<
From version < 133.1 >
edited by Edwin Chen
on 2024/05/08 22:27
To version < 158.1 >
edited by Dilisi S
on 2024/11/01 05:19
>
Change comment: Oct 31 edits - part 2

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.pradeeka
Content
... ... @@ -19,36 +19,30 @@
19 19  
20 20  = 1.Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 -(((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
47 47  
48 48  (((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
50 50  
51 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
52 52  )))
53 53  
54 54  (((
... ... @@ -64,11 +64,10 @@
64 64  * STM32L072xxxx MCU
65 65  * SX1276/78 Wireless Chip 
66 66  * Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
67 67  
68 -* Idle: 4mA@12v
69 -* 20dB Transmit: [[34mA@12v>>mailto:34mA@12v]]
70 -
71 -
72 72  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
73 73  
74 74  * 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
... ... @@ -78,101 +78,44 @@
78 78  * 2 x 0~~30V Analog Input (res:0.01v)
79 79  * Power Input 7~~ 24V DC. 
80 80  
81 -
82 82  (% style="color:#037691" %)**LoRa Spec:**
83 83  
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
84 84  
85 -* (((
86 -(((
87 -Frequency Range:
88 -)))
89 -
90 -* (((
91 -Band 1 (HF): 862 ~~ 1020 Mhz
92 -)))
93 -* (((
94 -Band 2 (LF): 410 ~~ 528 Mhz
95 -)))
96 -)))
97 -* (((
98 -168 dB maximum link budget.
99 -)))
100 -* (((
101 -+20 dBm - 100 mW constant RF output vs.
102 -)))
103 -* (((
104 -+14 dBm high efficiency PA.
105 -)))
106 -* (((
107 -Programmable bit rate up to 300 kbps.
108 -)))
109 -* (((
110 -High sensitivity: down to -148 dBm.
111 -)))
112 -* (((
113 -Bullet-proof front end: IIP3 = -12.5 dBm.
114 -)))
115 -* (((
116 -Excellent blocking immunity.
117 -)))
118 -* (((
119 -Low RX current of 10.3 mA, 200 nA register retention.
120 -)))
121 -* (((
122 -Fully integrated synthesizer with a resolution of 61 Hz.
123 -)))
124 -* (((
125 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
126 -)))
127 -* (((
128 -Built-in bit synchronizer for clock recovery.
129 -)))
130 -* (((
131 -Preamble detection.
132 -)))
133 -* (((
134 -127 dB Dynamic Range RSSI.
135 -)))
136 -* (((
137 -Automatic RF Sense and CAD with ultra-fast AFC.
138 -)))
139 -* (((
140 -Packet engine up to 256 bytes with CRC.
141 -
142 -
143 -
144 -)))
145 -
146 146  == 1.3 Features ==
147 147  
148 -
149 149  * LoRaWAN Class A & Class C protocol
150 -
151 151  * Optional Customized LoRa Protocol
152 -
153 153  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
154 -
155 155  * AT Commands to change parameters
156 -
157 157  * Remote configure parameters via LoRa Downlink
158 -
159 159  * Firmware upgradable via program port
160 -
161 161  * Counting
162 162  
163 163  == 1.4 Applications ==
164 164  
165 -
166 166  * Smart Buildings & Home Automation
167 -
168 168  * Logistics and Supply Chain Management
169 -
170 170  * Smart Metering
171 -
172 172  * Smart Agriculture
173 -
174 174  * Smart Cities
175 -
176 176  * Smart Factory
177 177  
178 178  == 1.5 Hardware Variants ==
... ... @@ -192,92 +192,140 @@
192 192  * 1 x Counting Port
193 193  )))
194 194  
195 -= 2. Power ON Device =
131 += 2. Assembling the Device =
196 196  
133 +== 2.1 What is included in the package? ==
197 197  
198 -(((
199 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
200 -)))
135 +The package includes the following items:
201 201  
202 -(((
203 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
204 204  
205 -
206 -)))
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
207 207  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
208 208  [[image:1653297104069-180.png]]
209 209  
210 210  
211 211  = 3. Operation Mode =
212 212  
213 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
214 214  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
215 215  
216 -(((
217 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
218 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
219 219  
220 -(((
221 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
222 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
223 223  
190 +== 3.2 Registering with a LoRaWAN network server ==
224 224  
225 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
226 226  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
227 227  
228 -(((
229 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
230 230  
231 -
232 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
233 233  
234 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
235 235  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
236 236  
237 -(((
238 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
239 239  
240 -
241 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
242 242  
243 -(((
244 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
245 -)))
210 +==== Using the LoRaWAN Device Repository: ====
246 246  
247 -(((
248 -Each LT is shipped with a sticker with the default device EUI as below:
249 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
250 250  
251 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
252 252  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
253 253  
254 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
255 255  
256 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
257 257  
258 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
259 259  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
260 260  
261 -**Add APP KEY and DEV EUI**
262 262  
263 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
264 264  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
265 265  
266 -(((
267 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
268 268  
269 -
270 -)))
252 +==== Joining ====
271 271  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
272 272  [[image:1653298044601-602.png||height="405" width="709"]]
273 273  
274 274  
275 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
276 276  
277 277  
278 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
279 279  
280 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
281 281  
282 282  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
283 283  
... ... @@ -293,7 +293,7 @@
293 293  
294 294  
295 295  (((
296 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +In working mode MOD1, the uplink payload includes a total of 9 bytes. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
297 297  
298 298  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
299 299  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -311,23 +311,23 @@
311 311  )))
312 312  
313 313  (((
314 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte ,as shown below
315 315  
316 316  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
317 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
318 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
319 319  )))
320 320  
321 -* RO is for relay. ROx=1 : close, ROx=0 always open.
