 -* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
76 76  * 2 x Relay Output (5A@250VAC / 30VDC)
77 77  * 2 x 0~~20mA Analog Input (res:0.01mA)
78 78  * 2 x 0~~30V Analog Input (res:0.01v)
79 79  * Power Input 7~~ 24V DC. 
80 80  
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
84 84  
85 -* (((
86 -(((
87 -Frequency Range:
88 -)))
89 -
90 -* (((
91 -Band 1 (HF): 862 ~~ 1020 Mhz
92 -)))
93 -* (((
94 -Band 2 (LF): 410 ~~ 528 Mhz
95 -)))
96 -)))
97 -* (((
98 -168 dB maximum link budget.
99 -)))
100 -* (((
101 -+20 dBm - 100 mW constant RF output vs.
102 -)))
103 -* (((
104 -+14 dBm high efficiency PA.
105 -)))
106 -* (((
107 -Programmable bit rate up to 300 kbps.
108 -)))
109 -* (((
110 -High sensitivity: down to -148 dBm.
111 -)))
112 -* (((
113 -Bullet-proof front end: IIP3 = -12.5 dBm.
114 -)))
115 -* (((
116 -Excellent blocking immunity.
117 -)))
118 -* (((
119 -Low RX current of 10.3 mA, 200 nA register retention.
120 -)))
121 -* (((
122 -Fully integrated synthesizer with a resolution of 61 Hz.
123 -)))
124 -* (((
125 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
126 -)))
127 -* (((
128 -Built-in bit synchronizer for clock recovery.
129 -)))
130 -* (((
131 -Preamble detection.
132 -)))
133 -* (((
134 -127 dB Dynamic Range RSSI.
135 -)))
136 -* (((
137 -Automatic RF Sense and CAD with ultra-fast AFC.
138 -)))
139 -* (((
140 -Packet engine up to 256 bytes with CRC.
141 -
142 -
143 -
144 -)))
145 -
146 146  == 1.3 Features ==
147 147  
148 -
149 149  * LoRaWAN Class A & Class C protocol
150 -
151 151  * Optional Customized LoRa Protocol
152 -
153 153  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
154 -
155 155  * AT Commands to change parameters
156 -
157 -* Remote configure parameters via LoRa Downlink
158 -
101 +* Remotely configure parameters via LoRaWAN Downlink
159 159  * Firmware upgradable via program port
160 -
161 161  * Counting
162 162  
163 163  == 1.4 Applications ==
164 164  
165 -
166 166  * Smart Buildings & Home Automation
167 -
168 168  * Logistics and Supply Chain Management
169 -
170 170  * Smart Metering
171 -
172 172  * Smart Agriculture
173 -
174 174  * Smart Cities
175 -
176 176  * Smart Factory
177 177  
178 178  == 1.5 Hardware Variants ==
... ... @@ -192,92 +192,140 @@
192 192  * 1 x Counting Port
193 193  )))
194 194  
195 -= 2. Power ON Device =
131 += 2. Assembling the Device =
196 196  
133 +== 2.1 What is included in the package? ==
197 197  
198 -(((
199 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
200 -)))
135 +The package includes the following items:
201 201  
202 -(((
203 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
204 204  
205 -
206 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
207 207  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
208 208  [[image:1653297104069-180.png]]
209 209  
210 210  
211 211  = 3. Operation Mode =
212 212  
213 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
214 214  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
215 215  
216 -(((
217 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
218 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
219 219  
220 -(((
221 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
222 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
223 223  
190 +== 3.2 Registering with a LoRaWAN network server ==
224 224  
225 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
226 226  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
227 227  
228 -(((
229 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
230 230  
231 -
232 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
233 233  
234 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
235 235  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
236 236  
237 -(((
238 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
239 239  
240 -
241 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
242 242  
243 -(((
244 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
245 -)))
210 +==== Using the LoRaWAN Device Repository: ====
246 246  
247 -(((
248 -Each LT is shipped with a sticker with the default device EUI as below:
249 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
250 250  
251 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
252 252  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
253 253  
254 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
255 255  
256 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
257 257  
258 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
259 259  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
260 260  
261 -**Add APP KEY and DEV EUI**
262 262  
263 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
264 264  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
265 265  
266 -(((
267 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
268 268  
269 -
270 -)))
252 +==== Joining ====
271 271  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
272 272  [[image:1653298044601-602.png||height="405" width="709"]]
273 273  
274 274  
275 -== 3.3 Uplink Payload ==
259 +== 3.3 Work Modes and their Uplink Payload formats ==
276 276  
277 277  
278 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
279 279  
280 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
281 281  
282 282  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
283 283  
... ... @@ -291,9 +291,8 @@
291 291  
292 292  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
293 293  
294 -
295 295  (((
296 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
279 +The uplink payload is 11 bytes long. Uplink messages are sent over LoRaWAN FPort 2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
297 297  
298 298  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
299 299  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -305,29 +305,29 @@
305 305  ACI1 Current
306 306  )))|(((
307 307  ACI2 Current
308 -)))|DIDORO*|(((
291 +)))|**DIDORO***|(((
309 309  Reserve
310 310  )))|MOD
311 311  )))
312 312  
313 313  (((
314 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
297 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
315 315  
316 316  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
317 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
318 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
300 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
301 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
319 319  )))
320 320  
321 -* RO is for relay. ROx=1 : close, ROx=0 always open.
