Last modified by Mengting Qiu on 2025/06/04 18:42

From version 130.2
edited by Xiaoling
on 2024/02/19 14:44
Change comment: There is no comment for this version
To version 210.1
edited by Dilisi S
on 2024/11/24 00:36
Change comment: fix toc

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L -- LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,301 +13,311 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +{{info}}
27 +**This manual is also applicable to the LT-33222-L.**
28 +{{/info}}
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 -)))
30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN end device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The use environment includes:
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
37 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
41 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Stack Community Network), you can select a network and register the LT-22222-L I/O controller with it.
44 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 +* Setup your own private LoRaWAN network.
48 48  )))
49 49  
50 50  (((
51 -[[image:1653295757274-912.png]]
52 -
53 53  
50 +
51 +The network diagram below illustrates how the LT-22222-L communicates with a typical LoRaWAN network.
54 54  )))
55 55  
54 +(% class="wikigeneratedid" %)
55 +[[image:lorawan-nw.jpg||height="354" width="900"]]
56 +
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
61 +* STM32L072xxxx MCU
62 +* SX1276/78 Wireless Chip 
63 +* Power Consumption:
64 +** Idle: 4mA@12V
65 +** 20dB Transmit: 34mA@12V
66 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
68 +(% style="color:#037691" %)**Interface for Model: LT22222-L:**
82 82  
83 -(((
84 -
70 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
71 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
72 +* 2 x Relay Output (5A@250VAC / 30VDC)
73 +* 2 x 0~~20mA Analog Input (res:0.01mA)
74 +* 2 x 0~~30V Analog Input (res:0.01V)
75 +* Power Input 7~~ 24V DC. 
85 85  
86 -(% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
77 +(% style="color:#037691" %)**LoRa Spec:**
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
79 +* Frequency Range:
80 +** Band 1 (HF): 862 ~~ 1020 MHz
81 +** Band 2 (LF): 410 ~~ 528 MHz
82 +* 168 dB maximum link budget.
83 +* +20 dBm - 100 mW constant RF output vs.
84 +* +14 dBm high-efficiency PA.
85 +* Programmable bit rate up to 300 kbps.
86 +* High sensitivity: down to -148 dBm.
87 +* Bullet-proof front end: IIP3 = -12.5 dBm.
88 +* Excellent blocking immunity.
89 +* Low RX current of 10.3 mA, 200 nA register retention.
90 +* Fully integrated synthesizer with a resolution of 61 Hz.
91 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
92 +* Built-in bit synchronizer for clock recovery.
93 +* Preamble detection.
94 +* 127 dB Dynamic Range RSSI.
95 +* Automatic RF Sense and CAD with ultra-fast AFC.
96 +* Packet engine up to 256 bytes with CRC.
107 107  
108 -(((
109 -
98 +== 1.3 Features ==
110 110  
111 -(% style="color:#037691" %)**LoRa Spec:**
112 -)))
100 +* LoRaWAN Class A & Class C modes
101 +* Optional Customized LoRa Protocol
102 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
103 +* AT Commands to change parameters
104 +* Remotely configure parameters via LoRaWAN Downlink
105 +* Firmware upgradable via program port
106 +* Counting
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
108 +== 1.4 Applications ==
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
110 +* Smart buildings & home automation
111 +* Logistics and supply chain management
112 +* Smart metering
113 +* Smart agriculture
114 +* Smart cities
115 +* Smart factory
170 170  
117 +== 1.5 Hardware Variants ==
171 171  
119 +(% style="width:524px" %)
120 +|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
121 +|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
172 172  
123 +)))|(% style="width:329px" %)(((
124 +* 2 x Digital Input (Bi-direction)
125 +* 2 x Digital Output
126 +* 2 x Relay Output (5A@250VAC / 30VDC)
127 +* 2 x 0~~20mA Analog Input (res:0.01mA)
128 +* 2 x 0~~30V Analog Input (res:0.01v)
129 +* 1 x Counting Port
173 173  )))
174 174  
175 -== 1.3 Features ==
132 +== 2Assembling the device ==
176 176  
134 +== 2.1 Connecting the antenna ==
177 177  
178 -* LoRaWAN Class A & Class C protocol
136 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
179 179  
180 -* Optional Customized LoRa Protocol
138 +{{warning}}
139 +**Warning! Do not power on the device without connecting the antenna.**
140 +{{/warning}}
181 181  
182 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
142 +== 2.2 Terminals ==
183 183  
184 -* AT Commands to change parameters
144 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 screw terminals and the lower screw terminal block has 10 screw terminals.
185 185  
186 -* Remote configure parameters via LoRa Downlink
146 +**Upper screw terminal block (from left to right):**
187 187  
188 -* Firmware upgradable via program port
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Screw Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
189 189  
190 -* Counting
157 +**Lower screw terminal block (from left to right):**
191 191  
192 -== 1.4 Applications ==
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Screw Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
193 193  
172 +== 2.3 Connecting LT-22222-L to a Power Source ==
194 194  
195 -* Smart Buildings & Home Automation
174 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s **positive wire** to the **VIN** and the **negative wire** to the **GND** screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
196 196  
197 -* Logistics and Supply Chain Management
176 +{{warning}}
177 +**We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.**
178 +{{/warning}}
198 198  
199 -* Smart Metering
200 200  
201 -* Smart Agriculture
181 +[[image:1653297104069-180.png]]
202 202  
203 -* Smart Cities
204 204  
205 -* Smart Factory
184 += 3. Registering LT-22222-L with a LoRaWAN Network Server =
206 206  
207 -== 1.Hardware Variants ==
186 +The LT-22222-L supports both OTAA (Over-the-Air Activation) and ABP (Activation By Personalization) methods to activate with a LoRaWAN Network Server. However, OTAA is the most secure method for activating a device with a LoRaWAN Network Server. OTAA regenerates session keys upon initial registration and regenerates new session keys after any subsequent reboots. By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode.
208 208  
209 209  
210 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
212 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 -(% style="text-align:center" %)
214 -[[image:image-20230424115112-1.png||height="106" width="58"]]
215 -)))|(% style="width:334px" %)(((
216 -* 2 x Digital Input (Bi-direction)
217 -* 2 x Digital Output
218 -* 2 x Relay Output (5A@250VAC / 30VDC)
219 -* 2 x 0~~20mA Analog Input (res:0.01mA)
220 -* 2 x 0~~30V Analog Input (res:0.01v)
221 -* 1 x Counting Port
222 -)))
189 +=== 3.2.1 Prerequisites ===
223 223  
224 -= 2. Power ON Device =
191 +The LT-22222-L comes with device registration information such as DevEUI, AppEUI, and AppKey that allows you to register it with a LoRaWAN network. These registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
225 225  
193 +[[image:image-20230425173427-2.png||height="246" width="530"]]
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
195 +{{info}}
196 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
197 +{{/info}}
230 230  
231 -(((
232 -PWR will on when device is properly powered.
199 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
233 233  
234 -
235 -)))
201 +=== 3.2.2 The Things Stack ===
236 236  
237 -[[image:1653297104069-180.png]]
203 +This section guides you through how to register your LT-22222-L with The Things Stack Sandbox.
238 238  
205 +{{info}}
206 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
207 +{{/info}}
239 239  
240 -= 3. Operation Mode =
241 241  
242 -== 3.1 How it works? ==
210 +The network diagram below illustrates the connection between the LT-22222-L and The Things Stack, as well as how the data can be integrated with the ThingsEye IoT platform.
243 243  
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
213 +[[image:dragino-lorawan-nw-lt-22222-n.jpg]]
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
215 +{{info}}
216 + You can use a LoRaWAN gateway, such as the [[Dragino LPS8N>>https://www.dragino.com/products/lora-lorawan-gateway/item/200-lps8n.html]], to expand or create LoRaWAN coverage in your area.
217 +{{/info}}
252 252  
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
220 +==== 3.2.2.1 Setting up ====
255 255  
222 +* Sign up for a free account with [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] if you do not have one yet.
223 +* Log in to your The Things Stack Sandbox account.
224 +* Create an **application** with The Things Stack if you do not have one yet (E.g., dragino-docs).
225 +* Go to your application's page and click on the **End devices** in the left menu.
226 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
228 +==== 3.2.2.2 Using the LoRaWAN Device Repository ====
259 259  
260 -
261 -)))
230 +* On the **Register end device** page:
231 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
232 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
233 +*** **End device brand**: Dragino Technology Co., Limited
234 +*** **Model**: LT22222-L I/O Controller
235 +*** **Hardware ver**: Unknown
236 +*** **Firmware ver**: 1.6.0
237 +*** **Profile (Region)**: Select the region that matches your device.
238 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
240 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
264 264  
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
243 +* Register end device page continued...
244 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
245 +** In the **DevEUI** field, enter the **DevEUI**.
246 +** In the **AppKey** field, enter the **AppKey.**
247 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
248 +** Under **After registration**, select the **View registered end device** option.
268 268  
269 -
270 -)))
250 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
253 +==== 3.2.2.3 Adding device manually ====
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
255 +* On the **Register end device** page:
256 +** Select the option **Enter end device specifies manually** under **Input method**.
257 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
258 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
259 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
260 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
261 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
262 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
281 281  
264 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 -**Add APP EUI in the application.**
267 +* Register end device page continued...
268 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message '//**This end device can be registered on the network**//'
269 +** In the **DevEUI** field, enter the **DevEUI**.
270 +** In the **AppKey** field, enter the **AppKey**.
271 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
272 +** Under **After registration**, select the **View registered end device** option.
273 +** Click the **Register end device** button.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
275 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
288 288  
289 289  
290 -**Add APP KEY and DEV EUI**
278 +You will be navigated to the **Device overview** page.
291 291  
292 -[[image:1653298023685-319.png]]
293 293  
281 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
294 294  
295 -(((
296 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
297 297  
298 -
299 -)))
284 +==== 3.2.2.4 Joining ====
300 300  
301 -[[image:1653298044601-602.png||height="405" width="709"]]
286 +On the Device's page, click on **Live data** tab. The Live data panel for your device will display.
302 302  
288 +Now power on your LT-22222-L. The **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack network server. The **TX LED** will be on for **5 seconds** after joining the network. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server.
303 303  
304 -== 3.3 Uplink Payload ==
305 305  
291 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
306 306  
307 -There are five working modes + one interrupt mode on LT for different type application:
308 308  
309 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
294 +==== 3.2.2.5 Uplinks ====
310 310  
296 +
297 +After successfully joining, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**). When the LT-22222-L sends an uplink message to the server, the **TX LED** turns on for **1 second**. By default, you will receive an uplink data message from the device every 10 minutes.
