Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
From version 131.1
edited by Mengting Qiu
on 2024/03/04 14:47
on 2024/03/04 14:47
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 12 added, 0 removed)
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. ting1 +XWiki.pradeeka - Content
-
... ... @@ -17,38 +17,32 @@ 17 17 18 18 19 19 20 -= 1.Introduction = 20 += 1. Introduction = 21 21 22 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 23 23 24 24 ((( 25 - 26 - 27 27 ((( 28 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 29 -))) 30 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 31 31 32 -((( 33 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 34 34 ))) 35 - 36 -((( 37 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 38 38 ))) 39 39 40 40 ((( 41 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 42 42 ))) 43 43 44 -((( 45 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 46 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 47 47 48 48 ((( 49 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 50 50 51 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 52 52 ))) 53 53 54 54 ((( ... ... @@ -59,153 +59,62 @@ 59 59 60 60 == 1.2 Specifications == 61 61 62 -((( 63 - 64 - 65 65 (% style="color:#037691" %)**Hardware System:** 66 -))) 67 67 68 -* ((( 69 -STM32L072xxxx MCU 70 -))) 71 -* ((( 72 -SX1276/78 Wireless Chip 73 -))) 74 -* ((( 75 -((( 76 -Power Consumption: 77 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 78 78 79 -* ((( 80 -Idle: 4mA@12v 81 -))) 82 -* ((( 83 -20dB Transmit: 34mA@12v 84 -))) 85 -))) 86 - 87 -((( 88 - 89 - 90 90 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 91 -))) 92 92 93 -* ((( 94 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 95 -))) 96 -* ((( 97 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 98 -))) 99 -* ((( 100 -2 x Relay Output (5A@250VAC / 30VDC) 101 -))) 102 -* ((( 103 -2 x 0~~20mA Analog Input (res:0.01mA) 104 -))) 105 -* ((( 106 -2 x 0~~30V Analog Input (res:0.01v) 107 -))) 108 -* ((( 109 -Power Input 7~~ 24V DC. 110 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 111 111 112 -((( 113 - 114 - 115 115 (% style="color:#037691" %)**LoRa Spec:** 116 -))) 117 117 118 -* ((( 119 -((( 120 -Frequency Range: 121 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high-efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 122 122 123 -* ((( 124 -Band 1 (HF): 862 ~~ 1020 Mhz 125 -))) 126 -* ((( 127 -Band 2 (LF): 410 ~~ 528 Mhz 128 -))) 129 -))) 130 -* ((( 131 -168 dB maximum link budget. 132 -))) 133 -* ((( 134 -+20 dBm - 100 mW constant RF output vs. 135 -))) 136 -* ((( 137 -+14 dBm high efficiency PA. 138 -))) 139 -* ((( 140 -Programmable bit rate up to 300 kbps. 141 -))) 142 -* ((( 143 -High sensitivity: down to -148 dBm. 144 -))) 145 -* ((( 146 -Bullet-proof front end: IIP3 = -12.5 dBm. 147 -))) 148 -* ((( 149 -Excellent blocking immunity. 150 -))) 151 -* ((( 152 -Low RX current of 10.3 mA, 200 nA register retention. 153 -))) 154 -* ((( 155 -Fully integrated synthesizer with a resolution of 61 Hz. 156 -))) 157 -* ((( 158 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 159 -))) 160 -* ((( 161 -Built-in bit synchronizer for clock recovery. 162 -))) 163 -* ((( 164 -Preamble detection. 165 -))) 166 -* ((( 167 -127 dB Dynamic Range RSSI. 168 -))) 169 -* ((( 170 -Automatic RF Sense and CAD with ultra-fast AFC. 171 -))) 172 -* ((( 173 -Packet engine up to 256 bytes with CRC. 174 - 175 - 176 - 177 -))) 178 - 179 179 == 1.3 Features == 180 180 181 - 182 182 * LoRaWAN Class A & Class C protocol 183 - 184 184 * Optional Customized LoRa Protocol 185 - 186 186 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 187 - 188 188 * AT Commands to change parameters 189 - 190 -* Remote configure parameters via LoRa Downlink 191 - 101 +* Remotely configure parameters via LoRaWAN Downlink 192 192 * Firmware upgradable via program port 193 - 194 194 * Counting 195 195 196 196 == 1.4 Applications == 197 197 198 - 199 199 * Smart Buildings & Home Automation 200 - 201 201 * Logistics and Supply Chain Management 202 - 203 203 * Smart Metering 204 - 205 205 * Smart Agriculture 206 - 207 207 * Smart Cities 208 - 209 209 * Smart Factory 210 210 211 211 == 1.5 Hardware Variants == ... ... @@ -225,92 +225,140 @@ 225 225 * 1 x Counting Port 226 226 ))) 227 227 228 -= 2. PowerONDevice =131 += 2. Assembling the Device = 229 229 133 +== 2.1 What is included in the package? == 230 230 231 -((( 232 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 233 -))) 135 +The package includes the following items: 234 234 235 -((( 236 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 237 237 238 - 239 -))) 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 240 240 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 241 241 [[image:1653297104069-180.png]] 242 242 243 243 244 244 = 3. Operation Mode = 245 245 246 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 247 247 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 248 248 249 -((( 250 