322 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
323 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
304 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
305 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
306 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
324 324  
325 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
308 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
326 326  
327 -For example if payload is: [[image:image-20220523175847-2.png]]
310 +For example, if the payload is: [[image:image-20220523175847-2.png]]
328 328  
329 329  
330 -**The value for the interface is:  **
313 +**The interface values can be calculated as follows:  **
331 331  
332 332  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
333 333  
... ... @@ -337,35 +337,32 @@
337 337  
338 338  ACI2 channel current is 0x1300/1000=4.864mA
339 339  
340 -The last byte 0xAA= 10101010(B) means
323 +The last byte 0xAA= **10101010**(b) means,
341 341  
342 -* [1] RO1 relay channel is close and the RO1 LED is ON.
343 -* [0] RO2 relay channel is open and RO2 LED is OFF;
325 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
326 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
327 +* [1] DI3 - not used for LT-22222-L.
328 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
329 +* [1] DI1 channel input state:
330 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
331 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
332 +** DI1 LED is ON in both cases.
333 +* [0] DO3 - not used for LT-22222-L.
334 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
335 +* [0] DO1 channel output state:
336 +** DO1 is FLOATING when there is no load between DO1 and V+.
337 +** DO1 is HIGH when there is a load between DO1 and V+.
338 +** DO1 LED is OFF in both cases.
344 344  
345 -**LT22222-L:**
346 -
347 -* [1] DI2 channel is high input and DI2 LED is ON;
348 -* [0] DI1 channel is low input;
349 -
350 -* [0] DO3 channel output state
351 -** DO3 is float in case no load between DO3 and V+.;
352 -** DO3 is high in case there is load between DO3 and V+.
353 -** DO3 LED is off in both case
354 -* [1] DO2 channel output is low and DO2 LED is ON.
355 -* [0] DO1 channel output state
356 -** DO1 is float in case no load between DO1 and V+.;
357 -** DO1 is high in case there is load between DO1 and V+.
358 -** DO1 LED is off in both case
359 -
360 360  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
361 361  
362 362  
363 363  (((
364 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
344 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
365 365  )))
366 366  
367 367  (((
368 -Total : 11 bytes payload
348 +The uplink payload is 11 bytes long.
369 369  
370 370  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
371 371  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -375,26 +375,26 @@
375 375  )))
376 376  
377 377  (((
378 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
358 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
379 379  
380 380  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
381 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
382 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
361 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
362 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
383 383  
384 -RO is for relay. ROx=1 : close , ROx=0 always open.
364 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
385 385  )))
386 386  
387 -* FIRST: Indicate this is the first packet after join network.
388 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
367 +* FIRST: Indicates that this is the first packet after joining the network.
