Last modified by Mengting Qiu on 2025/06/04 18:42

From version 132.2
edited by Xiaoling
on 2024/03/05 08:51
Change comment: There is no comment for this version
To version 165.1
edited by Dilisi S
on 2024/11/06 22:47
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -17,38 +17,32 @@
17 17  
18 18  
19 19  
20 -= 1.Introduction =
20 += 1. Introduction =
21 21  
22 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
23 23  
24 24  (((
25 -
26 -
27 27  (((
28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
29 -)))
30 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
38 38  )))
39 39  
40 40  (((
41 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 -(((
45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
46 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
47 47  
48 48  (((
49 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
50 50  
51 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
52 52  )))
53 53  
54 54  (((
... ... @@ -59,153 +59,62 @@
59 59  
60 60  == 1.2 Specifications ==
61 61  
62 -(((
63 -
64 -
65 65  (% style="color:#037691" %)**Hardware System:**
66 -)))
67 67  
68 -* (((
69 -STM32L072xxxx MCU
70 -)))
71 -* (((
72 -SX1276/78 Wireless Chip 
73 -)))
74 -* (((
75 -(((
76 -Power Consumption:
77 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
78 78  
79 -* (((
80 -Idle: 4mA@12v
81 -)))
82 -* (((
83 -20dB Transmit: 34mA@12v
84 -)))
85 -)))
86 -
87 -(((
88 -
89 -
90 90  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
91 -)))
92 92  
93 -* (((
94 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
95 -)))
96 -* (((
97 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
98 -)))
99 -* (((
100 -2 x Relay Output (5A@250VAC / 30VDC)
101 -)))
102 -* (((
103 -2 x 0~~20mA Analog Input (res:0.01mA)
104 -)))
105 -* (((
106 -2 x 0~~30V Analog Input (res:0.01v)
107 -)))
108 -* (((
109 -Power Input 7~~ 24V DC. 
110 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
111 111  
112 -(((
113 -
114 -
115 115  (% style="color:#037691" %)**LoRa Spec:**
116 -)))
117 117  
118 -* (((
119 -(((
120 -Frequency Range:
121 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
122 122  
123 -* (((
124 -Band 1 (HF): 862 ~~ 1020 Mhz
125 -)))
126 -* (((
127 -Band 2 (LF): 410 ~~ 528 Mhz
128 -)))
129 -)))
130 -* (((
131 -168 dB maximum link budget.
132 -)))
133 -* (((
134 -+20 dBm - 100 mW constant RF output vs.
135 -)))
136 -* (((
137 -+14 dBm high efficiency PA.
138 -)))
139 -* (((
140 -Programmable bit rate up to 300 kbps.
141 -)))
142 -* (((
143 -High sensitivity: down to -148 dBm.
144 -)))
145 -* (((
146 -Bullet-proof front end: IIP3 = -12.5 dBm.
147 -)))
148 -* (((
149 -Excellent blocking immunity.
150 -)))
151 -* (((
152 -Low RX current of 10.3 mA, 200 nA register retention.
153 -)))
154 -* (((
155 -Fully integrated synthesizer with a resolution of 61 Hz.
156 -)))
157 -* (((
158 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
159 -)))
160 -* (((
161 -Built-in bit synchronizer for clock recovery.
162 -)))
163 -* (((
164 -Preamble detection.
165 -)))
166 -* (((
167 -127 dB Dynamic Range RSSI.
168 -)))
169 -* (((
170 -Automatic RF Sense and CAD with ultra-fast AFC.
171 -)))
172 -* (((
173 -Packet engine up to 256 bytes with CRC.