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 251 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 252 252 253 -((( 254 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 255 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 256 256 190 +== 3.2 Registering with a LoRaWAN network server == 257 257 258 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 259 259 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 260 260 261 -((( 262 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 263 263 264 - 265 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 266 266 267 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 268 268 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 269 269 270 -((( 271 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 272 272 273 - 274 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 275 275 276 -((( 277 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 278 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 279 279 280 -((( 281 -Each LT is shipped with a sticker with the default device EUI as below: 282 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 283 283 284 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 285 285 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 286 286 287 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 288 288 289 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 290 290 291 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 292 292 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 293 293 294 -**Add APP KEY and DEV EUI** 295 295 296 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 297 297 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 298 298 299 -((( 300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 301 301 302 - 303 -))) 252 +==== Joining ==== 304 304 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 255 + 305 305 [[image:1653298044601-602.png||height="405" width="709"]] 306 306 307 307 308 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 309 309 310 310 311 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 312 312 313 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 314 314 315 315 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 316 316 ... ... @@ -326,7 +326,7 @@ 326 326 327 327 328 328 ((( 329 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 330 330 331 331 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 332 332 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -344,23 +344,23 @@ 344 344 ))) 345 345 346 346 ((( 347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 348 348 349 349 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 352 352 ))) 353 353 354 -* RO is for relay. ROx=1 355 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 357 357 358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 359 359 360 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 361 361 362 362 363 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 364 364 365 365 AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 366 366 ... ... @@ -370,35 +370,32 @@ 370 370 371 371 ACI2 channel current is 0x1300/1000=4.864mA 372 372 373 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= **10101010**(b) means, 374 374 375 -* [1] RO1 relay channel is close and the RO1 LED is ON. 376 -* [0] RO2 relay channel is open and RO2 LED is OFF; 326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 - not used for LT-22222-L. 335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 336 +* [0] DO1 channel output state: 337 +** DO1 is FLOATING when there is no load between DO1 and V+. 338 +** DO1 is HIGH when there is a load between DO1 and V+. 339 +** DO1 LED is OFF in both cases. 377 377 378 -**LT22222-L:** 379 - 380 -* [1] DI2 channel is high input and DI2 LED is ON; 381 -* [0] DI1 channel is low input; 382 - 383 -* [0] DO3 channel output state 384 -** DO3 is float in case no load between DO3 and V+.; 385 -** DO3 is high in case there is load between DO3 and V+. 386 -** DO3 LED is off in both case 387 -* [1] DO2 channel output is low and DO2 LED is ON. 388 -* [0] DO1 channel output state 389 -** DO1 is float in case no load between DO1 and V+.; 390 -** DO1 is high in case there is load between DO1 and V+. 391 -** DO1 LED is off in both case 392 - 393 393 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 394 394 395 395 396 396 ((( 397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 398 398 ))) 399 399 400 400 ((( 401 -T otal:11 bytespayload349 +The uplink payload is 11 bytes long. 402 402 403 403 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 404 404 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -408,26 +408,26 @@ 408 408 ))) 409 409 410 410 ((( 411 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 412 412 413 413 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 414 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 415 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 416 416 417 -RO is for relay. ROx=1 365 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 418 418 ))) 419 419 420 -* FIRST: Indicate this is the first packet after join network. 