368 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
389 389  
390 390  (((
391 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
371 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
392 392  
393 393  
394 394  )))
395 395  
396 396  (((
397 -**To use counting mode, please run:**
377 +**To activate this mode, run the following AT commands:**
398 398  )))
399 399  
400 400  (((
... ... @@ -415,17 +415,17 @@
415 415  (((
416 416  **For LT22222-L:**
417 417  
418 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
398 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
419 419  
420 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
400 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
421 421  
422 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
423 423  
424 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
425 425  
426 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
406 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
427 427  
428 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
408 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
429 429  )))
430 430  
431 431  
... ... @@ -432,7 +432,7 @@
432 432  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
433 433  
434 434  
435 -**LT22222-L**: This mode the DI1 is used as a counting pin.
415 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
436 436  
437 437  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
438 438  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -443,24 +443,24 @@
443 443  )))|DIDORO*|Reserve|MOD
444 444  
445 445  (((
446 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
426 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
447 447  
448 448  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
449 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
450 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
429 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
430 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
451 451  )))
452 452  
453 -* RO is for relay. ROx=1 : close, ROx=0 always open.
454 -* FIRST: Indicate this is the first packet after join network.
455 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
433 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
434 +* FIRST: Indicates that this is the first packet after joining the network.
435 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
456 456  
457 457  (((
458 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
438 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
459 459  )))
460 460  
461 461  
462 462  (((
463 -**To use counting mode, please run:**
443 +**To activate this mode, run the following AT commands:**
464 464  )))
465 465  
466 466  (((
... ... @@ -473,7 +473,9 @@
473 473  )))
474 474  
475 475  (((
476 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
456 +AT Commands for counting:
457 +
458 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
477 477  )))
478 478  
479 479  
... ... @@ -481,11 +481,11 @@
481 481  
482 482  
483 483  (((
484 -**LT22222-L**: This mode the DI1 is used as a counting pin.
466 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
485 485  )))
486 486  
487 487  (((
488 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
470 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
489 489  
490 490  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
491 491  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -495,25 +495,25 @@
495 495  )))
496 496  
497 497  (((
498 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
480 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
499 499  
500 500  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
501 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
502 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
483 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
484 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
503 503  )))
504 504  
505 -* RO is for relay. ROx=1 : close, ROx=0 always open.
506 -* FIRST: Indicate this is the first packet after join network.
507 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
487 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
488 +* FIRST: Indicates that this is the first packet after joining the network.
489 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
508 508  
509 509  (((
510 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
492 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
511 511  
512 512  
513 513  )))
514 514  
515 515  (((
516 -**To use this mode, please run:**
498 +**To activate this mode, run the following AT commands:**
517 517  )))
518 518  
519 519  (((
... ... @@ -526,19 +526,19 @@
526 526  )))
527 527  
528 528  (((
529 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
511 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
530 530  )))
531 531  
532 532  (((
533 -**Plus below command for AVI1 Counting:**
515 +**In addition to that, below are the commands for AVI1 Counting:**
534 534  
535 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
517 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
536 536  
537 537  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
538 538  
539 539  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
540 540  
541 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
523 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
542 542  )))
543 543  
544 544  
... ... @@ -545,7 +545,7 @@
545 545  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
546 546  
547 547  
548 -**LT22222-L**: This mode the DI1 is used as a counting pin.
530 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
549 549  
550 550  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
551 551  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -560,25 +560,25 @@
560 560  )))|MOD
561 561  
562 562  (((
563 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
564 564  
565 565  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
566 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
567 567  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
568 568  )))
569 569  
570 -* RO is for relay. ROx=1 : close, ROx=0 always open.
571 -* FIRST: Indicate this is the first packet after join network.
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
572 572  * (((
573 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
555 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
574 574  )))
575 575  
576 576  (((
577 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
559 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
578 578  )))
579 579  
580 580  (((
581 -**To use this mode, please run:**
563 +**To activate this mode, run the following AT commands:**
582 582  )))
583 583  
584 584  (((
... ... @@ -591,7 +591,7 @@
591 591  )))
592 592  
593 593  (((
594 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
595 595  )))
596 596  
597 597  
... ... @@ -598,49 +598,46 @@
598 598  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
599 599  
600 600  
601 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
583 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
602 602  
603 -For example, if user has configured below commands:
585 +For example, if you configured the following commands:
604 604  
605 605  * **AT+MOD=1 ** **~-~->**  The normal working mode
606 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
588 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
607 607  
608 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
590 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
609 609  
610 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
611 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
592 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
593 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
612 612  
613 613  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
614 614  
597 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
615 615  
616 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
617 -
618 618  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
619 619  
620 620  
621 621  **Example:**
622 622  
623 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
604 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
624 624  
625 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
606 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
626 626  
627 627  
609 +(% style="color:#4f81bd" %)**Trigger based on current**:
628 628  
629 -(% style="color:#4f81bd" %)**Trigger base on current**:
630 -
631 631  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
632 632  
633 633  
634 634  **Example:**
635 635  
636 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
616 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
637 637  
638 638  
619 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
639 639  
640 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
621 +DI status triggers Flag.