174 -
175 -
176 -
177 -)))
178 -
179 179  == 1.3 Features ==
180 180  
181 -
182 182  * LoRaWAN Class A & Class C protocol
183 -
184 184  * Optional Customized LoRa Protocol
185 -
186 186  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
187 -
188 188  * AT Commands to change parameters
189 -
190 -* Remote configure parameters via LoRa Downlink
191 -
101 +* Remotely configure parameters via LoRaWAN Downlink
192 192  * Firmware upgradable via program port
193 -
194 194  * Counting
195 195  
196 196  == 1.4 Applications ==
197 197  
198 -
199 199  * Smart Buildings & Home Automation
200 -
201 201  * Logistics and Supply Chain Management
202 -
203 203  * Smart Metering
204 -
205 205  * Smart Agriculture
206 -
207 207  * Smart Cities
208 -
209 209  * Smart Factory
210 210  
211 211  == 1.5 Hardware Variants ==
... ... @@ -225,92 +225,140 @@
225 225  * 1 x Counting Port
226 226  )))
227 227  
228 -= 2. Power ON Device =
131 += 2. Assembling the Device =
229 229  
133 +== 2.1 What is included in the package? ==
230 230  
231 -(((
232 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
233 -)))
135 +The package includes the following items:
234 234  
235 -(((
236 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
237 237  
238 -
239 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
240 240  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
241 241  [[image:1653297104069-180.png]]
242 242  
243 243  
244 244  = 3. Operation Mode =
245 245  
246 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
247 247  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
248 248  
249 -(((
250 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
251 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
252 252  
253 -(((
254 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
255 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
256 256  
190 +== 3.2 Registering with a LoRaWAN network server ==
257 257  
258 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
259 259  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
260 260  
261 -(((
262 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
263 263  
264 -
265 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
266 266  
267 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
268 268  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
269 269  
270 -(((
271 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
272 272  
273 -
274 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
275 275  
276 -(((
277 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
278 -)))
210 +==== Using the LoRaWAN Device Repository: ====
279 279  
280 -(((
281 -Each LT is shipped with a sticker with the default device EUI as below:
282 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
283 283  
284 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
285 285  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
286 286  
287 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
288 288  
289 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
290 290  
291 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
292 292  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
293 293  
294 -**Add APP KEY and DEV EUI**
295 295  
296 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
297 297  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
301 301  
302 -
303 -)))
252 +==== Joining ====
304 304  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
305 305  [[image:1653298044601-602.png||height="405" width="709"]]
306 306  
307 307  
308 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
309 309  
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
314 314  
315 315  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316 316  
... ... @@ -326,7 +326,7 @@
326 326  
327 327  
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
330 330  
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 332  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -344,23 +344,23 @@
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : close, ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
364 364  
365 365  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
... ... @@ -370,35 +370,32 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
402 402  
403 403  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
404 404  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -408,26 +408,26 @@
408 408  )))
409 409  
410 410  (((
411 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
412 412  
413 413  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
414 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
415 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -RO is for relay. ROx=1 : close , ROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
418 418  )))
419 419  
420 -* FIRST: Indicate this is the first packet after join network.
421 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
422 422  
423 423  (((
424 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
425 425  
426 426  
427 427  )))
428 428  
429 429  (((
430 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
431 431  )))
432 432  
433 433  (((
... ... @@ -448,17 +448,17 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
... ... @@ -465,7 +465,7 @@
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 471  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -476,24 +476,24 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : close, ROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 492  )))
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
497 497  )))
498 498  
499 499  (((
... ... @@ -506,7 +506,9 @@
506 506  )))
507 507  
508 508  (((
509 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
510 510  )))
511 511  
512 512  
... ... @@ -514,11 +514,11 @@
514 514  
515 515  
516 516  (((
517 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
518 518  )))
519 519  
520 520  (((
521 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
522 522  
523 523  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
524 524  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -528,25 +528,25 @@
528 528  )))
529 529  
530 530  (((
531 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
532 532  
533 533  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
535 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
536 536  )))
537 537  
538 -* RO is for relay. ROx=1 : close, ROx=0 always open.
539 -* FIRST: Indicate this is the first packet after join network.
540 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
541 541  
542 542  (((
543 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
544 544  
545 545  
546 546  )))
547 547  
548 548  (((
549 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
550 550  )))
551 551  
552 552  (((
... ... @@ -559,19 +559,19 @@
559 559  )))
560 560  
561 561  (((
562 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
563 563  )))
564 564  
565 565  (((
566 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
567 567  
568 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
569 569  
570 570  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  
572 572  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
573 573  
574 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
575 575  )))
576 576  
577 577  
... ... @@ -578,7 +578,7 @@
578 578  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
579 579  
580 580  
581 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
582 582  
583 583  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
584 584  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -593,25 +593,25 @@
593 593  )))|MOD
594 594  
595 595  (((
596 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
597 597  
598 598  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
600 600  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
601 601  )))
602 602  
603 -* RO is for relay. ROx=1 : close, ROx=0 always open.