421 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 368 +* FIRST: Indicates that this is the first packet after joining the network. 369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 422 422 423 423 ((( 424 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L .**372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 425 425 426 426 427 427 ))) 428 428 429 429 ((( 430 -**To usecountingmode,pleaserun:**378 +**To activate this mode, run the following AT commands:** 431 431 ))) 432 432 433 433 ((( ... ... @@ -448,17 +448,17 @@ 448 448 ((( 449 449 **For LT22222-L:** 450 450 451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 452 452 453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 454 454 455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 456 456 457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 458 458 459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 460 460 461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 462 462 ))) 463 463 464 464 ... ... @@ -465,7 +465,7 @@ 465 465 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 466 466 467 467 468 -**LT22222-L**: This mode the DI1 is used as a counting pin.416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 469 469 470 470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 471 471 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -476,24 +476,24 @@ 476 476 )))|DIDORO*|Reserve|MOD 477 477 478 478 ((( 479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 484 484 ))) 485 485 486 -* RO is for relay. ROx=1 487 -* FIRST: Indicate this is the first packet after join network. 488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 434 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 435 +* FIRST: Indicates that this is the first packet after joining the network. 436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 489 489 490 490 ((( 491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 492 492 ))) 493 493 494 494 495 495 ((( 496 -**To usecountingmode,pleaserun:**444 +**To activate this mode, run the following AT commands:** 497 497 ))) 498 498 499 499 ((( ... ... @@ -506,7 +506,9 @@ 506 506 ))) 507 507 508 508 ((( 509 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 457 +AT Commands for counting: 458 + 459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 510 510 ))) 511 511 512 512 ... ... @@ -514,11 +514,11 @@ 514 514 515 515 516 516 ((( 517 -**LT22222-L**: This mode the DI1 is used as a counting pin.467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 518 518 ))) 519 519 520 520 ((( 521 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 522 522 523 523 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 524 524 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -528,25 +528,25 @@ 528 528 ))) 529 529 530 530 ((( 531 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 532 532 533 533 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 534 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 535 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 536 536 ))) 537 537 538 -* RO is for relay. ROx=1 539 -* FIRST: Indicate this is the first packet after join network. 540 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 488 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 489 +* FIRST: Indicates that this is the first packet after joining the network. 490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 541 541 542 542 ((( 543 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 544 544 545 545 546 546 ))) 547 547 548 548 ((( 549 -**To use this mode,pleaserun:**499 +**To activate this mode, run the following AT commands:** 550 550 ))) 551 551 552 552 ((( ... ... @@ -559,19 +559,19 @@ 559 559 ))) 560 560 561 561 ((( 562 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 563 563 ))) 564 564 565 565 ((( 566 -** Plusbelow command for AVI1 Counting:**516 +**In addition to that, below are the commands for AVI1 Counting:** 567 567 568 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 569 569 570 570 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 571 571 572 572 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 573 573 574 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 575 575 ))) 576 576 577 577 ... ... @@ -578,7 +578,7 @@ 578 578 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 579 579 580 580 581 -**LT22222-L**: This mode the DI1 is used as a counting pin.531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 582 582 583 583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 584 584 |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** ... ... @@ -593,25 +593,25 @@ 593 593 )))|MOD 594 594 595 595 ((( 596 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 597 597 598 598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 599 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 600 600 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 601 601 ))) 602 602 603 -* RO is for relay. ROx=1 604 -* FIRST: Indicate this is the first packet after join network. 