298 +
299 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
300 +
301 +[[image:lt-22222-ul-payload-decoded.png]]
302 +
303 +
304 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **Applications > your application > End devices** > **your end device** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
305 +
306 +{{info}}
307 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
308 +{{/info}}
309 +
310 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
311 +
312 +
313 +==== 3.2.2.6 Downlinks ====
314 +
315 +When the LT-22222-L receives a downlink message from the server, the **RX LED** turns on for **1 second**.
316 +
317 +
318 +== 3.3 Working Modes and Uplink Payload formats ==
319 +
320 +
321 +The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
322 +
323 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
324 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 312  
313 313  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -318,12 +318,19 @@
318 318  
319 319  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
320 320  
335 +The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
336 +
321 321  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
322 322  
323 -
324 324  (((
325 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
340 +This is the default mode.
326 326  
342 +The uplink payload is 11 bytes long.
343 +
344 +(% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
345 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
346 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
347 +
327 327  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 328  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
329 329  |Value|(((
... ... @@ -334,29 +334,29 @@
334 334  ACI1 Current
335 335  )))|(((
336 336  ACI2 Current
337 -)))|DIDORO*|(((
358 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 342  (((
343 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
364 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
347 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
367 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
368 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
348 348  )))
349 349  
350 -* RO is for relay. ROx=1 : close, ROx=0 always open.
351 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
352 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
372 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
373 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
375 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
355 355  
356 -For example if payload is: [[image:image-20220523175847-2.png]]
377 +For example, if the payload is: [[image:image-20220523175847-2.png]]
357 357  
358 358  
359 -**The value for the interface is:  **
380 +**The interface values can be calculated as follows:  **
360 360  
361 361  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
362 362  
... ... @@ -366,36 +366,41 @@
366 366  
367 367  ACI2 channel current is 0x1300/1000=4.864mA
368 368  
369 -The last byte 0xAA= 10101010(B) means
390 +The last byte 0xAA= **10101010**(b) means,
370 370  
371 -* [1] RO1 relay channel is close and the RO1 LED is ON.
372 -* [0] RO2 relay channel is open and RO2 LED is OFF;
392 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
393 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
394 +* **[1] DI3 - not used for LT-22222-L.**
395 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
396 +* [1] DI1 channel input state:
397 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
398 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
399 +** DI1 LED is ON in both cases.
400 +* **[0] DO3 - not used for LT-22222-L.**
401 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
402 +* [0] DO1 channel output state:
403 +** DO1 is FLOATING when there is no load between DO1 and V+.
404 +** DO1 is HIGH and there is a load between DO1 and V+.
405 +** DO1 LED is OFF in both cases.
373 373  
374 -**LT22222-L:**
407 +Reserve = 0
375 375  
376 -* [1] DI2 channel is high input and DI2 LED is ON;
377 -* [0] DI1 channel is low input;
409 +MOD = 1
378 378  
379 -* [0] DO3 channel output state
380 -** DO3 is float in case no load between DO3 and V+.;
381 -** DO3 is high in case there is load between DO3 and V+.
382 -** DO3 LED is off in both case
383 -* [1] DO2 channel output is low and DO2 LED is ON.
384 -* [0] DO1 channel output state
385 -** DO1 is float in case no load between DO1 and V+.;
386 -** DO1 is high in case there is load between DO1 and V+.
387 -** DO1 LED is off in both case
388 -
389 389  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
390 390  
391 391  
392 392  (((
393 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
415 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
394 394  )))
395 395  
396 396  (((
397 -Total : 11 bytes payload
419 +The uplink payload is 11 bytes long.
398 398  
421 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
422 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
423 +It starts counting again when it reaches the maximum value.**
424 +
399 399  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
400 400  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
401 401  |Value|COUNT1|COUNT2 |DIDORO*|(((
... ... @@ -404,26 +404,26 @@
404 404  )))
405 405  
406 406  (((
407 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
433 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
408 408  
409 409  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
410 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
411 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
436 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
437 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
412 412  
413 -RO is for relay. ROx=1 : close , ROx=0 always open.
439 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
414 414  )))
415 415  
416 -* FIRST: Indicate this is the first packet after join network.
417 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
442 +* FIRST: Indicates that this is the first packet after joining the network.
443 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
418 418  
419 419  (((
420 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
446 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
421 421  
422 422  
423 423  )))
424 424  
425 425  (((
426 -**To use counting mode, please run:**
452 +**To activate this mode, run the following AT commands:**
427 427  )))
428 428  
429 429  (((
... ... @@ -444,24 +444,27 @@
444 444  (((
445 445  **For LT22222-L:**
446 446  
447 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
473 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
448 448  
449 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
475 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
450 450  
451 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
477 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
479 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
481 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
456 456  
457 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
483 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
458 458  )))
459 459  
460 460  
461 461  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
462 462  
489 +(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
490 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
491 +It starts counting again when it reaches the maximum value.**
463 463  
464 -**LT22222-L**: This mode the DI1 is used as a counting pin.
493 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
465 465  
466 466  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
467 467  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,24 +472,24 @@
472 472  )))|DIDORO*|Reserve|MOD
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
504 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
507 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
508 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
511 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
512 +* FIRST: Indicates that this is the first packet after joining the network.
513 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
516 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
488 488  )))
489 489  
490 490  
491 491  (((
492 -**To use counting mode, please run:**
521 +**To activate this mode, run the following AT commands:**
493 493  )))
494 494  
495 495  (((
... ... @@ -502,19 +502,25 @@
502 502  )))
503 503  
504 504  (((
505 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
534 +AT Commands for counting:
535 +
536 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 506  )))
507 507  
508 508  
509 509  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
510 510  
542 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
543 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
544 +It starts counting again when it reaches the maximum value.**
511 511  
546 +
512 512  (((
513 -**LT22222-L**: This mode the DI1 is used as a counting pin.
548 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
514 514  )))
515 515  
516 516  (((
517 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
552 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 520  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -524,25 +524,25 @@
524 524  )))
525 525  
526 526  (((
527 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
562 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
531 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
565 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
566 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
532 532  )))
533 533  
534 -* RO is for relay. ROx=1 : close, ROx=0 always open.
535 -* FIRST: Indicate this is the first packet after join network.
536 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
569 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
570 +* FIRST: Indicates that this is the first packet after joining the network.
571 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
537 537  
538 538  (((
539 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
574 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
540 540  
541 541  
542 542  )))
543 543  
544 544  (((
545 -**To use this mode, please run:**
580 +**To activate this mode, run the following AT commands:**
546 546  )))
547 547  
548 548  (((
... ... @@ -555,27 +555,31 @@
555 555  )))
556 556  
557 557  (((
558 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
593 +AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
559 559  )))
560 560  
561 561  (((
562 -**Plus below command for AVI1 Counting:**
597 +**In addition to that, below are the commands for AVI1 Counting:**
563 563  
564 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
599 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
565 565  
566 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
601 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
567 567  
568 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
603 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
569 569  
570 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
605 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  )))
572 572  
573 573  
574 574  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
575 575  
611 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
612 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
613 +It starts counting again when it reaches the maximum value.**
576 576  
577 -**LT22222-L**: This mode the DI1 is used as a counting pin.
578 578  
616 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
617 +
579 579  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
580 580  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
581 581  |Value|(((
... ... @@ -589,25 +589,25 @@
589 589  )))|MOD
590 590  
591 591  (((
592 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
631 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
593 593  
594 594  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
595 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
634 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
596 596  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
597 597  )))
598 598  
599 -* RO is for relay. ROx=1 : close, ROx=0 always open.
600 -* FIRST: Indicate this is the first packet after join network.
638 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
639 +* FIRST: Indicates that this is the first packet after joining the network.
601 601  * (((
602 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
641 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
603 603  )))
604 604  
605 605  (((
606 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
645 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
607 607  )))
608 608  
609 609  (((
610 -**To use this mode, please run:**
649 +**To activate this mode, run the following AT commands:**
611 611  )))
612 612  
613 613  (((
... ... @@ -620,29 +620,33 @@
620 620  )))
621 621  
622 622  (((
623 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
662 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
624 624  )))
625 625  
626 626  
627 -=== 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
666 +=== 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
628 628  
629 629  
630 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
669 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
631 631  
632 -For example, if user has configured below commands:
671 +For example, if you configure the following commands:
633 633  
634 -* **AT+MOD=1 ** **~-~->**  The normal working mode
635 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
673 +* **AT+MOD=1 ** **~-~->**  Sets the default working mode
674 +* **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
636 636  
637 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
676 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
638 638  
639 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
640 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
678 +1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
679 +1. (((
680 +Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
641 641  
642 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
682 +* The first uplink uses the payload specified in trigger mode (MOD=6).
683 +* The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
684 +)))
643 643  
686 +(% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
644 644  
645 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
688 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
646 646  
647 647  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
648 648  
... ... @@ -649,27 +649,25 @@
649 649  
650 650  **Example:**
651 651  
652 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
695 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
653 653  
654 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
697 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
655 655  
656 656  
700 +(% style="color:#4f81bd" %)**Trigger based on current**:
657 657  
658 -(% style="color:#4f81bd" %)**Trigger base on current**:
659 -
660 660  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
661 661  
662 662  
663 663  **Example:**
664 664  
665 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
707 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
666 666  
667 667  
710 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
668 668  
669 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
712 +DI status triggers Flag.
670 670  
671 -DI status trigger Flag.
672 -
673 673  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
674 674  
675 675  
... ... @@ -678,39 +678,38 @@
678 678  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
679 679  
680 680  
681 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
722 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
682 682  
683 683  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
684 684  
685 685  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
686 686  
687 - AA: Code for this downlink Command:
728 + AA: Type Code for this downlink Command:
688 688  
689 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
730 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
690 690  
691 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
732 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
692 692  
693 - yy2 yy2: AC1 or AV1 high limit.
734 + yy2 yy2: AC1 or AV1 HIGH limit.
694 694  
695 - yy3 yy3: AC2 or AV2 low limit.
736 + yy3 yy3: AC2 or AV2 LOW limit.
696 696  
697 - Yy4 yy4: AC2 or AV2 high limit.
738 + Yy4 yy4: AC2 or AV2 HIGH limit.