604 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
605 605  * (((
606 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
607 607  )))
608 608  
609 609  (((
610 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
611 611  )))
612 612  
613 613  (((
614 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
615 615  )))
616 616  
617 617  (((
... ... @@ -624,7 +624,7 @@
624 624  )))
625 625  
626 626  (((
627 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 628  )))
629 629  
630 630  
... ... @@ -631,49 +631,46 @@
631 631  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
632 632  
633 633  
634 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
635 635  
636 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
637 637  
638 638  * **AT+MOD=1 ** **~-~->**  The normal working mode
639 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
640 640  
641 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
642 642  
643 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
644 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
645 645  
646 646  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
647 647  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
648 648  
649 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
650 -
651 651  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
652 652  
653 653  
654 654  **Example:**
655 655  
656 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
657 657  
658 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
659 659  
660 660  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
661 661  
662 -(% style="color:#4f81bd" %)**Trigger base on current**:
663 -
664 664  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
665 665  
666 666  
667 667  **Example:**
668 668  
669 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
670 670  
671 671  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
672 672  
673 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
674 674  
675 -DI status trigger Flag.
676 -
677 677  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
678 678  
679 679  
... ... @@ -682,39 +682,38 @@
682 682  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
683 683  
684 684  
685 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
686 686  
687 687  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
688 688  
689 689  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
690 690  
691 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
692 692  
693 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
694 694  
695 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
696 696  
697 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
698 698  
699 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
700 700  
701 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
702 702  
703 703  
704 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
705 705  
706 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
707 707  
708 708  
709 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
710 710  
711 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
712 712  
713 713  
714 -
715 715  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
716 716  
717 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
718 718  
719 719  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
720 720  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -728,10 +728,10 @@
728 728  MOD(6)
729 729  )))
730 730  
731 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
732 732  
733 733  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
734 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
735 735  |(((
736 736  AV1_LOW
737 737  )))|(((
... ... @@ -750,17 +750,17 @@
750 750  AC2_HIGH
751 751  )))
752 752  
753 -* Each bits shows if the corresponding trigger has been configured.
699 +* Each bit shows if the corresponding trigger has been configured.
754 754  
755 755  **Example:**
756 756  
757 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
758 758  
759 759  
760 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
761 761  
762 762  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
763 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
764 764  |(((
765 765  AV1_LOW
766 766  )))|(((
... ... @@ -779,11 +779,11 @@
779 779  AC2_HIGH
780 780  )))
781 781  
782 -* Each bits shows which status has been trigger on this uplink.
728 +* Each bit shows which status has been triggered on this uplink.
783 783  
784 784  **Example:**
785 785  
786 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
787 787  
788 788  
789 789  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -792,7 +792,7 @@
792 792  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
793 793  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
794 794  
795 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
796 796  
797 797  **Example:**
798 798  
... ... @@ -849,33 +849,37 @@
849 849  ==== 3.4.2.1 Set Transmit Interval ====
850 850  
851 851  
852 -Set device uplink interval.
798 +Sets the uplink interval of the device.
853 853  
854 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
855 855  
856 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
857 857  
804 +where N is the time in milliseconds.
858 858  
859 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
860 860  
861 861  
862 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
863 863  
864 864  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
865 865  
866 866  
867 867  
868 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
869 869  
870 870  
871 -Set work mode.
818 +Sets the work mode.
872 872  
873 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
874 874  
875 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
822 +Where N is the work mode.
876 876  
877 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
878 878  
826 +
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
828 +
879 879  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
880 880  
881 881  
... ... @@ -883,10 +883,12 @@
883 883  ==== 3.4.2.3 Poll an uplink ====
884 884  
885 885  
886 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
836 +Asks the device to send an uplink.