641 641  
642 -DI status trigger Flag.
643 -
644 644  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
645 645  
646 646  
... ... @@ -649,39 +649,38 @@
649 649  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
650 650  
651 651  
652 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
631 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
653 653  
654 654  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
655 655  
656 656  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
657 657  
658 - AA: Code for this downlink Command:
637 + AA: Type Code for this downlink Command:
659 659  
660 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
639 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
661 661  
662 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
641 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
663 663  
664 - yy2 yy2: AC1 or AV1 high limit.
643 + yy2 yy2: AC1 or AV1 HIGH limit.
665 665  
666 - yy3 yy3: AC2 or AV2 low limit.
645 + yy3 yy3: AC2 or AV2 LOW limit.
667 667  
668 - Yy4 yy4: AC2 or AV2 high limit.
647 + Yy4 yy4: AC2 or AV2 HIGH limit.
669 669  
670 670  
671 -**Example1**: AA 00 13 88 00 00 00 00 00 00
650 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
672 672  
673 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
652 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
674 674  
675 675  
676 -**Example2**: AA 02 01 00
655 +**Example 2**: AA 02 01 00
677 677  
678 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
657 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
679 679  
680 680  
681 -
682 682  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
683 683  
684 -MOD6 Payload : total 11 bytes payload
662 +MOD6 Payload: total of 11 bytes
685 685  
686 686  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
687 687  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -695,10 +695,10 @@
695 695  MOD(6)
696 696  )))
697 697  
698 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
676 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
699 699  
700 700  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
701 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
679 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
702 702  |(((
703 703  AV1_LOW
704 704  )))|(((
... ... @@ -717,17 +717,17 @@
717 717  AC2_HIGH
718 718  )))
719 719  
720 -* Each bits shows if the corresponding trigger has been configured.
698 +* Each bit shows if the corresponding trigger has been configured.
721 721  
722 722  **Example:**
723 723  
724 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
702 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
725 725  
726 726  
727 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
705 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
728 728  
729 729  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
730 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
708 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
731 731  |(((
732 732  AV1_LOW
733 733  )))|(((
... ... @@ -746,11 +746,11 @@
746 746  AC2_HIGH
747 747  )))
748 748  
749 -* Each bits shows which status has been trigger on this uplink.
727 +* Each bit shows which status has been triggered on this uplink.
750 750  
751 751  **Example:**
752 752  
753 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
731 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
754 754  
755 755  
756 756  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -759,7 +759,7 @@
759 759  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
760 760  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
761 761  
762 -* Each bits shows which status has been trigger on this uplink.
740 +* Each bits shows which status has been triggered on this uplink.
763 763  
764 764  **Example:**
765 765  
... ... @@ -786,11 +786,11 @@
786 786  )))
787 787  
788 788  
789 -== 3.4 ​Configure LT via AT or Downlink ==
767 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
790 790  
791 791  
792 792  (((
793 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
771 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
794 794  )))
795 795  
796 796  (((
... ... @@ -805,9 +805,8 @@
805 805  
806 806  === 3.4.1 Common Commands ===
807 807  
808 -
809 809  (((
810 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
787 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
811 811  )))
812 812  
813 813  
... ... @@ -815,34 +815,37 @@
815 815  
816 816  ==== 3.4.2.1 Set Transmit Interval ====
817 817  
795 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
818 818  
819 -Set device uplink interval.
797 +* (% style="color:#037691" %)**AT command:**
820 820  
821 -* (% style="color:#037691" %)**AT Command:**
799 +(% style="color:blue" %)**AT+TDC=N**
822 822  
823 -(% style="color:blue" %)**AT+TDC=N **
801 +where N is the time in milliseconds.