698 698  
699 699  
700 -**Example1**: AA 00 13 88 00 00 00 00 00 00
741 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
701 701  
702 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
743 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
703 703  
704 704  
705 -**Example2**: AA 02 01 00
746 +**Example 2**: AA 02 01 00
706 706  
707 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
748 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
708 708  
709 709  
710 -
711 711  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
712 712  
713 -MOD6 Payload : total 11 bytes payload
753 +MOD6 Payload: total of 11 bytes
714 714  
715 715  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 716  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -724,10 +724,10 @@
724 724  MOD(6)
725 725  )))
726 726  
727 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
767 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
728 728  
729 729  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
730 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
770 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
731 731  |(((
732 732  AV1_LOW
733 733  )))|(((
... ... @@ -746,17 +746,17 @@
746 746  AC2_HIGH
747 747  )))
748 748  
749 -* Each bits shows if the corresponding trigger has been configured.
789 +* Each bit shows if the corresponding trigger has been configured.
750 750  
751 751  **Example:**
752 752  
753 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
793 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
754 754  
755 755  
756 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
796 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
757 757  
758 758  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
759 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
799 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
760 760  |(((
761 761  AV1_LOW
762 762  )))|(((
... ... @@ -775,20 +775,20 @@
775 775  AC2_HIGH
776 776  )))
777 777  
778 -* Each bits shows which status has been trigger on this uplink.
818 +* Each bit shows which status has been triggered on this uplink.
779 779  
780 780  **Example:**
781 781  
782 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
822 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
783 783  
784 784  
785 785  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
786 786  
787 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
788 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
789 -|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
827 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
828 +|(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
829 +|(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
790 790  
791 -* Each bits shows which status has been trigger on this uplink.
831 +* Each bits shows which status has been triggered on this uplink.
792 792  
793 793  **Example:**
794 794  
... ... @@ -815,230 +815,482 @@
815 815  )))
816 816  
817 817  
818 -== 3.4 ​Configure LT via AT or Downlink ==
858 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
819 819  
820 -
821 821  (((
822 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
861 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
823 823  )))
824 824  
825 825  (((
826 826  (((
827 -There are two kinds of Commands:
866 +There are two tytes of commands:
828 828  )))
829 829  )))
830 830  
831 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
870 +* (% style="color:blue" %)**Common commands**(%%):
832 832  
833 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
872 +* (% style="color:blue" %)**Sensor-related commands**(%%):
834 834  
835 -=== 3.4.1 Common Commands ===
874 +=== 3.4.1 Common commands ===
836 836  
837 -
838 838  (((
839 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
877 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
840 840  )))
841 841  
880 +=== 3.4.2 Sensor-related commands ===
842 842  
843 -=== 3.4.2 Sensor related commands ===
882 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
844 844  
884 +
845 845  ==== 3.4.2.1 Set Transmit Interval ====
846 846  
887 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
847 847  
848 -Set device uplink interval.
889 +(% style="color:#037691" %)**AT command**
849 849  
850 -* (% style="color:#037691" %)**AT Command:**
891 +(% border="2" style="width:500px" %)
892 +|**Command**|AT+TDC=<time>
893 +|**Response**|
894 +|**Parameters**|**time** : uplink interval is in milliseconds
895 +|**Example**|(((
896 +AT+TDC=30000
851 851  
852 -(% style="color:blue" %)**AT+TDC=N **
898 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
899 +)))
853 853  
901 +(% style="color:#037691" %)**Downlink payload**
854 854  
855 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
903 +(% border="2" style="width:500px" %)
904 +|**Payload**|(((
905 +<prefix><time>
906 +)))
907 +|**Parameters**|(((
908 +**prefix** : 0x01
856 856  
910 +**time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
911 +)))
912 +|**Example**|(((
913 +01 **00 75 30**
857 857  
858 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
915 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
859 859  
860 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
917 +Conversion: 30000 (dec) = 00 75 30 (hex)
861 861  
919 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
920 +)))
862 862  
922 +==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
863 863  
864 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
924 +Sets the working mode.
865 865  
926 +(% style="color:#037691" %)**AT command**
866 866  
867 -Set work mode.
928 +(% border="2" style="width:500px" %)
929 +|(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
930 +|(% style="width:97px" %)**Response**|(% style="width:413px" %)
931 +|(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
932 +**working_mode** :
868 868  
869 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
934 +1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
870 870  
871 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
936 +2 = Double DI Counting + DO + RO
872 872  
873 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
938 +3 = Single DI Counting + 2 x ACI + DO + RO
874 874  
875 -(% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
940 +4 = Single DI Counting + 1 x Voltage Counting + DO + RO
876 876  
942 +5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
877 877  
944 +6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
945 +)))
946 +|(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
947 +AT+MOD=2
878 878  
879 -==== 3.4.2.3 Poll an uplink ====
949 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
950 +)))
880 880  
952 +(% class="wikigeneratedid" %)
953 +(% style="color:#037691" %)**Downlink payload**
881 881  
882 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
955 +(% border="2" style="width:500px" %)
956 +|(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
957 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
958 +**prefix** : 0x0A
883 883  
884 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
960 +**working_mode** : Working mode, represented by 1 byte in hexadecimal.
961 +)))
962 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
963 +0A **02**
885 885  
886 -(% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
965 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
966 +)))
887 887  
888 -**Example**: 0x08FF, ask device to send an Uplink
968 +==== 3.4.2.3 Poll an uplink ====
889 889  
970 +Requests an uplink from LT-22222-L.
890 890  
972 +(% style="color:#037691" %)**AT command**
891 891  
892 -==== 3.4.2.4 Enable Trigger Mode ====
974 +There is no AT Command to request an uplink from LT-22222-L
893 893  
976 +(% style="color:#037691" %)**Downlink payload**
894 894  
895 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
978 +(% border="2" style="width:500px" %)
979 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
980 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
981 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
982 +08 FF
896 896  
897 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
984 +Requests an uplink from LT-22222-L.
985 +)))
898 898  
899 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
987 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
900 900  
901 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
989 +Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
902 902  
991 +(% style="color:#037691" %)**AT Command**
903 903  
904 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
993 +(% border="2" style="width:500px" %)
994 +|(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
995 +|(% style="width:95px" %)**Response**|(% style="width:403px" %)
996 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
997 +**enable/disable trigger_mode** :
905 905  
906 -(% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
999 +1 = enable trigger mode
907 907  
1001 +0 = disable trigger mode
1002 +)))
1003 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1004 +AT+ADDMOD6=1
908 908  
1006 +Enable trigger mode for the current working mode
1007 +)))
909 909  
910 -==== 3.4.2.5 Poll trigger settings ====
1009 +(% style="color:#037691" %)**Downlink payload**
911 911  
1011 +(% border="2" style="width:500px" %)
1012 +|(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
1013 +|(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
1014 +**prefix** : 0x0A 06 (two bytes in hexadecimal)
912 912  
913 -Poll trigger settings
1016 +**working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1017 +)))
1018 +|(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1019 +0A 06 **01**
914 914  
915 -* (% style="color:#037691" %)**AT Command:**
1021 +Enable trigger mode for the current working mode
1022 +)))
916 916  
1024 +==== 3.4.2.5 Poll trigger settings ====
1025 +
1026 +Polls the trigger settings.
1027 +
1028 +(% style="color:#037691" %)**AT Command:**
1029 +
917 917  There is no AT Command for this feature.
918 918  
919 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1032 +(% style="color:#037691" %)**Downlink Payload**
920 920  
921 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1034 +(% border="2" style="width:500px" %)
1035 +|(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1036 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1037 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1038 +AB 06
922 922  
1040 +Uplinks the trigger settings.
1041 +)))
923 923  
1043 +==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
924 924  
925 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1045 +Enable or disable DI1/DI2/DI3 as a trigger.
926 926  
1047 +(% style="color:#037691" %)**AT Command**
927 927  
928 -Enable Disable DI1/DI2/DI2 as trigger,
1049 +(% border="2" style="width:500px" %)
1050 +|(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1051 +|(% style="width:98px" %)**Response**|(% style="width:400px" %)
1052 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1053 +**DI1_trigger:**
929 929  
930 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1055 +1 = enable DI1 trigger
931 931  
932 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1057 +0 = disable DI1 trigger
933 933  
1059 +**DI2 _trigger**
934 934  
935 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1061 +1 = enable DI2 trigger
936 936  
937 -(% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1063 +0 = disable DI2 trigger
1064 +)))
1065 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1066 +AT+DTRI=1,0
938 938  
1068 +Enable DI1 trigger, disable DI2 trigger
1069 +)))
939 939  
1071 +(% class="wikigeneratedid" %)
1072 +(% style="color:#037691" %)**Downlink Payload**
940 940  
941 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1074 +(% border="2" style="width:500px" %)
1075 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1076 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1077 +**prefix :** AA 02 (two bytes in hexadecimal)
942 942  
1079 +**DI1_trigger:**
943 943  
944 -Set DI1 or DI3(for LT-33222-L) trigger.
1081 +1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
945 945  
946 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1083 +0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
947 947  
948 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1085 +**DI2 _trigger**
949 949  
950 -(% style="color:red" %)**b :** (%%)delay timing.
1087 +1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
951 951  
952 -**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1089 +0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1090 +)))
1091 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1092 +AA 02 **01 00**
953 953  
1094 +Enable DI1 trigger, disable DI2 trigger
1095 +)))
954 954  
955 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1097 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
956 956  
957 -(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1099 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
958 958  
959 959  
1102 +(% style="color:#037691" %)**AT Command**
960 960  
961 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1104 +(% border="2" style="width:500px" %)
1105 +|(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1106 +|(% style="width:101px" %)**Response**|(% style="width:397px" %)
1107 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1108 +**interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
962 962  
1110 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1111 +)))
1112 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1113 +AT+TRIG1=1,100
963 963  
964 -Set DI2 trigger.
1115 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1116 +)))
965 965  
966 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1118 +(% class="wikigeneratedid" %)
1119 +(% style="color:#037691" %)**Downlink Payload**
967 967  
968 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1121 +(% border="2" style="width:500px" %)
1122 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1123 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1124 +**prefix** : 09 01 (hexadecimal)
969 969  
970 -(% style="color:red" %)**b :** (%%)delay timing.
1126 +**interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
971 971  
972 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1128 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1129 +)))
1130 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1131 +09 01 **01 00 64**
973 973  
1133 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1134 +)))
974 974  
975 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1136 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
976 976  
977 -(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1138 +Sets DI2 as a trigger.