553 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 554 +* FIRST: Indicates that this is the first packet after joining the network. 605 605 * ((( 606 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 607 607 ))) 608 608 609 609 ((( 610 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 611 611 ))) 612 612 613 613 ((( 614 -**To use this mode,pleaserun:**564 +**To activate this mode, run the following AT commands:** 615 615 ))) 616 616 617 617 ((( ... ... @@ -624,7 +624,7 @@ 624 624 ))) 625 625 626 626 ((( 627 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 628 628 ))) 629 629 630 630 ... ... @@ -631,49 +631,46 @@ 631 631 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 632 632 633 633 634 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 635 635 636 -For example, if u serhasconfiguredbelow commands:586 +For example, if you configured the following commands: 637 637 638 638 * **AT+MOD=1 ** **~-~->** The normal working mode 639 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 589 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 640 640 641 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 642 642 643 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type644 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 645 645 646 646 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 647 647 598 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 648 648 649 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 650 - 651 651 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 652 652 653 653 654 654 **Example:** 655 655 656 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)605 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 657 657 658 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)607 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 659 659 660 660 610 +(% style="color:#4f81bd" %)**Trigger based on current**: 661 661 662 -(% style="color:#4f81bd" %)**Trigger base on current**: 663 - 664 664 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 665 665 666 666 667 667 **Example:** 668 668 669 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)617 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 670 670 671 671 620 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 672 672 673 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:622 +DI status triggers Flag. 674 674 675 -DI status trigger Flag. 676 - 677 677 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 678 678 679 679 ... ... @@ -682,39 +682,38 @@ 682 682 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 683 683 684 684 685 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 686 686 687 687 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 688 688 689 689 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 690 690 691 - AA: Code for this downlink Command: 638 + AA: Type Code for this downlink Command: 692 692 693 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 694 694 695 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 696 696 697 - yy2 yy2: AC1 or AV1 highlimit.644 + yy2 yy2: AC1 or AV1 HIGH limit. 698 698 699 - yy3 yy3: AC2 or AV2 lowlimit.646 + yy3 yy3: AC2 or AV2 LOW limit. 700 700 701 - Yy4 yy4: AC2 or AV2 highlimit.648 + Yy4 yy4: AC2 or AV2 HIGH limit. 702 702 703 703 704 -**Example1**: AA 00 13 88 00 00 00 00 00 00 651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 705 705 706 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 707 707 708 708 709 -**Example2**: AA 02 01 00 656 +**Example 2**: AA 02 01 00 710 710 711 -Same as AT+ DTRI =1,0 658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 712 712 713 713 714 - 715 715 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 716 716 717 -MOD6 Payload payload663 +MOD6 Payload: total of 11 bytes 718 718 719 719 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 720 720 |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** ... ... @@ -728,10 +728,10 @@ 728 728 MOD(6) 729 729 ))) 730 730 731 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 732 732 733 733 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 734 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 735 735 |((( 736 736 AV1_LOW 737 737 )))|((( ... ... @@ -750,17 +750,17 @@ 750 750 AC2_HIGH 751 751 ))) 752 752 753 -* Each bit sshows if the corresponding trigger has been configured.699 +* Each bit shows if the corresponding trigger has been configured. 754 754 755 755 **Example:** 756 756 757 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 758 758 759 759 760 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 761 761 762 762 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 763 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 764 764 |((( 765 765 AV1_LOW 766 766 )))|((( ... ... @@ -779,11 +779,11 @@ 779 779 AC2_HIGH 780 780 ))) 781 781 782 -* Each bit sshows which status has been trigger on this uplink.728 +* Each bit shows which status has been triggered on this uplink. 