824 824  
803 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
825 825  
826 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
827 827  
806 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
828 828  
829 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
830 -
831 831  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
832 832  
833 833  
834 834  
835 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
812 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
836 836  
837 837  
838 -Set work mode.
815 +Sets the work mode.
839 839  
840 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
817 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
841 841  
842 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
819 +Where N is the work mode.
843 843  
844 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
821 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
845 845  
823 +
824 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
825 +
846 846  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
847 847  
848 848  
... ... @@ -850,10 +850,12 @@
850 850  ==== 3.4.2.3 Poll an uplink ====
851 851  
852 852  
853 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
833 +Asks the device to send an uplink.
854 854  
855 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
835 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
856 856  
837 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
838 +
857 857  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
858 858  
859 859  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -860,16 +860,16 @@
860 860  
861 861  
862 862  
863 -==== 3.4.2.4 Enable Trigger Mode ====
845 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
864 864  
865 865  
866 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
848 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
867 867  
868 868  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
869 869  
870 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
852 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
871 871  
872 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
854 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
873 873  
874 874  
875 875  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -881,7 +881,7 @@
881 881  ==== 3.4.2.5 Poll trigger settings ====
882 882  
883 883  
884 -Poll trigger settings
866 +Polls the trigger settings
885 885  
886 886  * (% style="color:#037691" %)**AT Command:**
887 887  
... ... @@ -889,7 +889,7 @@
889 889  
890 890  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
891 891  
892 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
874 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
893 893  
894 894  
895 895  
... ... @@ -896,11 +896,11 @@
896 896  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
897 897  
898 898  
899 -Enable Disable DI1/DI2/DI2 as trigger,
881 +Enable or Disable DI1/DI2/DI2 as trigger,
900 900  
901 901  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
902 902  
903 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
885 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
904 904  
905 905  
906 906  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -932,15 +932,15 @@
932 932  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
933 933  
934 934  
935 -Set DI2 trigger.
917 +Sets DI2 trigger.
936 936  
937 937  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
938 938  
939 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
921 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
940 940  
941 941  (% style="color:red" %)**b :** (%%)delay timing.
942 942  
943 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
925 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
944 944  
945 945  
946 946  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -978,7 +978,7 @@
978 978  ==== 3.4.2.11 Trigger – Set minimum interval ====
979 979  
980 980  
981 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
963 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
982 982  
983 983  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
984 984  
... ... @@ -1126,7 +1126,7 @@
1126 1126  )))
1127 1127  
1128 1128  (((
1129 -00: Close ,  01: Open , 11: No action
1111 +00: Closed ,  01: Open , 11: No action
1130 1130  
1131 1131  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1132 1132  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1248,7 +1248,7 @@
1248 1248  
1249 1249  
1250 1250  
1251 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1233 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1252 1252  
1253 1253  
1254 1254  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1369,74 +1369,131 @@
1369 1369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1370 1370  
1371 1371  
1372 -== 3.5 Integrate with Mydevice ==
1354 +== 3.5 Integrating with ThingsEye.io ==
1373 1373  
1356 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1374 1374  
1375 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1358 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1376 1376  
1377 -(((
1378 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1379 -)))
1360 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1361 +* Select **MQTT** under **Integrations**.
1362 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1363 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button.
1380 1380  
1381 -(((
1382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1365 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1383 1383  
1384 -
1385 -)))
1367 +=== 3.5.2 Configuring ThingsEye.io ===
1386 1386  
1387 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1369 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1370 +* Under the **Integrations center**, click **Integrations**.
1371 +* Click the **Add integration** button (the button with the **+** symbol).
1388 1388  
1373 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1389 1389  
1390 1390  
1391 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1376 +On the **Add integration** window, configure the following:
1392 1392  
1378 +~1. **Basic settings:**
1393 1393  
1394 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1380 +* Select **The Things Stack Community** from the **Integration type** list.
1381 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1382 +* Ensure the following options are turned on.
1383 +** Enable integration
1384 +** Debug mode
1385 +** Allow create devices or assets
1386 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1395 1395  
1396 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1388 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1397 1397  
1398 -Search under The things network
1399 1399  
1400 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +2. **Uplink data converter:**
1401 1401  
1393 +* Click the **Create new** button if it is not selected by default.