978 978  
979 979  
1141 +(% style="color:#037691" %)**AT Command**
980 980  
981 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1143 +(% border="2" style="width:500px" %)
1144 +|(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1145 +|(% style="width:94px" %)**Response**|(% style="width:404px" %)
1146 +|(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1147 +**interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
982 982  
1149 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1150 +)))
1151 +|(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1152 +AT+TRIG2=0,100
983 983  
984 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1154 +Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1155 +)))
985 985  
986 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1157 +(% style="color:#037691" %)**Downlink Payload**
987 987  
988 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1159 +(% border="2" style="width:500px" %)
1160 +|(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1161 +|(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1162 +**prefix** : 09 02 (hexadecimal)
989 989  
990 -(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1164 +**interrupt_mode **0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
991 991  
1166 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1167 +)))
1168 +|(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
992 992  
993 993  
1171 +
1172 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1173 +
1174 +Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1175 +
1176 +(% style="color:#037691" %)**AT Command**
1177 +
1178 +(% border="2" style="width:500px" %)
1179 +|(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1180 +AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1181 +)))
1182 +|(% style="width:104px" %)**Response**|(% style="width:394px" %)
1183 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1184 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
1185 +
1186 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1187 +
1188 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1189 +
1190 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1191 +)))
1192 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1193 +AT+ACLIM=10000,15000,0,0
1194 +
1195 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1196 +)))
1197 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1198 +
1199 +(% style="color:#037691" %)**Downlink Payload**
1200 +
1201 +(% border="2" style="width:500px" %)
1202 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1203 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1204 +**prefix **: AA 01 (hexadecimal)
1205 +
1206 +**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1207 +
1208 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1209 +
1210 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1211 +
1212 +**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1213 +)))
1214 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1215 +AA 01 **27** **10 3A** **98** 00 00 00 00
1216 +
1217 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1218 +)))
1219 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1220 +
994 994  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
995 995  
1223 +Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
996 996  
997 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225 +(% style="color:#037691" %)**AT Command**
998 998  
999 -* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1227 +(% border="2" style="width:500px" %)
1228 +|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1229 +|(% style="width:104px" %)**Response**|(% style="width:387px" %)
1230 +|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1231 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
1000 1000  
1001 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1233 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1002 1002  
1003 -(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1235 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1004 1004  
1237 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1238 +)))
1239 +|(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1240 +AT+AVLIM=3000,6000,0,2000
1005 1005  
1242 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1243 +)))
1244 +|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1006 1006  
1007 -==== 3.4.2.11 Trigger – Set minimum interval ====
1246 +(% style="color:#037691" %)**Downlink Payload**
1008 1008  
1248 +(% border="2" style="width:500px" %)
1249 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1250 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1251 +**prefix **: AA 00 (hexadecimal)
1009 1009  
1010 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1253 +**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1011 1011  
1012 -* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1255 +**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1013 1013  
1014 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1257 +**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1015 1015  
1016 -(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1259 +**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1260 +)))
1261 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1262 +AA 00 **0B B8 17 70 00 00 07 D0**
1017 1017  
1018 -(((
1019 -(% style="color:red" %)**Note: ATDC setting must be more than 5min**
1264 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1020 1020  )))
1266 +|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1021 1021  
1268 +==== 3.4.2.11 Trigger – Set minimum interval ====
1022 1022  
1270 +Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1023 1023  
1272 +(% style="color:#037691" %)**AT Command**
1273 +
1274 +(% border="2" style="width:500px" %)
1275 +|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1276 +|(% style="width:113px" %)**Response**|(% style="width:385px" %)
1277 +|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1278 +**time** : in minutes
1279 +)))
1280 +|(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1281 +AT+ATDC=5
1282 +
1283 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1284 +)))
1285 +|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1286 +
1287 +(% style="color:#037691" %)**Downlink Payload**
1288 +
1289 +(% border="2" style="width:500px" %)
1290 +|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1291 +|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1292 +**prefix** : AC (hexadecimal)
1293 +
1294 +**time **: in minutes (two bytes in hexadecimal)
1295 +)))
1296 +|(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1297 +AC **00 05**
1298 +
1299 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1300 +)))
1301 +|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1302 +
1024 1024  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1025 1025  
1305 +Controls the digital outputs DO1, DO2, and DO3
1026 1026  
1027 -* (% style="color:#037691" %)**AT Command**
1307 +(% style="color:#037691" %)**AT Command**
1028 1028  
1029 -There is no AT Command to control Digital Output
1309 +There is no AT Command to control the Digital Output.
1030 1030  
1031 1031  
1032 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1312 +(% style="color:#037691" %)**Downlink Payload**
1033 1033  
1034 -(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1314 +(% border="2" style="width:500px" %)
1315 +|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1316 +|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1317 +**prefix** : 02 (hexadecimal)
1035 1035  
1036 -(((
1037 -If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1319 +**DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1320 +
1321 +**DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1322 +
1323 +**DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1038 1038  )))
1325 +|(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1326 +02 **01 00 01**
1039 1039  
1328 +If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1329 +
1330 +**More examples:**
1331 +
1040 1040  (((
1041 -01: Low,  00: High ,  11: No action
1333 +01: Low,  00: High,  11: No action
1042 1042  
1043 1043  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1044 1044  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
... ... @@ -1048,12 +1048,15 @@
1048 1048  )))
1049 1049  
1050 1050  (((
1051 -(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1343 +(((
1344 +(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1052 1052  )))
1053 1053  
1054 1054  (((
1055 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1348 +(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1056 1056  )))
1350 +)))
1351 +)))
1057 1057  
1058 1058  
1059 1059  
... ... @@ -1081,7 +1081,7 @@
1081 1081  00: DO pins will change to an inverter state after timeout 
1082 1082  
1083 1083  
1084 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1379 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1085 1085  
1086 1086  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1087 1087  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1089,7 +1089,7 @@
1089 1089  |0x00|DO1 set to high
1090 1090  |0x11|DO1 NO Action
1091 1091  
1092 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1387 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1093 1093  
1094 1094  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1095 1095  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1097,7 +1097,7 @@
1097 1097  |0x00|DO2 set to high
1098 1098  |0x11|DO2 NO Action
1099 1099  
1100 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1395 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1101 1101  
1102 1102  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1103 1103  |(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
... ... @@ -1105,16 +1105,16 @@
1105 1105  |0x00|DO3 set to high
1106 1106  |0x11|DO3 NO Action
1107 1107  
1108 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1403 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1109 1109  
1110 1110  
1111 1111  (% style="color:red" %)**Note: **
1112 1112  
1113 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1408 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1114 1114  
1115 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1410 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1116 1116  
1117 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1412 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1118 1118  
1119 1119  
1120 1120  **Example payload:**
... ... @@ -1121,22 +1121,21 @@
1121 1121  
1122 1122  **~1. A9 01 01 01 01 07 D0**
1123 1123  
1124 -DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1419 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1125 1125  
1126 1126  **2. A9 01 00 01 11 07 D0**
1127 1127  
1128 -DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1423 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1129 1129  
1130 1130  **3. A9 00 00 00 00 07 D0**
1131 1131  
1132 -DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1427 +DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1133 1133  
1134 1134  **4. A9 00 11 01 00 07 D0**
1135 1135  
1136 -DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1431 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1137 1137  
1138 1138  
1139 -
1140 1140  ==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1141 1141  
1142 1142  
... ... @@ -1151,11 +1151,11 @@
1151 1151  
1152 1152  
1153 1153  (((
1154 -If payload = 0x030100, it means set RO1 to close and RO2 to open.
1448 +If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1155 1155  )))
1156 1156  
1157 1157  (((
1158 -01: Close ,  00: Open , 11: No action
1452 +00: Close ,  01: Open , 11: No action
1159 1159  
1160 1160  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1161 1161  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1172,9 +1172,9 @@
1172 1172  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1173 1173  
1174 1174  
1175 -
1176 1176  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1177 1177  
1471 +Controls the relay output time.
1178 1178  
1179 1179  * (% style="color:#037691" %)**AT Command:**
1180 1180  
... ... @@ -1186,15 +1186,15 @@
1186 1186  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1187 1187  
1188 1188  
1189 -This is to control the relay output time of relay. Include four bytes:
1483 +This is to control the relay output time. It includes four bytes:
1190 1190  
1191 1191  (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1192 1192  
1193 1193  (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1194 1194  
1195 -01: Relays will change back to original state after timeout.
1489 +01: Relays will change back to their original state after timeout.
1196 1196  
1197 -00: Relays will change to an inverter state after timeout
1491 +00: Relays will change to the inverter state after timeout.