887 887  
888 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
889 889  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
841 +
890 890  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
891 891  
892 892  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -893,16 +893,16 @@
893 893  
894 894  
895 895  
896 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
897 897  
898 898  
899 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
900 900  
901 901  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
902 902  
903 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
904 904  
905 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
906 906  
907 907  
908 908  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -914,7 +914,7 @@
914 914  ==== 3.4.2.5 Poll trigger settings ====
915 915  
916 916  
917 -Poll trigger settings
869 +Polls the trigger settings
918 918  
919 919  * (% style="color:#037691" %)**AT Command:**
920 920  
... ... @@ -922,7 +922,7 @@
922 922  
923 923  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
924 924  
925 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
926 926  
927 927  
928 928  
... ... @@ -929,11 +929,11 @@
929 929  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
930 930  
931 931  
932 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
933 933  
934 934  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
935 935  
936 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
937 937  
938 938  
939 939  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -965,15 +965,15 @@
965 965  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
966 966  
967 967  
968 -Set DI2 trigger.
920 +Sets DI2 trigger.
969 969  
970 970  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
971 971  
972 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
973 973  
974 974  (% style="color:red" %)**b :** (%%)delay timing.
975 975  
976 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
977 977  
978 978  
979 979  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1011,7 +1011,7 @@
1011 1011  ==== 3.4.2.11 Trigger – Set minimum interval ====
1012 1012  
1013 1013  
1014 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1015 1015  
1016 1016  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1017 1017  
... ... @@ -1159,7 +1159,7 @@
1159 1159  )))
1160 1160  
1161 1161  (((
1162 -00: Close ,  01: Open , 11: No action
1114 +00: Closed ,  01: Open , 11: No action
1163 1163  
1164 1164  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1165 1165  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1281,7 +1281,7 @@
1281 1281  
1282 1282  
1283 1283  
1284 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1285 1285  
1286 1286  
1287 1287  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1402,74 +1402,91 @@
1402 1402  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1403 1403  
1404 1404  
1405 -== 3.5 Integrate with Mydevice ==
1357 +== 3.5 Integrating with ThingsEye.io ==
1406 1406  
1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1407 1407  
1408 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1361 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1412 -)))
1363 +* Go to your Application and select MQTT under Integrations.
1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1413 1413  
1414 -(((
1415 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1416 1416  
1417 -
1418 -)))
1369 +=== 3.5.2 Configuring ThingsEye.io ===
1419 1419  
1420 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1371 +* Login to your thingsEye.io account.
1372 +* Under the Integrations center, click Integrations.
1373 +* Click the Add integration button (the button with the + symbol).
1421 1421  
1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1422 1422  
1423 1423  
1424 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1378 +On the Add integration page configure the following:
1425 1425  
1380 +Basic settings:
1426 1426  
1427 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1382 +* Select The Things Stack Community from the Integration type list.
1383 +* Enter a suitable name for your integration in the Name box or keep the default name.
1384 +* Click the Next button.
1428 1428  
1429 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1430 1430  
1431 -Search under The things network
1388 +Uplink Data converter:
1432 1432  
1433 -[[image:1653356838789-523.png||height="337" width="740"]]
1390 +* Click the Create New button if it is not selected by default.
1391 +* Click the JavaScript button.
1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1393 +* Click the Next button.
1434 1434  
1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1435 1435  
1436 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1397 +Downlink Data converter (this is an optional step):
1437 1437  
1438 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1399 +* Click the Create new button if it is not selected by default.
1400 +* Click the JavaScript button.
1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1402 +* Click the Next button.
1439 1439  
1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1440 1440  
1441 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1406 +Connection:
1442 1442  
1408 +* Choose Region from the Host type.
1409 +* Enter the cluster of your The Things Stack in the Region textbox.
1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1412 +* Click the Add button.
1443 1443  
1444 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1445 1445  
1446 1446  
1447 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1417 +Your integration is added to the integrations list and it will display on the Integrations page.