1394 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1395 +* Click the **JavaScript** button.
1396 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1397 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1402 1402  
1403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1404 1404  
1405 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1401 +3.** Downlink data converter (this is an optional step):**
1406 1406  
1403 +* Click the **Create new** button if it is not selected by default.
1404 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1405 +* Click the **JavaScript** button.
1406 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1407 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1407 1407  
1408 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1409 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1409 1409  
1411 +4. **Connection:**
1410 1410  
1411 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1413 +* Choose **Region** from the **Host type**.
1414 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1415 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1416 +* Click the **Check connection** button to test the connection. If the connection is successful, you can see the message saying **Connected**.
1417 +* Click the **Add** button.
1412 1412  
1419 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1413 1413  
1414 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1415 1415  
1422 +Your integration is added to the** Integrations** list and it will display on the **Integrations** page. Check whether the status is showing as 'Active'. if not, check your configuration settings again.
1416 1416  
1417 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1424 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1418 1418  
1419 1419  
1420 -== 3.6 Interface Detail ==
1427 +Viewing integration details:
1421 1421  
1429 +Click on the your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1430 +
1431 +[add image here]
1432 +
1433 +If you want to edit the settings you have provided, click on the Toggle edit mode button.
1434 +
1435 +[add image here]
1436 +
1437 +Once you have done click on the Apply changes button.
1438 +
1439 +Note: See also ThingsEye documentation.
1440 +
1441 +Click on the Events tab.
1442 +
1443 +- Select Debug from the Event type dropdown.
1444 +
1445 +- Select the time frame from the time window.
1446 +
1447 +[insert image]
1448 +
1449 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1450 +
1451 +[insert image]
1452 +
1453 +
1454 +Deleting the integration:
1455 +
1456 +If you want to delete this integration, click the Delete integration button.
1457 +
1458 +
1459 +== 3.6 Interface Details ==
1460 +
1422 1422  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1423 1423  
1424 1424  
1425 -Support NPN Type sensor
1464 +Support NPN-type sensor
1426 1426  
1427 1427  [[image:1653356991268-289.png]]
1428 1428  
1429 1429  
1430 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1469 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1431 1431  
1432 1432  
1433 1433  (((
1434 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1473 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1435 1435  )))
1436 1436  
1437 1437  (((
1438 1438  (((
1439 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1478 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1440 1440  
1441 1441  
1442 1442  )))
... ... @@ -1446,7 +1446,7 @@
1446 1446  
1447 1447  (((
1448 1448  (((
1449 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1488 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1450 1450  )))
1451 1451  )))
1452 1452  
... ... @@ -1455,22 +1455,22 @@
1455 1455  )))
1456 1456  
1457 1457  (((
1458 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1497 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1459 1459  )))
1460 1460  
1461 1461  (((
1462 -This type of sensor will output a low signal GND when active.
1501 +This type of sensor outputs a low (GND) signal when active.
1463 1463  )))
1464 1464  
1465 1465  * (((
1466 -Connect sensor's output to DI1-
1505 +Connect the sensor's output to DI1-
1467 1467  )))
1468 1468  * (((
1469 -Connect sensor's VCC to DI1+.
1508 +Connect the sensor's VCC to DI1+.
1470 1470  )))
1471 1471  
1472 1472  (((
1473 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1512 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1474 1474  )))
1475 1475  
1476 1476  (((
... ... @@ -1478,7 +1478,7 @@
1478 1478  )))
1479 1479  
1480 1480  (((
1481 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1520 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1482 1482  )))
1483 1483  
1484 1484  (((
... ... @@ -1486,22 +1486,22 @@
1486 1486  )))
1487 1487  
1488 1488  (((
1489 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1528 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -This type of sensor will output a high signal (example 24v) when active.
1532 +This type of sensor outputs a high signal (e.g., 24V) when active.
1494 1494  )))
1495 1495  
1496 1496  * (((
1497 -Connect sensor's output to DI1+
1536 +Connect the sensor's output to DI1+
1498 1498  )))
1499 1499  * (((
1500 -Connect sensor's GND DI1-.
1539 +Connect the sensor's GND DI1-.