1198 1198  
1199 1199  
1200 1200  (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
... ... @@ -1207,12 +1207,12 @@
1207 1207  
1208 1208  (% style="color:red" %)**Note:**
1209 1209  
1210 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1504 + Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1211 1211  
1212 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1506 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1213 1213  
1214 1214  
1215 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1509 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1216 1216  
1217 1217  
1218 1218  **Example payload:**
... ... @@ -1219,19 +1219,19 @@
1219 1219  
1220 1220  **~1. 05 01 11 07 D0**
1221 1221  
1222 -Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1516 +Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1223 1223  
1224 1224  **2. 05 01 10 07 D0**
1225 1225  
1226 -Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1520 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1227 1227  
1228 1228  **3. 05 00 01 07 D0**
1229 1229  
1230 -Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1524 +Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1231 1231  
1232 1232  **4. 05 00 00 07 D0**
1233 1233  
1234 -Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1528 +Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1235 1235  
1236 1236  
1237 1237  
... ... @@ -1238,7 +1238,7 @@
1238 1238  ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1239 1239  
1240 1240  
1241 -When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1535 +When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1242 1242  
1243 1243  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1244 1244  
... ... @@ -1247,15 +1247,76 @@
1247 1247  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1248 1248  
1249 1249  
1544 +(% style="color:#037691" %)**AT Command**
1250 1250  
1546 +(% border="2" style="width:500px" %)
1547 +|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1548 +|(% style="width:137px" %)**Response**|(% style="width:361px" %)
1549 +|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1550 +**voltage** : voltage threshold in mV
1551 +
1552 +**logic**:
1553 +
1554 +0 : lower than
1555 +
1556 +1: higher than
1557 +
1558 +if you leave logic parameter blank, it is considered 0
1559 +)))
1560 +|(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1561 +AT+VOLMAX=20000
1562 +
1563 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1564 +
1565 +AT+VOLMAX=20000,0
1566 +
1567 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1568 +
1569 +AT+VOLMAX=20000,1
1570 +
1571 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1572 +)))
1573 +
1574 +(% style="color:#037691" %)**Downlink Payload**
1575 +
1576 +(% border="2" style="width:500px" %)
1577 +|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1578 +|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1579 +**prefix** : A5 (hex)
1580 +
1581 +**voltage** : voltage threshold in mV (2 bytes in hex)
1582 +
1583 +**logic**: (1 byte in hexadecimal)
1584 +
1585 +0 : lower than
1586 +
1587 +1: higher than
1588 +
1589 +if you leave logic parameter blank, it is considered 1 (higher than)
1590 +)))
1591 +|(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1592 +A5 **4E 20**
1593 +
1594 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1595 +
1596 +A5 **4E 20 00**
1597 +
1598 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1599 +
1600 +A5 **4E 20 01**
1601 +
1602 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1603 +)))
1604 +
1251 1251  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1252 1252  
1607 +This command allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1253 1253  
1254 1254  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1255 1255  
1256 1256  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1257 1257  
1258 -(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1613 +(% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1259 1259  
1260 1260  
1261 1261  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
... ... @@ -1263,12 +1263,55 @@
1263 1263  (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1264 1264  
1265 1265  
1621 +(% style="color:#037691" %)**AT Command**
1266 1266  
1267 -==== 3.4.2.18 Counting ~-~- Clear Counting ====
1623 +(% border="2" style="width:500px" %)
1624 +|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1625 +|(% style="width:134px" %)**Response**|(% style="width:364px" %)
1626 +|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1627 +**counting_parameter** :
1268 1268  
1629 +1: COUNT1
1269 1269  
1270 -Clear counting for counting mode
1631 +2: COUNT2
1271 1271  
1633 +3: AVI1 Count
1634 +
1635 +**number** : Start number
1636 +)))
1637 +|(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1638 +AT+SETCNT=1,10
1639 +
1640 +Sets the COUNT1 to 10.
1641 +)))
1642 +
1643 +(% style="color:#037691" %)**Downlink Payload**
1644 +
1645 +(% border="2" style="width:500px" %)
1646 +|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1647 +|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1648 +prefix : A8 (hex)
1649 +
1650 +**counting_parameter** : (1 byte in hexadecimal)
1651 +
1652 +1: COUNT1
1653 +
1654 +2: COUNT2
1655 +
1656 +3: AVI1 Count
1657 +
1658 +**number** : Start number, 4 bytes in hexadecimal
1659 +)))
1660 +|(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1661 +A8 **01 00 00 00 0A**
1662 +
1663 +Sets the COUNT1 to 10.
1664 +)))
1665 +
1666 +==== 3.4.2.18 Counting ~-~- Clear Counting ====
1667 +
1668 +This command clears the counting in counting mode.
1669 +
1272 1272  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1273 1273  
1274 1274  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
... ... @@ -1275,14 +1275,30 @@
1275 1275  
1276 1276  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1277 1277  
1676 +(% style="color:#037691" %)**AT Command**
1278 1278  
1678 +(% border="2" style="width:500px" %)
1679 +|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1680 +|(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1279 1279  
1280 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1682 +(% style="color:#037691" %)**Downlink Payload**
1281 1281  
1684 +(% border="2" style="width:500px" %)
1685 +|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1686 +|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1687 +prefix : A6 (hex)
1282 1282  
1689 +clear? : 01 (hex)
1690 +)))
1691 +|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1692 +
1693 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1694 +
1695 +This command allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1696 +
1283 1283  * (% style="color:#037691" %)**AT Command:**
1284 1284  
1285 -(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1699 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1286 1286  
1287 1287  
1288 1288  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
... ... @@ -1290,19 +1290,46 @@
1290 1290  (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1291 1291  
1292 1292  (((
1293 -range: aa bb cc:0 to 16777215,  (unit:second)
1707 +Range: aa bb cc:0 to 16777215,  (unit: seconds)
1294 1294  )))
1295 1295  
1296 1296  
1711 +(% style="color:#037691" %)**AT Command**
1297 1297  
1713 +(% border="2" style="width:500px" %)
1714 +|(% style="width:124px" %)**Command**|(% style="width:374px" %)AT+COUTIME=<time>
1715 +|(% style="width:124px" %)**Response**|(% style="width:374px" %)
1716 +|(% style="width:124px" %)**Parameters**|(% style="width:374px" %)time : seconds (0 to 16777215)
1717 +|(% style="width:124px" %)**Example**|(% style="width:374px" %)(((
1718 +AT+COUTIME=60
1719 +
1720 +Sets the device to save its counting results to the memory every 60 seconds.
1721 +)))
1722 +
1723 +(% style="color:#037691" %)**Downlink Payload**
1724 +
1725 +(% border="2" style="width:500px" %)
1726 +|(% style="width:123px" %)**Payload**|(% style="width:375px" %)<prefix><time>
1727 +|(% style="width:123px" %)**Parameters**|(% style="width:375px" %)(((
1728 +prefix : A7
1729 +
1730 +time : seconds, 3 bytes in hexadecimal
1731 +)))
1732 +|(% style="width:123px" %)**Example**|(% style="width:375px" %)(((
1733 +A7 **00 00 3C**
1734 +
1735 +Sets the device to save its counting results to the memory every 60 seconds.
1736 +)))
1737 +
1298 1298  ==== 3.4.2.20 Reset save RO DO state ====
1299 1299  
1740 +This command allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1300 1300  
1301 1301  * (% style="color:#037691" %)**AT Command:**
1302 1302  
1303 1303  (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1304 1304  
1305 -(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1746 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1306 1306  
1307 1307  
1308 1308  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
... ... @@ -1310,9 +1310,50 @@
1310 1310  (% style="color:blue" %)**0x AD aa      ** (%%)~/~/ same as AT+RODORET =aa
1311 1311  
1312 1312  
1754 +(% border="2" style="width:500px" %)
1755 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+RODORESET=<state>
1756 +|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1757 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1758 +**state** :
1313 1313  
1760 +**0** : RODO will close when the device joins the network. (default)
1761 +
1762 +**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1763 +)))
1764 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1765 +(% style="color:blue" %)**AT+RODORESET=1 **
1766 +
1767 +RODO will close when the device joins the network. (default)
1768 +
1769 +(% style="color:blue" %)**AT+RODORESET=0 **
1770 +
1771 +After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1772 +)))
1773 +
1774 +(% border="2" style="width:500px" %)
1775 +|(% style="width:127px" %)**Payload**|(% style="width:371px" %)<prefix><state>
1776 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1777 +**prefix** : AD
1778 +
1779 +**state** :
1780 +
1781 +**0** : RODO will close when the device joins the network. (default), represents as 1 byte in hexadecimal.
1782 +
1783 +**1**: After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network. - represents as 1 byte in hexadecimal
1784 +)))
1785 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1786 +AD **01**
1787 +
1788 +RODO will close when the device joins the network. (default)
1789 +
1790 +AD **00**
1791 +
1792 +After the device is reset, the previously saved RODO state (limited to MOD2 to MOD5) is read, and it will not change when the device reconnects to the network.
1793 +)))
1794 +
1314 1314  ==== 3.4.2.21 Encrypted payload ====
1315 1315  
1797 +This command allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1316 1316  
1317 1317  * (% style="color:#037691" %)**AT Command:**
1318 1318  
... ... @@ -1321,21 +1321,67 @@
1321 1321  (% style="color:blue" %)**AT+DECRYPT=0    **(%%)~/~/  Encrypt when uploading payload (default)
1322 1322  
1323 1323  
1806 +(% border="2" style="width:500px" %)
1807 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DECRYPT=<state>
1808 +|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1809 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1810 +state :
1324 1324  
1812 +1 : The payload is uploaded without encryption
1813 +
1814 +0 : The payload is encrypted when uploaded (default)
1815 +)))
1816 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1817 +AT+DECRYPT=1
1818 +
1819 +The payload is uploaded without encryption
1820 +
1821 +AT+DECRYPT=0
1822 +
1823 +The payload is encrypted when uploaded (default)
1824 +)))
1825 +
1826 +There is no downlink payload for this configuration.
1827 +
1828 +
1325 1325  ==== 3.4.2.22 Get sensor value ====
1326 1326  
1831 +This command allows you to retrieve and optionally uplink sensor readings through the serial port.
1327 1327  
1328 1328  * (% style="color:#037691" %)**AT Command:**
1329 1329  
1330 -(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1835 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1331 1331  
1332 -(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1837 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1333 1333  
1334 1334  
1840 +(% border="2" style="width:500px" %)
1841 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+GETSENSORVALUE=<state>
1842 +|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1843 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1844 +**state** :
1335 1335  
1336 -==== 3.4.2.23 Resets the downlink packet count ====
1846 +**0 **: Retrieves the current sensor reading via the serial port.
1337 1337  
1848 +**1 **: Retrieves and uploads the current sensor reading via the serial port.
1849 +)))
1850 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1851 +AT+GETSENSORVALUE=0
1338 1338  
1853 +Retrieves the current sensor reading via the serial port.
1854 +
1855 +AT+GETSENSORVALUE=1
1856 +
1857 +Retrieves and uplinks the current sensor reading via the serial port.
1858 +)))
1859 +
1860 +There is no downlink payload for this configuration.
1861 +
1862 +
1863 +==== 3.4.2.23 Resetting the downlink packet count ====
1864 +
1865 +This command manages how the node handles mismatched downlink packet counts. It offers two modes: one disables the reception of further downlink packets if discrepancies occur, while the other resets the downlink packet count to align with the server, ensuring continued communication.
1866 +
1339 1339  * (% style="color:#037691" %)**AT Command:**
1340 1340  
1341 1341  (% style="color:blue" %)**AT+DISFCNTCHECK=0   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node will no longer receive downlink packets (default)
... ... @@ -1343,10 +1343,37 @@
1343 1343  (% style="color:blue" %)**AT+DISFCNTCHECK=1   **(%%)~/~/ When the downlink packet count sent by the server is less than the node downlink packet count or exceeds 16384, the node resets the downlink packet count and keeps it consistent with the server downlink packet count.