1448 1448  
1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1449 1449  
1450 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1451 1451  
1422 +== 3.6 Interface Details ==
1452 1452  
1453 -== 3.6 Interface Detail ==
1454 -
1455 1455  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1456 1456  
1457 1457  
1458 -Support NPN Type sensor
1427 +Support NPN-type sensor
1459 1459  
1460 1460  [[image:1653356991268-289.png]]
1461 1461  
1462 1462  
1463 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1464 1464  
1465 1465  
1466 1466  (((
1467 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1468 1468  )))
1469 1469  
1470 1470  (((
1471 1471  (((
1472 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1473 1473  
1474 1474  
1475 1475  )))
... ... @@ -1479,7 +1479,7 @@
1479 1479  
1480 1480  (((
1481 1481  (((
1482 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1483 1483  )))
1484 1484  )))
1485 1485  
... ... @@ -1488,22 +1488,22 @@
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1492 1492  )))
1493 1493  
1494 1494  (((
1495 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1496 1496  )))
1497 1497  
1498 1498  * (((
1499 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1500 1500  )))
1501 1501  * (((
1502 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1503 1503  )))
1504 1504  
1505 1505  (((
1506 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1507 1507  )))
1508 1508  
1509 1509  (((
... ... @@ -1511,7 +1511,7 @@
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1515 1515  )))
1516 1516  
1517 1517  (((
... ... @@ -1519,22 +1519,22 @@
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1527 1527  )))
1528 1528  
1529 1529  * (((
1530 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1531 1531  )))
1532 1532  * (((
1533 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1534 1534  )))
1535 1535  
1536 1536  (((
1537 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1538 1538  )))
1539 1539  
1540 1540  (((
... ... @@ -1542,7 +1542,7 @@
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1546 1546  )))
1547 1547  
1548 1548  (((
... ... @@ -1550,22 +1550,22 @@
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1554 1554  )))
1555 1555  
1556 1556  (((
1557 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1558 1558  )))
1559 1559  
1560 1560  * (((
1561 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1562 1562  )))
1563 1563  * (((
1564 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1565 1565  )))
1566 1566  
1567 1567  (((
1568 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1569 1569  )))
1570 1570  
1571 1571  (((
... ... @@ -1573,37 +1573,37 @@
1573 1573  )))
1574 1574  
1575 1575  (((
1576 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1577 1577  )))
1578 1578  
1579 1579  
1580 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1581 1581  
1582 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1583 1583  
1584 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1585 1585  
1586 1586  [[image:image-20230616235145-1.png]]
1587 1587  
1588 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1589 1589  
1590 1590  [[image:image-20240219115718-1.png]]
1591 1591  
1592 1592  
1593 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1594 1594  
1595 1595  
1596 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1597 1597  
1598 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1599 1599  
1600 1600  [[image:1653357531600-905.png]]
1601 1601  
1602 1602  
1603 -=== 3.6.4 Analog Input Interface ===
1572 +=== 3.6.4 Analog Input Interfaces ===
1604 1604  
1605 1605  
1606 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1607 1607  
1608 1608  
1609 1609  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1610,14 +1610,14 @@
1610 1610  
1611 1611  [[image:1653357592296-182.png]]
1612 1612  
1613 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1614 1614  
1615 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1616 1616  
1617 1617  
1618 1618  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1619 1619  
1620 -(% style="color:red" %)**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1621 1621  
1622 1622  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1623 1623  
... ... @@ -1630,7 +1630,7 @@
1630 1630  [[image:1653357648330-671.png||height="155" width="733"]]
1631 1631  
1632 1632  
1633 -Example connected to a regulated power supply to measure voltage
1602 +Example: Connecting to a regulated power supply to measure voltage
1634 1634  
1635 1635  [[image:image-20230608101532-1.png||height="606" width="447"]]
1636 1636  
... ... @@ -1639,7 +1639,7 @@
1639 1639  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1640 1640  
1641 1641  
1642 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1643 1643  
1644 1644  (% style="color:red" %)**Red:  12~~24v**
1645 1645  
... ... @@ -1650,9 +1650,9 @@
1650 1650  
1651 1651  
1652 1652  (((
1653 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1654 1654  
1655 -**Note**: RO pins go to Open(NO) when device is power off.
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1656 1656  )))
1657 1657  
1658 1658  [[image:image-20220524100215-9.png]]
... ... @@ -1667,9 +1667,6 @@
1667 1667  (% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1668 1668  |(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1669 1669  |**PWR**|Always on if there is power
1670 -|**SYS**|(((
1671 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1672 -)))
1673 1673  |**TX**|(((
1674 1674  (((
1675 1675  Device boot: TX blinks 5 times.