322 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
323 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
324 324  
325 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
326 326  
327 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
328 328  
329 329  
330 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
331 331  
332 332  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
333 333  
... ... @@ -339,23 +339,23 @@
339 339  
340 340  The last byte 0xAA= 10101010(B) means
341 341  
342 -* [1] RO1 relay channel is close and the RO1 LED is ON.
343 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
344 344  
345 345  **LT22222-L:**
346 346  
347 -* [1] DI2 channel is high input and DI2 LED is ON;
348 -* [0] DI1 channel is low input;
331 +* [1] DI2 channel is high input and DI2 LED is ON.
332 +* [0] DI1 channel is low input.
349 349  
350 350  * [0] DO3 channel output state
351 -** DO3 is float in case no load between DO3 and V+.;
335 +** DO3 is float in case no load between DO3 and V+.
352 352  ** DO3 is high in case there is load between DO3 and V+.
353 353  ** DO3 LED is off in both case
354 354  * [1] DO2 channel output is low and DO2 LED is ON.
355 355  * [0] DO1 channel output state
356 -** DO1 is float in case no load between DO1 and V+.;
340 +** DO1 is float in case no load between DO1 and V+.
357 357  ** DO1 is high in case there is load between DO1 and V+.
358 -** DO1 LED is off in both case
342 +** DO1 LED is off in both case.
359 359  
360 360  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
361 361  
... ... @@ -1369,54 +1369,71 @@
1369 1369  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1370 1370  
1371 1371  
1372 -== 3.5 Integrate with Mydevice ==
1356 +== 3.5 Integrating with ThingsEye.io ==
1373 1373  
1358 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1374 1374  
1375 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1360 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1376 1376  
1377 -(((
1378 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1379 -)))
1362 +* Go to your Application and select MQTT under Integrations.
1363 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1364 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1380 1380  
1381 -(((
1382 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1366 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1383 1383  
1384 -
1385 -)))
1368 +=== 3.5.2 Configuring ThingsEye.io ===
1386 1386  
1387 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1370 +* Login to your thingsEye.io account.
1371 +* Under the Integrations center, click Integrations.
1372 +* Click the Add integration button (the button with the + symbol).
1388 1388  
1374 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1389 1389  
1390 1390  
1391 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1377 +On the Add integration page configure the following:
1392 1392  
1379 +Basic settings:
1393 1393  
1394 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1381 +* Select The Things Stack Community from the Integration type list.
1382 +* Enter a suitable name for your integration in the Name box or keep the default name.
1383 +* Click the Next button.
1395 1395  
1396 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1385 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1397 1397  
1398 -Search under The things network
1387 +Uplink Data converter:
1399 1399  
1400 -[[image:1653356838789-523.png||height="337" width="740"]]
1389 +* Click the Create New button if it is not selected by default.
1390 +* Click the JavaScript button.
1391 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1392 +* Click the Next button.
1401 1401  
1394 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1402 1402  
1403 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1396 +Downlink Data converter (this is an optional step):
1404 1404  
1405 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1398 +* Click the Create new button if it is not selected by default.
1399 +* Click the JavaScript button.
1400 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1401 +* Click the Next button.
1406 1406  
1403 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1407 1407  
1408 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1405 +Connection:
1409 1409  
1407 +* Choose Region from the Host type.
1408 +* Enter the cluster of your The Things Stack in the Region textbox.
1409 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1410 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1411 +* Click the Add button.
1410 1410  
1411 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1413 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1412 1412  
1413 1413  
1414 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1416 +Your integration is added to the integrations list and it will display on the Integrations page.
1415 1415  
1418 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1416 1416  
1417 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1418 1418  
1419 -
1420 1420  == 3.6 Interface Detail ==
1421 1421  
1422 1422  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
... ... @@ -1634,9 +1634,6 @@
1634 1634  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1635 1635  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1636 1636  |**PWR**|Always on if there is power
1637 -|**SYS**|(((
1638 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1639 -)))
1640 1640  |**TX**|(((
1641 1641  (((
1642 1642  Device boot: TX blinks 5 times.
... ... @@ -1651,20 +1651,16 @@
1651 1651  )))
1652 1652  )))
1653 1653  |**RX**|RX blinks once when receive a packet.
1654 -|**DO1**|
1655 -|**DO2**|
1656 -|**DO3**|
1657 -|**DI2**|(((
1658 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1652 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1653 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1654 +|**DI1**|(((
1655 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1659 1659  )))
1660 1660  |**DI2**|(((
1661 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1658 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1662 1662  )))
1663 -|**DI2**|(((
1664 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1665 -)))
1666 -|**RO1**|
1667 -|**RO2**|
1660 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1661 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1668 1668  
1669 1669  = 4. Use AT Command =
1670 1670  
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0