1344 1344  
1345 1345  
1874 +(% border="2" style="width:500px" %)
1875 +|(% style="width:130px" %)**Command**|(% style="width:368px" %)AT+DISFCNTCHECK=<state>
1876 +|(% style="width:130px" %)**Response**|(% style="width:368px" %)(((
1877 +
1878 +)))
1879 +|(% style="width:130px" %)**Parameters**|(% style="width:368px" %)(((
1880 +**state **:
1346 1346  
1882 +**0** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1883 +
1884 +
1885 +**1** : When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1886 +)))
1887 +|(% style="width:130px" %)**Example**|(% style="width:368px" %)(((
1888 +AT+DISFCNTCHECK=0
1889 +
1890 +When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node stops receiving further downlink packets (default).
1891 +
1892 +AT+DISFCNTCHECK=1
1893 +
1894 +When the downlink packet count sent by the server is less than the node's downlink packet count or exceeds 16,384, the node resets its downlink packet count to match the server's, ensuring consistency.
1895 +)))
1896 +
1897 +There is no downlink payload for this configuration.
1898 +
1899 +
1347 1347  ==== 3.4.2.24 When the limit bytes are exceeded, upload in batches ====
1348 1348  
1349 1349  
1903 +This command controls the behavior of the node when the combined size of the MAC commands (MACANS) from the server and the payload exceeds the allowed byte limit for the current data rate (DR). The command provides two modes: one enables splitting the data into batches to ensure compliance with the byte limit, while the other prioritizes the payload and ignores the MACANS in cases of overflow.
1904 +
1350 1350  * (% style="color:#037691" %)**AT Command:**
1351 1351  
1352 1352  (% style="color:blue" %)**AT+DISMACANS=0**   (%%) ~/~/ When the MACANS of the reply server plus the payload exceeds the maximum number of bytes of 11 bytes (DR0 of US915, DR2 of AS923, DR2 of AU195), the node will send a packet with a payload of 00 and a port of 4. (default)
... ... @@ -1358,10 +1358,50 @@
1358 1358  
1359 1359  (% style="color:blue" %)**0x21 00 01 ** (%%) ~/~/ Set  the DISMACANS=1
1360 1360  
1916 +(% style="color:#037691" %)**AT Command**
1361 1361  
1918 +(% border="2" style="width:500px" %)
1919 +|(% style="width:127px" %)**Command**|(% style="width:371px" %)AT+DISMACANS=<state>
1920 +|(% style="width:127px" %)**Response**|(% style="width:371px" %)
1921 +|(% style="width:127px" %)**Parameters**|(% style="width:371px" %)(((
1922 +**state** :
1362 1362  
1924 +**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1925 +
1926 +**1** : When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1927 +)))
1928 +|(% style="width:127px" %)**Example**|(% style="width:371px" %)(((
1929 +AT+DISMACANS=0
1930 +
1931 +When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1932 +
1933 +AT+DISMACANS=1
1934 +
1935 +When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1936 +)))
1937 +
1938 +(% style="color:#037691" %)**Downlink Payload**
1939 +
1940 +(% border="2" style="width:500px" %)
1941 +|(% style="width:126px" %)**Payload**|(% style="width:372px" %)<prefix><state>
1942 +|(% style="width:126px" %)**Parameters**|(% style="width:372px" %)(((
1943 +**prefix** : 21
1944 +
1945 +**state** : (2 bytes in hexadecimal)
1946 +
1947 +**0** : When the combined size of the MACANS from the server and the payload exceeds the byte limit (11 bytes for DR0 of US915, DR2 of AS923, DR2 of AU915), the node sends a packet with a payload of 00 and a port of 4. (default)
1948 +
1949 +**1 **: When the combined size of the MACANS from the server and the payload exceeds the byte limit for the current DR, the node ignores the MACANS and only uploads the payload.
1950 +)))
1951 +|(% style="width:126px" %)**Example**|(% style="width:372px" %)(((
1952 +21 **00 01**
1953 +
1954 +Set DISMACANS=1
1955 +)))
1956 +
1363 1363  ==== 3.4.2.25 Copy downlink to uplink ====
1364 1364  
1959 +This command enables the device to immediately uplink the content of a received downlink packet back to the server. The command allows for quick data replication from downlink to uplink, with a fixed port number of 100.
1365 1365  
1366 1366  * (% style="color:#037691" %)**AT Command**(%%)**:**
1367 1367  
... ... @@ -1374,8 +1374,22 @@
1374 1374  
1375 1375  For example, sending 11 22 33 44 55 66 77 will return invalid configuration 00 11 22 33 44 55 66 77.
1376 1376  
1972 +(% border="2" style="width:500px" %)
1973 +|(% style="width:122px" %)**Command**|(% style="width:376px" %)(((
1974 +AT+RPL=5
1377 1377  
1976 +After receiving a downlink packet from the server, the node immediately uplinks the content of the packet back to the server using port number 100.
1977 +)))
1978 +|(% style="width:122px" %)**Example**|(% style="width:376px" %)(((
1979 +Downlink:
1378 1378  
1981 +01 00 02 58
1982 +
1983 +Uplink:
1984 +
1985 +01 01 00 02 58
1986 +)))
1987 +
1379 1379  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173833-7.png?width=1124&height=149&rev=1.1||alt="image-20220823173833-7.png"]]
1380 1380  
1381 1381  For example, if 01 00 02 58 is issued, a valid configuration of 01 01 00 02 58 will be returned.
... ... @@ -1382,14 +1382,16 @@
1382 1382  
1383 1383  
1384 1384  
1385 -==== 3.4.2.26 Query version number and frequency band TDC ====
1994 +==== 3.4.2.26 Query firmware version, frequency band, sub band, and TDC time ====
1386 1386  
1996 +This command is used to query key information about the device, including its firmware version, frequency band, sub band, and TDC time. By sending the specified payload as a downlink, the server can retrieve this essential data from the device.
1387 1387  
1388 1388  * (((
1389 1389  (% style="color:#037691" %)**Downlink Payload**(%%)**:**
1390 1390  
1391 -(% style="color:blue" %)**26 01  ** (%%) ~/~/  Downlink 26 01 can query device upload frequency, frequency band, software version number, TDC time.
2001 +(% style="color:blue" %)**26 01  ** (%%) ~/~/  The downlink payload 26 01 is used to query the device's firmware version, frequency band, sub band, and TDC time.
1392 1392  
2003 +
1393 1393  
1394 1394  )))
1395 1395  
... ... @@ -1398,74 +1398,152 @@
1398 1398  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1399 1399  
1400 1400  
1401 -== 3.5 Integrate with Mydevice ==
2012 +== 3.5 Integrating with ThingsEye.io ==
1402 1402  
2014 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1403 1403  
1404 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
2016 +=== 3.5.1 Configuring The Things Stack ===
1405 1405  
1406 -(((
1407 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1408 -)))
2018 +We use The Things Stack Sandbox in this example:
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
2020 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
2021 +* Select **MQTT** under **Integrations** in the left menu.
2022 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
2023 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1412 1412  
1413 -
1414 -)))
2025 +{{info}}
2026 +The username and  password (API key) you created here are required in the next section.
2027 +{{/info}}
1415 1415  
1416 -[[image:image-20220719105525-1.png||height="377" width="677"]]
2029 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1417 1417  
2031 +=== 3.5.2 Configuring ThingsEye.io ===
1418 1418  
2033 +The ThingsEye.io IoT platform is not open for self-registration at the moment. If you are interested in testing the platform, please send your project information to admin@thingseye.io, and we will create an account for you.
1419 1419  
1420 -[[image:image-20220719110247-2.png||height="388" width="683"]]
2035 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
2036 +* Under the **Integrations center**, click **Integrations**.
2037 +* Click the **Add integration** button (the button with the **+** symbol).
1421 1421  
2039 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1422 1422  
1423 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1424 1424  
1425 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
2042 +On the **Add integration** window, configure the following:
1426 1426  
1427 -Search under The things network
2044 +**Basic settings:**
1428 1428  
1429 -[[image:1653356838789-523.png||height="337" width="740"]]
2046 +* Select **The Things Stack Community** from the **Integration type** list.
2047 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
2048 +* Ensure the following options are turned on.
2049 +** Enable integration
2050 +** Debug mode
2051 +** Allow create devices or assets
2052 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1430 1430  
2054 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1431 1431  
1432 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1433 1433  
1434 -[[image:image-20220524094909-1.png||height="335" width="729"]]
2057 +**Uplink data converter:**
1435 1435  
2059 +* Click the **Create new** button if it is not selected by default.
2060 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
2061 +* Click the **JavaScript** button.
2062 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
2063 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1436 1436  
1437 -[[image:image-20220524094909-2.png||height="337" width="729"]]
2065 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1438 1438  
1439 1439  
1440 -[[image:image-20220524094909-3.png||height="338" width="727"]]
2068 +**Downlink data converter (this is an optional step):**
1441 1441  
2070 +* Click the **Create new** button if it is not selected by default.
2071 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
2072 +* Click the **JavaScript** button.
2073 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
2074 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1442 1442  
1443 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
2076 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1444 1444  
1445 1445  
1446 -[[image:image-20220524094909-5.png||height="341" width="734"]]
2079 +**Connection:**
1447 1447  
2081 +* Choose **Region** from the **Host type**.
2082 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
2083 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see **3.5.1 Configuring The Things Stack**).
2084 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1448 1448  
1449 -== 3.6 Interface Detail ==
2086 +[[image:message-1.png]]
1450 1450  
1451 -=== 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1452 1452  
2089 +* Click the **Add** button.
1453 1453  
1454 -Support NPN Type sensor
2091 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1455 1455  
2093 +
2094 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings and correct any errors.
2095 +
2096 +
2097 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
2098 +
2099 +
2100 +==== 3.5.2.1 Viewing integration details ====
2101 +
2102 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
2103 +
2104 +[[image:integration-details.png||height="686" width="1000"]]
2105 +
2106 +
2107 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
2108 +
2109 +{{info}}
2110 +See also [[ThingsEye documentation>>https://wiki.thingseye.io/xwiki/bin/view/Main/]].
2111 +{{/info}}
2112 +
2113 +==== **3.5.2.2 Viewing events** ====
2114 +
2115 +The **Events **tab displays all the uplink messages from the LT-22222-L.
2116 +
2117 +* Select **Debug **from the **Event type** dropdown.
2118 +* Select the** time frame** from the **time window**.
2119 +
2120 +[[image:thingseye-events.png||height="686" width="1000"]]
2121 +
2122 +
2123 +* To view the **JSON payload** of a message, click on the **three dots (...)** in the Message column of the desired message.