1501 1501  )))
1502 1502  
1503 1503  (((
1504 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1543 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1505 1505  )))
1506 1506  
1507 1507  (((
... ... @@ -1509,7 +1509,7 @@
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1551 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1513 1513  )))
1514 1514  
1515 1515  (((
... ... @@ -1517,22 +1517,22 @@
1517 1517  )))
1518 1518  
1519 1519  (((
1520 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1559 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1521 1521  )))
1522 1522  
1523 1523  (((
1524 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1563 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1525 1525  )))
1526 1526  
1527 1527  * (((
1528 -Connect sensor's output to DI1+ with a serial 50K resistor
1567 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1529 1529  )))
1530 1530  * (((
1531 -Connect sensor's GND DI1-.
1570 +Connect the sensor's GND DI1-.
1532 1532  )))
1533 1533  
1534 1534  (((
1535 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1574 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1536 1536  )))
1537 1537  
1538 1538  (((
... ... @@ -1540,37 +1540,37 @@
1540 1540  )))
1541 1541  
1542 1542  (((
1543 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1582 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1544 1544  )))
1545 1545  
1546 1546  
1547 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1586 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1548 1548  
1549 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1588 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1550 1550  
1551 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1590 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1552 1552  
1553 1553  [[image:image-20230616235145-1.png]]
1554 1554  
1555 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1594 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1556 1556  
1557 1557  [[image:image-20240219115718-1.png]]
1558 1558  
1559 1559  
1560 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1599 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1561 1561  
1562 1562  
1563 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1602 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1564 1564  
1565 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1604 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1566 1566  
1567 1567  [[image:1653357531600-905.png]]
1568 1568  
1569 1569  
1570 -=== 3.6.4 Analog Input Interface ===
1609 +=== 3.6.4 Analog Input Interfaces ===
1571 1571  
1572 1572  
1573 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1612 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1574 1574  
1575 1575  
1576 1576  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1577,14 +1577,14 @@
1577 1577  
1578 1578  [[image:1653357592296-182.png]]
1579 1579  
1580 -Example to connect a 4~~20mA sensor
1619 +Example: Connecting a 4~~20mA sensor
1581 1581  
1582 -We take the wind speed sensor as an example for reference only.
1621 +We will use the wind speed sensor as an example for reference only.
1583 1583  
1584 1584  
1585 1585  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1586 1586  
1587 -(% style="color:red" %)**Red:  12~~24v**
1626 +(% style="color:red" %)**Red:  12~~24V**
1588 1588  
1589 1589  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1590 1590  
... ... @@ -1597,7 +1597,7 @@
1597 1597  [[image:1653357648330-671.png||height="155" width="733"]]
1598 1598  
1599 1599  
1600 -Example connected to a regulated power supply to measure voltage
1639 +Example: Connecting to a regulated power supply to measure voltage
1601 1601  
1602 1602  [[image:image-20230608101532-1.png||height="606" width="447"]]
1603 1603  
... ... @@ -1606,7 +1606,7 @@
1606 1606  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1607 1607  
1608 1608  
1609 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1648 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1610 1610  
1611 1611  (% style="color:red" %)**Red:  12~~24v**
1612 1612  
... ... @@ -1617,9 +1617,9 @@
1617 1617  
1618 1618  
1619 1619  (((
1620 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1659 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1621 1621  
1622 -**Note**: RO pins go to Open(NO) when device is power off.
1661 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1623 1623  )))
1624 1624  
1625 1625  [[image:image-20220524100215-9.png]]
... ... @@ -1634,9 +1634,6 @@
1634 1634  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1635 1635  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1636 1636  |**PWR**|Always on if there is power
1637 -|**SYS**|(((
1638 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1639 -)))
1640 1640  |**TX**|(((
1641 1641  (((
1642 1642  Device boot: TX blinks 5 times.
... ... @@ -1650,29 +1650,25 @@
1650 1650  Transmit a LoRa packet: TX blinks once
1651 1651  )))
1652 1652  )))
1653 -|**RX**|RX blinks once when receive a packet.
1654 -|**DO1**|
1655 -|**DO2**|
1656 -|**DO3**|
1657 -|**DI2**|(((
1658 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1689 +|**RX**|RX blinks once when receiving a packet.