783 783 784 784 **Example:** 785 785 786 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 787 787 788 788 789 789 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -792,7 +792,7 @@ 792 792 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 793 793 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 794 794 795 -* Each bits shows which status has been trigger on this uplink. 741 +* Each bits shows which status has been triggered on this uplink. 796 796 797 797 **Example:** 798 798 ... ... @@ -849,33 +849,37 @@ 849 849 ==== 3.4.2.1 Set Transmit Interval ==== 850 850 851 851 852 -Set deviceuplink interval.798 +Sets the uplink interval of the device. 853 853 854 -* (% style="color:#037691" %)**AT Command:**800 +* (% style="color:#037691" %)**AT command:** 855 855 856 -(% style="color:blue" %)**AT+TDC=N 802 +(% style="color:blue" %)**AT+TDC=N** 857 857 804 +where N is the time in milliseconds. 858 858 859 -**Example: **AT+TDC=30000. Means set interval to 30 seconds806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 860 860 861 861 862 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 863 863 864 864 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 865 865 866 866 867 867 868 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 869 869 870 870 871 -Set work mode. 818 +Sets the work mode. 872 872 873 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 874 874 875 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode822 +Where N is the work mode. 876 876 877 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 878 878 826 + 827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 828 + 879 879 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 880 880 881 881 ... ... @@ -883,10 +883,12 @@ 883 883 ==== 3.4.2.3 Poll an uplink ==== 884 884 885 885 886 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink836 +Asks the device to send an uplink. 887 887 888 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 889 889 840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 841 + 890 890 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 891 891 892 892 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -893,16 +893,16 @@ 893 893 894 894 895 895 896 -==== 3.4.2.4 Enable Trigger Mode ==== 848 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 897 897 898 898 899 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 900 900 901 901 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 902 902 903 -(% style="color:red" %)**1:** (%%)Enable TriggerMode855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 904 904 905 -(% style="color:red" %)**0: **(%%)Disable TriggerMode857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 906 906 907 907 908 908 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -914,7 +914,7 @@ 914 914 ==== 3.4.2.5 Poll trigger settings ==== 915 915 916 916 917 -Poll trigger settings 869 +Polls the trigger settings 918 918 919 919 * (% style="color:#037691" %)**AT Command:** 920 920 ... ... @@ -922,7 +922,7 @@ 922 922 923 923 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 924 924 925 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command877 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 926 926 927 927 928 928 ... ... @@ -929,11 +929,11 @@ 929 929 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 930 930 931 931 932 -Enable Disable DI1/DI2/DI2 as trigger, 884 +Enable or Disable DI1/DI2/DI2 as trigger, 933 933 934 934 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 935 935 936 -**Example:** AT+ DTRI =1,0 888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 937 937 938 938 939 939 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -965,15 +965,15 @@ 965 965 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 966 966 967 967 968 -Set DI2 trigger. 920 +Sets DI2 trigger. 969 969 970 970 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 971 971 972 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 973 973 974 974 (% style="color:red" %)**b :** (%%)delay timing. 975 975 976 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 977 977 978 978 979 979 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -1011,7 +1011,7 @@ 1011 1011 ==== 3.4.2.11 Trigger – Set minimum interval ==== 1012 1012 1013 1013 1014 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 1015 1015 1016 1016 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 1017 1017 ... ... @@ -1159,18 +1159,18 @@ 1159 1159 ))) 1160 1160 1161 1161 ((( 1162 -00: Close , 01: Open , 11: No action 1114 +00: Closed , 01: Open , 11: No action 1163 1163 1164 1164 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1165 1165 |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1166 -|03 00 11| Close|No Action1167 -|03 01 11| Open|No Action1168 -|03 11 00|No Action| Close1169 -|03 11 01|No Action| Open1170 -|03 00 00| Close|Close1171 -|03 01 01| Open|Open1172 -|03 01 00| Open|Close1173 -|03 00 01|Close |Open1118 +|03 00 11|Open|No Action 1119 +|03 01 11|Close|No Action 1120 +|03 11 00|No Action|Open 1121 +|03 11 01|No Action|Close 1122 +|03 00 00|Open|Open 1123 +|03 01 01|Close|Close 1124 +|03 01 00|Close|Open 1125 +|03 00 01|Open|Close 1174 1174 ))) 1175 1175 1176 1176 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** ... ... @@ -1281,7 +1281,7 @@ 1281 1281 1282 1282 1283 1283 1284 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1285 1285 1286 1286 1287 1287 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1402,74 +1402,91 @@ 1402 1402 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1403 1403 1404 1404 1405 -== 3.5 Integrat ewithMydevice==1357 +== 3.5 Integrating with ThingsEye.io == 1406 1406 1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1407 1407 1408 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1361 +=== 3.5.1 Configuring The Things Stack Sandbox === 1409 1409 1410 - (((1411 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1412 - )))1363 +* Go to your Application and select MQTT under Integrations. 1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1413 1413 1414 -((( 1415 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1416 1416 1417 - 1418 -))) 1369 +=== 3.5.2 Configuring ThingsEye.io === 1419 1419 1420 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1371 +* Login to your thingsEye.io account. 1372 +* Under the Integrations center, click Integrations. 1373 +* Click the Add integration button (the button with the + symbol). 1421 1421 1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1422 1422 1423 1423 1424 - [[image:image-20220719110247-2.png||height="388"width="683"]]1378 +On the Add integration page configure the following: 1425 1425 1380 +Basic settings: 1426 1426 1427 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1382 +* Select The Things Stack Community from the Integration type list. 1383 +* Enter a suitable name for your integration in the Name box or keep the default name. 1384 +* Click the Next button. 1428 1428 1429 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1430 1430 1431 - Search underThethingsnetwork1388 +Uplink Data converter: 1432 1432 1433 -[[image:1653356838789-523.png||height="337" width="740"]] 1390 +* Click the Create New button if it is not selected by default. 1391 +* Click the JavaScript button. 1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1393 +* Click the Next button. 1434 1434 1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1435 1435 1436 - After added, the sensordataarriveTTN, itwill alsoarriveandshowinMydevices.1397 +Downlink Data converter (this is an optional step): 1437 1437 1438 -[[image:image-20220524094909-1.png||height="335" width="729"]] 1399 +* Click the Create new button if it is not selected by default. 1400 +* Click the JavaScript button. 1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1402 +* Click the Next button. 1439 1439 1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1440 1440 1441 - [[image:image-20220524094909-2.png||height="337" width="729"]]1406 +Connection: 1442 1442 1408 +* Choose Region from the Host type. 1409 +* Enter the cluster of your The Things Stack in the Region textbox. 1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1412 +* Click the Add button. 1443 1443 1444 -[[image:i mage-20220524094909-3.png||height="338" width="727"]]1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1445 1445 1446 1446 1447 - [[image:image-20220524094909-4.png||height="339"width="728"]](%style="display:none"%)1417 +Your integration is added to the integrations list and it will display on the Integrations page. 1448 1448 1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1449 1449 1450 -[[image:image-20220524094909-5.png||height="341" width="734"]] 1451 1451 1422 +== 3.6 Interface Details == 1452 1452 1453 -== 3.6 Interface Detail == 1454 - 1455 1455 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1456 1456 1457 1457 1458 -Support NPN Type sensor1427 +Support NPN-type sensor 1459 1459 1460 1460 [[image:1653356991268-289.png]] 1461 1461 1462 1462 1463 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1464 1464 1465 1465 1466 1466 ((( 1467 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1468 1468 ))) 1469 1469 1470 1470 ((( 1471 1471 ((( 1472 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1473 1473 1474 1474 1475 1475 ))) ... ... @@ -1479,7 +1479,7 @@ 1479 1479 1480 1480 ((( 1481 1481 ((( 1482 - When use need1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1483 1483 ))) 1484 1484 ))) 1485 1485 ... ... @@ -1488,22 +1488,22 @@ 1488 1488 ))) 1489 1489 1490 1490 ((( 1491 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1492 1492 ))) 1493 1493 1494 1494 ((( 1495 -This type of sensor willoutput a low signalGNDwhen active.1464 +This type of sensor outputs a low (GND) signal when active. 1496 1496 ))) 1497 1497 1498 1498 * ((( 1499 -Connect sensor's output to DI1- 1468 +Connect the sensor's output to DI1- 1500 1500 ))) 1501 1501 * ((( 1502 -Connect sensor's VCC to DI1+. 