2124 +
2125 +[[image:thingseye-json.png||width="1000"]]
2126 +
2127 +
2128 +==== **3.5.2.3 Deleting an integration** ====
2129 +
2130 +If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
2131 +
2132 +
2133 +==== 3.5.2.4 Creating a Dashboard to Display and Analyze LT-22222-L Data ====
2134 +
2135 +This will be added soon.
2136 +
2137 +
2138 +== 3.6 Interface Details ==
2139 +
2140 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
2141 +
2142 +
2143 +Supports NPN-type sensors.
2144 +
1456 1456  [[image:1653356991268-289.png]]
1457 1457  
1458 1458  
1459 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
2148 +=== 3.6.2 Digital Input Ports: DI1/DI2 ===
1460 1460  
1461 1461  
1462 1462  (((
1463 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
2152 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1464 1464  )))
1465 1465  
1466 1466  (((
1467 1467  (((
1468 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
2157 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1469 1469  
1470 1470  
1471 1471  )))
... ... @@ -1475,7 +1475,7 @@
1475 1475  
1476 1476  (((
1477 1477  (((
1478 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
2167 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1479 1479  )))
1480 1480  )))
1481 1481  
... ... @@ -1484,22 +1484,22 @@
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
2176 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -This type of sensor will output a low signal GND when active.
2180 +This type of sensor outputs a low (GND) signal when active.
1492 1492  )))
1493 1493  
1494 1494  * (((
1495 -Connect sensor's output to DI1-
2184 +Connect the sensor's output to DI1-
1496 1496  )))
1497 1497  * (((
1498 -Connect sensor's VCC to DI1+.
2187 +Connect the sensor's VCC to DI1+.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -So when sensor active, the current between NEC2501 pin1 and pin2 is
2191 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1503 1503  )))
1504 1504  
1505 1505  (((
... ... @@ -1507,7 +1507,7 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
2199 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,22 +1515,22 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
2207 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -This type of sensor will output a high signal (example 24v) when active.
2211 +This type of sensor outputs a high signal (e.g., 24V) when active.
1523 1523  )))
1524 1524  
1525 1525  * (((
1526 -Connect sensor's output to DI1+
2215 +Connect the sensor's output to DI1+
1527 1527  )))
1528 1528  * (((
1529 -Connect sensor's GND DI1-.
2218 +Connect the sensor's GND DI1-.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2222 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,7 +1538,7 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
2230 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1542 1542  )))
1543 1543  
1544 1544  (((
... ... @@ -1546,22 +1546,22 @@
1546 1546  )))
1547 1547  
1548 1548  (((
1549 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
2238 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
2242 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1554 1554  )))
1555 1555  
1556 1556  * (((
1557 -Connect sensor's output to DI1+ with a serial 50K resistor
2246 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1558 1558  )))
1559 1559  * (((
1560 -Connect sensor's GND DI1-.
2249 +Connect the sensor's GND DI1-.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2253 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,38 +1569,37 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
2261 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1573 1573  )))
1574 1574  
1575 1575  
1576 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
2265 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1577 1577  
1578 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
2267 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1579 1579  
1580 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
2269 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1581 1581  
1582 1582  [[image:image-20230616235145-1.png]]
1583 1583  
1584 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
2273 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1585 1585  
1586 1586  [[image:image-20240219115718-1.png]]
1587 1587  
1588 1588  
2278 +=== 3.6.3 Digital Output Ports: DO1/DO2 ===
1589 1589  
1590 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1591 1591  
2281 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1592 1592  
1593 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
2283 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1594 1594  
1595 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1596 -
1597 1597  [[image:1653357531600-905.png]]
1598 1598  
1599 1599  
1600 -=== 3.6.4 Analog Input Interface ===
2288 +=== 3.6.4 Analog Input Interfaces ===
1601 1601  
1602 1602  
1603 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
2291 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1604 1604  
1605 1605  
1606 1606  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1607,14 +1607,14 @@
1607 1607  
1608 1608  [[image:1653357592296-182.png]]
1609 1609  
1610 -Example to connect a 4~~20mA sensor
2298 +Example: Connecting a 4~~20mA sensor
1611 1611  
1612 -We take the wind speed sensor as an example for reference only.
2300 +We will use the wind speed sensor as an example for reference only.
1613 1613  
1614 1614  
1615 1615  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1616 1616  
1617 -(% style="color:red" %)**Red:  12~~24v**
2305 +(% style="color:red" %)**Red:  12~~24V**
1618 1618  
1619 1619  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1620 1620  
... ... @@ -1627,7 +1627,7 @@
1627 1627  [[image:1653357648330-671.png||height="155" width="733"]]
1628 1628  
1629 1629  
1630 -Example connected to a regulated power supply to measure voltage
2318 +Example: Connecting to a regulated power supply to measure voltage
1631 1631  
1632 1632  [[image:image-20230608101532-1.png||height="606" width="447"]]
1633 1633  
... ... @@ -1636,7 +1636,7 @@
1636 1636  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1637 1637  
1638 1638  
1639 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
2327 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1640 1640  
1641 1641  (% style="color:red" %)**Red:  12~~24v**
1642 1642  
... ... @@ -1647,9 +1647,9 @@
1647 1647  
1648 1648  
1649 1649  (((
1650 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
2338 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1651 1651  
1652 -**Note**: RO pins go to Open(NO) when device is power off.
2340 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1653 1653  )))
1654 1654  
1655 1655  [[image:image-20220524100215-9.png]]
... ... @@ -1660,13 +1660,11 @@
1660 1660  
1661 1661  == 3.7 LEDs Indicators ==
1662 1662  
2351 +The table below lists the behavior of LED indicators for each port function.
1663 1663  
1664 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1665 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:470px" %)**Feature**
1666 -|**PWR**|Always on if there is power
1667 -|**SYS**|(((
1668 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1669 -)))
2353 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2354 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2355 +|**PWR**|Always on when there is power
1670 1670  |**TX**|(((
1671 1671  (((
1672 1672  Device boot: TX blinks 5 times.
... ... @@ -1673,7 +1673,7 @@
1673 1673  )))
1674 1674  
1675 1675  (((
1676 -Successful join network: TX ON for 5 seconds.
2362 +Successful network join: TX remains ON for 5 seconds.
1677 1677  )))
1678 1678  
1679 1679  (((
... ... @@ -1680,40 +1680,34 @@
1680 1680  Transmit a LoRa packet: TX blinks once
1681 1681  )))
1682 1682  )))
1683 -|**RX**|RX blinks once when receive a packet.
1684 -|**DO1**|
1685 -|**DO2**|
1686 -|**DO3**|
1687 -|**DI2**|(((
1688 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
2369 +|**RX**|RX blinks once when a packet is received.
2370 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2371 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2372 +|**DI1**|(((
2373 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1689 1689  )))
1690 1690  |**DI2**|(((
1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
2376 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1692 1692  )))
1693 -|**DI2**|(((
1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1695 -)))
1696 -|**RO1**|
1697 -|**RO2**|
2378 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2379 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1698 1698  
1699 -= 4. Use AT Command =
2381 += 4. Using AT Commands =
1700 1700  
1701 -== 4.1 Access AT Command ==
2383 +The LT-22222-L supports programming using AT Commands.
1702 1702  
2385 +== 4.1 Connecting the LT-22222-L to a PC ==
1703 1703  
1704 1704  (((
1705 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1706 -)))
2388 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1707 1707  
1708 -(((
1709 -
2390 +[[image:usb-ttl-programming.png]]
1710 1710  )))
1711 1711  
1712 -[[image:1653358238933-385.png]]
1713 1713  
1714 1714  
1715 1715  (((
1716 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
2396 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1717 1717  )))
1718 1718  
1719 1719  [[image:1653358355238-883.png]]
... ... @@ -1720,194 +1720,63 @@
1720 1720  
1721 1721  
1722 1722  (((
1723 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1724 -)))
2403 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1725 1725  
1726 -(((
1727 -AT+<CMD>?        : Help on <CMD>
2405 +== 4.2 LT-22222-L related AT commands ==
1728 1728  )))
1729 1729  
1730 1730  (((
1731 -AT+<CMD>         : Run <CMD>
1732 -)))
2409 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1733 1733  
1734 -(((
1735 -AT+<CMD>=<value> : Set the value
2411 +* **##AT##+<CMD>?** : Help on <CMD>
2412 +* **##AT##+<CMD>** : Run <CMD>
2413 +* **##AT##+<CMD>=<value>** : Set the value
2414 +* **##AT##+<CMD>=?** : Get the value
2415 +* ##**ATZ**##: Trigger a reset of the MCU
2416 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2417 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2418 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2419 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2420 +* ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2421 +* **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2422 +* **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2423 +* **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2424 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2425 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2426 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2427 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
2428 +* AT+RX2FQ: Get or set the Rx2 window frequency
2429 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2430 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2431 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2432 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2433 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2434 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2435 +* AT+NWKID: Get or set the Network ID
2436 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2437 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2438 +* AT+CLASS: Get or set the Device Class
2439 +* AT+JOIN: Join network
2440 +* AT+NJS: Get OTAA Join Status
2441 +* AT+SENDB: Send hexadecimal data along with the application port
2442 +* AT+SEND: Send text data along with the application port
2443 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
2444 +* AT+RECV: Print last received data in raw format
2445 +* AT+VER: Get current image version and Frequency Band
2446 +* AT+CFM: Get or Set the confirmation mode (0-1)
2447 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2448 +* AT+SNR: Get the SNR of the last received packet
2449 +* AT+RSSI: Get the RSSI of the last received packet
2450 +* AT+TDC: Get or set the application data transmission interval in ms
2451 +* AT+PORT: Get or set the application port
2452 +* AT+DISAT: Disable AT commands
2453 +* AT+PWORD: Set password, max 9 digits
2454 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2455 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2456 +* AT+CFG: Print all settings
1736 1736  )))
1737 1737  
1738 -(((
1739 -AT+<CMD>=?       :  Get the value
1740 -)))
1741 1741  
1742 -(((
1743 -ATZ: Trig a reset of the MCU
1744 -)))
1745 -
1746 -(((
1747 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1748 -)))
1749 -
1750 -(((
1751 -AT+DEUI: Get or Set the Device EUI
1752 -)))
1753 -
1754 -(((
1755 -AT+DADDR: Get or Set the Device Address
1756 -)))
1757 -
1758 -(((
1759 -AT+APPKEY: Get or Set the Application Key