... ... @@ -1683,40 +1683,32 @@
1683 1683  Transmit a LoRa packet: TX blinks once
1684 1684  )))
1685 1685  )))
1686 -|**RX**|RX blinks once when receive a packet.
1687 -|**DO1**|
1688 -|**DO2**|
1689 -|**DO3**|
1690 -|**DI2**|(((
1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1655 +|**DI1**|(((
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1692 1692  )))
1693 1693  |**DI2**|(((
1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1695 1695  )))
1696 -|**DI2**|(((
1697 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1698 -)))
1699 -|**RO1**|
1700 -|**RO2**|
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1701 1701  
1702 -= 4. Use AT Command =
1664 += 4. Using AT Command =
1703 1703  
1704 -== 4.1 Access AT Command ==
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1705 1705  
1706 1706  
1707 1707  (((
1708 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1709 1709  )))
1710 1710  
1711 -(((
1712 -
1713 -)))
1714 -
1715 1715  [[image:1653358238933-385.png]]
1716 1716  
1717 1717  
1718 1718  (((
1719 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1720 1720  )))
1721 1721  
1722 1722  [[image:1653358355238-883.png]]
... ... @@ -1723,10 +1723,12 @@
1723 1723  
1724 1724  
1725 1725  (((
1726 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1727 1727  )))
1728 1728  
1729 1729  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1730 1730  AT+<CMD>?        : Help on <CMD>
1731 1731  )))
1732 1732  
... ... @@ -2051,10 +2051,10 @@
2051 2051  
2052 2052  = 5. Case Study =
2053 2053  
2054 -== 5.1 Counting how many objects pass in Flow Line ==
2014 +== 5.1 Counting how many objects pass through the flow Line ==
2055 2055  
2056 2056  
2057 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2058 2058  
2059 2059  
2060 2060  = 6. FAQ =
... ... @@ -2062,26 +2062,26 @@
2062 2062  == 6.1 How to upgrade the image? ==
2063 2063  
2064 2064  
2065 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2066 2066  
2067 -* Support new features
2068 -* For bug fix
2027 +* Support new features.
2028 +* Fix bugs.
2069 2069  * Change LoRaWAN bands.
2070 2070  
2071 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
2072 2072  
2073 2073  [[image:1653359603330-121.png]]
2074 2074  
2075 2075  
2076 2076  (((
2077 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2078 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2079 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2080 2080  
2081 2081  
2082 2082  (((
2083 2083  (% style="color:blue" %)**For LT-22222-L**(%%):
2084 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2085 2085  )))
2086 2086  
2087 2087  
... ... @@ -2096,7 +2096,7 @@
2096 2096  [[image:image-20220524104033-15.png]]
2097 2097  
2098 2098  
2099 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2100 2100  
2101 2101  [[image:1653360054704-518.png||height="186" width="745"]]
2102 2102  
... ... @@ -2110,13 +2110,13 @@
2110 2110  )))
2111 2111  
2112 2112  (((
2113 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2114 2114  )))
2115 2115  
2116 2116  (((
2117 2117  
2118 2118  
2119 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2120 2120  
2121 2121  
2122 2122  )))
... ... @@ -2123,13 +2123,13 @@
2123 2123  
2124 2124  (((
2125 2125  (((
2126 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2127 2127  )))
2128 2128  )))
2129 2129  
2130 2130  (((
2131 2131  (((
2132 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2133 2133  
2134 2134  
2135 2135  )))
... ... @@ -2136,7 +2136,7 @@
2136 2136  )))
2137 2137  
2138 2138  (((
2139 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2140 2140  
2141 2141  
2142 2142  )))
... ... @@ -2193,7 +2193,7 @@
2193 2193  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2194 2194  
2195 2195  
2196 -== 6.5 Can I see counting event in Serial? ==
2156 +== 6.5 Can I see the counting event in Serial? ==
2197 2197  
2198 2198  
2199 2199  (((
... ... @@ -2200,10 +2200,10 @@
2200 2200  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2201 2201  
2202 2202  
2203 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2204 2204  
2205 2205  
2206 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2207 2207  
2208 2208  
2209 2209  )))
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content