1690 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1691 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1692 +|**DI1**|(((
1693 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1659 1659  )))
1660 1660  |**DI2**|(((
1661 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1696 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1662 1662  )))
1663 -|**DI2**|(((
1664 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1665 -)))
1666 -|**RO1**|
1667 -|**RO2**|
1698 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1699 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1668 1668  
1669 -= 4. Use AT Command =
1701 += 4. Using AT Command =
1670 1670  
1671 -== 4.1 Access AT Command ==
1703 +== 4.1 Connecting the LT-22222-L to a computer ==
1672 1672  
1673 1673  
1674 1674  (((
1675 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1707 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1676 1676  )))
1677 1677  
1678 1678  [[image:1653358238933-385.png]]
... ... @@ -1679,7 +1679,7 @@
1679 1679  
1680 1680  
1681 1681  (((
1682 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1714 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1683 1683  )))
1684 1684  
1685 1685  [[image:1653358355238-883.png]]
... ... @@ -1686,10 +1686,12 @@
1686 1686  
1687 1687  
1688 1688  (((
1689 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1721 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1690 1690  )))
1691 1691  
1692 1692  (((
1725 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1726 +
1693 1693  AT+<CMD>?        : Help on <CMD>
1694 1694  )))
1695 1695  
... ... @@ -2014,10 +2014,10 @@
2014 2014  
2015 2015  = 5. Case Study =
2016 2016  
2017 -== 5.1 Counting how many objects pass in Flow Line ==
2051 +== 5.1 Counting how many objects pass through the flow Line ==
2018 2018  
2019 2019  
2020 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2054 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2021 2021  
2022 2022  
2023 2023  = 6. FAQ =
... ... @@ -2025,26 +2025,26 @@
2025 2025  == 6.1 How to upgrade the image? ==
2026 2026  
2027 2027  
2028 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2062 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2029 2029  
2030 -* Support new features
2031 -* For bug fix
2064 +* Support new features.
2065 +* Fix bugs.
2032 2032  * Change LoRaWAN bands.
2033 2033  
2034 -Below shows the hardware connection for how to upload an image to the LT:
2068 +Below is the hardware connection setup for uploading an image to the LT:
2035 2035  
2036 2036  [[image:1653359603330-121.png]]
2037 2037  
2038 2038  
2039 2039  (((
2040 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2041 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2042 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2074 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2043 2043  
2044 2044  
2045 2045  (((
2046 2046  (% style="color:blue" %)**For LT-22222-L**(%%):
2047 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2081 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2048 2048  )))
2049 2049  
2050 2050  
... ... @@ -2059,7 +2059,7 @@
2059 2059  [[image:image-20220524104033-15.png]]
2060 2060  
2061 2061  
2062 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2096 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2063 2063  
2064 2064  [[image:1653360054704-518.png||height="186" width="745"]]
2065 2065  
... ... @@ -2073,13 +2073,13 @@
2073 2073  )))
2074 2074  
2075 2075  (((
2076 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2110 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2077 2077  )))
2078 2078  
2079 2079  (((
2080 2080  
2081 2081  
2082 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2116 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2083 2083  
2084 2084  
2085 2085  )))
... ... @@ -2086,13 +2086,13 @@
2086 2086  
2087 2087  (((
2088 2088  (((
2089 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2123 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2090 2090  )))
2091 2091  )))
2092 2092  
2093 2093  (((
2094 2094  (((
2095 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2129 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2096 2096  
2097 2097  
2098 2098  )))
... ... @@ -2099,7 +2099,7 @@
2099 2099  )))
2100 2100  
2101 2101  (((
2102 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2136 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2103 2103  
2104 2104  
2105 2105  )))
... ... @@ -2156,7 +2156,7 @@
2156 2156  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2157 2157  
2158 2158  
2159 -== 6.5 Can I see counting event in Serial? ==
2193 +== 6.5 Can I see the counting event in Serial? ==
2160 2160  
2161 2161  
2162 2162  (((
... ... @@ -2163,10 +2163,10 @@
2163 2163  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2164 2164  
2165 2165  
2166 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2200 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2167 2167  
2168 2168  
2169 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2203 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2170 2170  
2171 2171  
2172 2172  )))
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content