1471 +Connect the sensor's VCC to DI1+. 1503 1503 ))) 1504 1504 1505 1505 ((( 1506 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1507 1507 ))) 1508 1508 1509 1509 ((( ... ... @@ -1511,7 +1511,7 @@ 1511 1511 ))) 1512 1512 1513 1513 ((( 1514 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1515 1515 ))) 1516 1516 1517 1517 ((( ... ... @@ -1519,22 +1519,22 @@ 1519 1519 ))) 1520 1520 1521 1521 ((( 1522 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1523 1523 ))) 1524 1524 1525 1525 ((( 1526 -This type of sensor willoutput a high signal (example24v) when active.1495 +This type of sensor outputs a high signal (e.g., 24V) when active. 1527 1527 ))) 1528 1528 1529 1529 * ((( 1530 -Connect sensor's output to DI1+ 1499 +Connect the sensor's output to DI1+ 1531 1531 ))) 1532 1532 * ((( 1533 -Connect sensor's GND DI1-. 1502 +Connect the sensor's GND DI1-. 1534 1534 ))) 1535 1535 1536 1536 ((( 1537 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1538 1538 ))) 1539 1539 1540 1540 ((( ... ... @@ -1542,7 +1542,7 @@ 1542 1542 ))) 1543 1543 1544 1544 ((( 1545 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1546 1546 ))) 1547 1547 1548 1548 ((( ... ... @@ -1550,22 +1550,22 @@ 1550 1550 ))) 1551 1551 1552 1552 ((( 1553 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1554 1554 ))) 1555 1555 1556 1556 ((( 1557 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1558 1558 ))) 1559 1559 1560 1560 * ((( 1561 -Connect sensor's output to DI1+ with a serial50K resistor1530 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1562 1562 ))) 1563 1563 * ((( 1564 -Connect sensor's GND DI1-. 1533 +Connect the sensor's GND DI1-. 1565 1565 ))) 1566 1566 1567 1567 ((( 1568 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1569 1569 ))) 1570 1570 1571 1571 ((( ... ... @@ -1573,37 +1573,37 @@ 1573 1573 ))) 1574 1574 1575 1575 ((( 1576 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1545 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1577 1577 ))) 1578 1578 1579 1579 1580 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1581 1581 1582 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1583 1583 1584 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1585 1585 1586 1586 [[image:image-20230616235145-1.png]] 1587 1587 1588 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colle actor1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1589 1589 1590 1590 [[image:image-20240219115718-1.png]] 1591 1591 1592 1592 1593 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1594 1594 1595 1595 1596 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can applyto output pin is 36v.1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1597 1597 1598 -(% style="color:red" %)**Note: DO pins gotofloat when device is power off.**1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1599 1599 1600 1600 [[image:1653357531600-905.png]] 1601 1601 1602 1602 1603 -=== 3.6.4 Analog Input Interface === 1572 +=== 3.6.4 Analog Input Interfaces === 1604 1604 1605 1605 1606 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1607 1607 1608 1608 1609 1609 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1610,14 +1610,14 @@ 1610 1610 1611 1611 [[image:1653357592296-182.png]] 1612 1612 1613 -Example toconnect a 4~~20mA sensor1582 +Example: Connecting a 4~~20mA sensor 1614 1614 1615 -We take the wind speed sensor as an example for reference only.1584 +We will use the wind speed sensor as an example for reference only. 1616 1616 1617 1617 1618 1618 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1619 1619 1620 -(% style="color:red" %)**Red: 12~~24 v**1589 +(% style="color:red" %)**Red: 12~~24V** 1621 1621 1622 1622 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1623 1623 ... ... @@ -1630,7 +1630,7 @@ 1630 1630 [[image:1653357648330-671.png||height="155" width="733"]] 1631 1631 1632 1632 1633 -Example connectedto a regulated power supply to measure voltage1602 +Example: Connecting to a regulated power supply to measure voltage 1634 1634 1635 1635 [[image:image-20230608101532-1.png||height="606" width="447"]] 1636 1636 ... ... @@ -1639,7 +1639,7 @@ 1639 1639 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1640 1640 1641 1641 1642 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1643 1643 1644 1644 (% style="color:red" %)**Red: 12~~24v** 1645 1645 ... ... @@ -1650,9 +1650,9 @@ 1650 1650 1651 1651 1652 1652 ((( 1653 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1654 1654 1655 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1656 1656 ))) 1657 1657 1658 1658 [[image:image-20220524100215-9.png]] ... ... @@ -1664,12 +1664,9 @@ 1664 1664 == 3.7 LEDs Indicators == 1665 1665 1666 1666 1667 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1668 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:4 70px" %)**Feature**1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1669 1669 |**PWR**|Always on if there is power 1670 -|**SYS**|((( 1671 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1672 -))) 1673 1673 |**TX**|((( 1674 1674 ((( 1675 1675 Device boot: TX blinks 5 times. ... ... @@ -1683,40 +1683,32 @@ 1683 1683 Transmit a LoRa packet: TX blinks once 1684 1684 ))) 1685 1685 ))) 1686 -|**RX**|RX blinks once when receive a packet. 1687 -|**DO1**| 1688 -|**DO2**| 1689 -|**DO3**| 1690 -|**DI2**|((( 1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1652 +|**RX**|RX blinks once when receiving a packet. 1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1655 +|**DI1**|((( 1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1692 1692 ))) 1693 1693 |**DI2**|((( 1694 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1695 1695 ))) 1696 -|**DI2**|((( 1697 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1698 -))) 1699 -|**RO1**| 1700 -|**RO2**| 1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1701 1701 1702 -= 4. Us eAT Command =1664 += 4. Using AT Command = 1703 1703 1704 -== 4.1 AccessATCommand==1666 +== 4.1 Connecting the LT-22222-L to a computer == 1705 1705 1706 1706 1707 1707 ((( 1708 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1709 1709 ))) 1710 1710 1711 -((( 1712 - 1713 -))) 1714 - 1715 1715 [[image:1653358238933-385.png]] 1716 1716 1717 1717 1718 1718 ((( 1719 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1720 1720 ))) 1721 1721 1722 1722 [[image:1653358355238-883.png]] ... ... @@ -1723,10 +1723,12 @@ 1723 1723 1724 1724 1725 1725 ((( 1726 - More detailAT Commandmanual can be found at1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1727 1727 ))) 1728 1728 1729 1729 ((( 1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1689 + 1730 1730 AT+<CMD>? : Help on <CMD> 1731 1731 ))) 1732 1732 ... ... @@ -2051,10 +2051,10 @@ 2051 2051 2052 2052 = 5. Case Study = 2053 2053 2054 -== 5.1 Counting how many objects pass inFlow Line ==2014 +== 5.1 Counting how many objects pass through the flow Line == 2055 2055 2056 2056 2057 -Reference Link: [[How to set up to count objects pass 2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2058 2058 2059 2059 2060 2060 = 6. FAQ = ... ... @@ -2062,26 +2062,26 @@ 2062 2062 == 6.1 How to upgrade the image? == 2063 2063 2064 2064 2065 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 2066 2066 2067 -* Support new features 2068 -* F orbugfix2027 +* Support new features. 2028 +* Fix bugs. 2069 2069 * Change LoRaWAN bands. 2070 2070 2071 -Below s howsthe hardware connection forhow toupload an image to the LT:2031 +Below is the hardware connection setup for uploading an image to the LT: 2072 2072 2073 2073 [[image:1653359603330-121.png]] 2074 2074 2075 2075 2076 2076 ((( 2077 -(% style="color: blue" %)**Step1**(%%)**:** Download [[flashloader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].2078 -(% style="color: blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].2079 -(% style="color: blue" %)**Step3**(%%)**:** Openflashloader;choose the correct COM port to update.2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 2080 2080 2081 2081 2082 2082 ((( 2083 2083 (% style="color:blue" %)**For LT-22222-L**(%%): 2084 -Hold down the PRO button andthen momentarily press the RST reset buttonand the (% style="color:red" %)**DO1led**(%%)on, itmeans the device is in download mode.2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode. 2085 2085 ))) 2086 2086 2087 2087 ... ... @@ -2096,7 +2096,7 @@ 2096 2096 [[image:image-20220524104033-15.png]] 2097 2097 2098 2098 2099 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 2100 2100 2101 2101 [[image:1653360054704-518.png||height="186" width="745"]] 2102 2102 ... ... @@ -2110,13 +2110,13 @@ 2110 2110 ))) 2111 2111 2112 2112 ((( 2113 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2073 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2114 2114 ))) 2115 2115 2116 2116 ((( 2117 2117 2118 2118 2119 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2120 2120 2121 2121 2122 2122 ))) ... ... @@ -2123,13 +2123,13 @@ 2123 2123 2124 2124 ((( 2125 2125 ((( 2126 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2127 2127 ))) 2128 2128 ))) 2129 2129 2130 2130 ((( 2131 2131 ((( 2132 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2133 2133 2134 2134 2135 2135 ))) ... ... @@ -2136,7 +2136,7 @@ 2136 2136 ))) 2137 2137 2138 2138 ((( 2139 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2099 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2140 2140 2141 2141 2142 2142 ))) ... ... @@ -2193,7 +2193,7 @@ 2193 2193 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2194 2194 2195 2195 2196 -== 6.5 Can I see counting event in Serial? == 2156 +== 6.5 Can I see the counting event in Serial? == 2197 2197 2198 2198 2199 2199 ((( ... ... @@ -2200,10 +2200,10 @@ 2200 2200 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2201 2201 2202 2202 2203 -== 6.6 Can iuse pointforLT-22222-L? ==2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2204 2204 2205 2205 2206 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2207 2207 2208 2208 2209 2209 )))
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content