1760 -)))
1761 -
1762 -(((
1763 -AT+NWKSKEY: Get or Set the Network Session Key
1764 -)))
1765 -
1766 -(((
1767 -AT+APPSKEY:  Get or Set the Application Session Key
1768 -)))
1769 -
1770 -(((
1771 -AT+APPEUI:  Get or Set the Application EUI
1772 -)))
1773 -
1774 -(((
1775 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1776 -)))
1777 -
1778 -(((
1779 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1780 -)))
1781 -
1782 -(((
1783 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1784 -)))
1785 -
1786 -(((
1787 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1788 -)))
1789 -
1790 -(((
1791 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1792 -)))
1793 -
1794 -(((
1795 -AT+RX2FQ: Get or Set the Rx2 window frequency
1796 -)))
1797 -
1798 -(((
1799 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1800 -)))
1801 -
1802 -(((
1803 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1804 -)))
1805 -
1806 -(((
1807 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1808 -)))
1809 -
1810 -(((
1811 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1812 -)))
1813 -
1814 -(((
1815 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1816 -)))
1817 -
1818 -(((
1819 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1820 -)))
1821 -
1822 -(((
1823 -AT+NWKID: Get or Set the Network ID
1824 -)))
1825 -
1826 -(((
1827 -AT+FCU: Get or Set the Frame Counter Uplink
1828 -)))
1829 -
1830 -(((
1831 -AT+FCD: Get or Set the Frame Counter Downlink
1832 -)))
1833 -
1834 -(((
1835 -AT+CLASS: Get or Set the Device Class
1836 -)))
1837 -
1838 -(((
1839 -AT+JOIN: Join network
1840 -)))
1841 -
1842 -(((
1843 -AT+NJS: Get OTAA Join Status
1844 -)))
1845 -
1846 -(((
1847 -AT+SENDB: Send hexadecimal data along with the application port
1848 -)))
1849 -
1850 -(((
1851 -AT+SEND: Send text data along with the application port
1852 -)))
1853 -
1854 -(((
1855 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1856 -)))
1857 -
1858 -(((
1859 -AT+RECV: Print last received data in raw format
1860 -)))
1861 -
1862 -(((
1863 -AT+VER:  Get current image version and Frequency Band
1864 -)))
1865 -
1866 -(((
1867 -AT+CFM: Get or Set the confirmation mode (0-1)
1868 -)))
1869 -
1870 -(((
1871 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1872 -)))
1873 -
1874 -(((
1875 -AT+SNR: Get the SNR of the last received packet
1876 -)))
1877 -
1878 -(((
1879 -AT+RSSI: Get the RSSI of the last received packet
1880 -)))
1881 -
1882 -(((
1883 -AT+TDC: Get or set the application data transmission interval in ms
1884 -)))
1885 -
1886 -(((
1887 -AT+PORT: Get or set the application port
1888 -)))
1889 -
1890 -(((
1891 -AT+DISAT: Disable AT commands
1892 -)))
1893 -
1894 -(((
1895 -AT+PWORD: Set password, max 9 digits
1896 -)))
1897 -
1898 -(((
1899 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1900 -)))
1901 -
1902 -(((
1903 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1904 -)))
1905 -
1906 -(((
1907 -AT+CFG: Print all settings
1908 -)))
1909 -
1910 -
1911 1911  == 4.2 Common AT Command Sequence ==
1912 1912  
1913 1913  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1916,41 +1916,41 @@
1916 1916  
1917 1917  
1918 1918  (((
1919 -(% style="color:blue" %)**If device has not joined network yet:**
2468 +(% style="color:blue" %)**If the device has not yet joined the network:**
1920 1920  )))
1921 1921  )))
1922 1922  
1923 1923  (((
1924 -(% style="background-color:#dcdcdc" %)**123456**
2473 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1925 1925  )))
1926 1926  
1927 1927  (((
1928 -(% style="background-color:#dcdcdc" %)**AT+FDR**
2477 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
1929 1929  )))
1930 1930  
1931 1931  (((
1932 -(% style="background-color:#dcdcdc" %)**123456**
2481 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1933 1933  )))
1934 1934  
1935 1935  (((
1936 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2485 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
1937 1937  )))
1938 1938  
1939 1939  (((
1940 -(% style="background-color:#dcdcdc" %)**ATZ**
2489 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
1941 1941  )))
1942 1942  
1943 1943  
1944 1944  (((
1945 -(% style="color:blue" %)**If device already joined network:**
2494 +(% style="color:blue" %)**If the device has already joined the network:**
1946 1946  )))
1947 1947  
1948 1948  (((
1949 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2498 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1950 1950  )))
1951 1951  
1952 1952  (((
1953 -(% style="background-color:#dcdcdc" %)**ATZ**
2502 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1954 1954  )))
1955 1955  
1956 1956  
... ... @@ -1960,20 +1960,20 @@
1960 1960  
1961 1961  
1962 1962  (((
1963 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2512 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
1964 1964  )))
1965 1965  )))
1966 1966  
1967 1967  (((
1968 -(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2517 +(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
1969 1969  )))
1970 1970  
1971 1971  (((
1972 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2521 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
1973 1973  )))
1974 1974  
1975 1975  (((
1976 -(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2525 +(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
1977 1977  )))
1978 1978  
1979 1979  (((
... ... @@ -1993,19 +1993,19 @@
1993 1993  )))
1994 1994  
1995 1995  (((
1996 -(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2545 +(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
1997 1997  )))
1998 1998  
1999 1999  (((
2000 -(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2549 +(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2001 2001  )))
2002 2002  
2003 2003  (((
2004 -(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2553 +(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2005 2005  )))
2006 2006  
2007 2007  (((
2008 -(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2557 +(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2009 2009  )))
2010 2010  
2011 2011  (((
... ... @@ -2019,14 +2019,14 @@
2019 2019  )))
2020 2020  
2021 2021  (((
2022 -**~1. Make sure the device is set to ABP mode in the IoT Server.**
2571 +**~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2023 2023  
2024 -**2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2573 +**2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2025 2025  
2026 -**3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2575 +**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2027 2027  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2028 2028  
2029 -**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2578 +**4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2030 2030  )))
2031 2031  
2032 2032  (((
... ... @@ -2038,7 +2038,7 @@
2038 2038  
2039 2039  
2040 2040  (((
2041 -(% style="color:blue" %)**If sensor JOINED:**
2590 +(% style="color:blue" %)**If the sensor has JOINED:**
2042 2042  
2043 2043  (% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2044 2044  
... ... @@ -2048,37 +2048,48 @@
2048 2048  
2049 2049  = 5. Case Study =
2050 2050  
2051 -== 5.1 Counting how many objects pass in Flow Line ==
2600 +== 5.1 Counting how many objects pass through the flow line ==
2052 2052  
2602 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2053 2053  
2054 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2055 2055  
2056 -
2057 2057  = 6. FAQ =
2058 2058  
2059 -== 6.1 How to upgrade the image? ==
2607 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2060 2060  
2061 2061  
2062 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2610 +== 6.1 How to update the firmware? ==
2063 2063  
2612 +Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2613 +
2064 2064  * Support new features
2065 -* For bug fix
2066 -* Change LoRaWAN bands.
2615 +* Fix bugs
2616 +* Change LoRaWAN frequency bands
2067 2067  
2068 -Below shows the hardware connection for how to upload an image to the LT:
2618 +You will need the following things before proceeding:
2069 2069  
2070 -[[image:1653359603330-121.png]]
2620 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2621 +* USB to TTL adapter
2622 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2623 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2071 2071  
2625 +{{info}}
2626 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2627 +{{/info}}
2072 2072  
2073 -(((
2074 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2075 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2076 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2077 -
2629 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2078 2078  
2631 +[[image:usb-ttl-programming.png]]
2632 +
2633 +
2634 +
2635 +Start the STM32 Flash Loader and choose the correct COM port to update.
2636 +
2079 2079  (((
2638 +(((
2080 2080  (% style="color:blue" %)**For LT-22222-L**(%%):
2081 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2640 +
2641 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2082 2082  )))
2083 2083  
2084 2084  
... ... @@ -2093,7 +2093,7 @@
2093 2093  [[image:image-20220524104033-15.png]]
2094 2094  
2095 2095  
2096 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2656 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2097 2097  
2098 2098  [[image:1653360054704-518.png||height="186" width="745"]]
2099 2099  
... ... @@ -2100,33 +2100,29 @@
2100 2100  
2101 2101  (((
2102 2102  (((
2103 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2104 -
2105 -
2663 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2106 2106  )))
2107 2107  )))
2108 2108  
2109 2109  (((
2110 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2668 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2111 2111  )))
2112 2112  
2113 2113  (((
2114 2114  
2115 2115  
2116 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2117 -
2118 -
2674 +== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2119 2119  )))
2120 2120  
2121 2121  (((
2122 2122  (((
2123 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2679 +In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2124 2124  )))
2125 2125  )))
2126 2126  
2127 2127  (((
2128 2128  (((
2129 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2685 +We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2130 2130  
2131 2131  
2132 2132  )))
... ... @@ -2133,52 +2133,55 @@
2133 2133  )))
2134 2134  
2135 2135  (((
2136 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2692 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2137 2137  
2138 -
2694 +[[image:lt-22222-l-abp.png||height="686" width="1000"]]
2139 2139  )))
2140 2140  
2141 2141  (((
2142 -[[image:1653360231087-571.png||height="401" width="727"]]
2143 -
2144 2144  
2145 2145  )))
2146 2146  
2147 -(((
2148 -(% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2149 -)))
2701 +{{warning}}
2702 +Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2703 +{{/warning}}
2150 2150  
2151 2151  
2152 -
2153 2153  (((
2154 -(% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2707 +(% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2155 2155  
2156 2156  
2157 2157  )))
2158 2158  
2159 2159  (((
2160 -(% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2713 +(% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2161 2161  
2162 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2715 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2163 2163  
2164 -(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2717 +(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2165 2165  
2166 -(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2719 +(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2167 2167  
2168 -(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2721 +(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2169 2169  
2170 -(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2723 +(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2171 2171  
2172 -(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2725 +(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2173 2173  
2174 -(% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2727 +(% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2175 2175  
2176 -(% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2729 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2730 +
2731 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2732 +
2733 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2734 +
2735 +(% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2177 2177  )))
2178 2178  
2179 2179  
2180 2180  (((
2181 -As shown in below:
2740 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2182 2182  )))
2183 2183  
2184 2184  [[image:1653360498588-932.png||height="485" width="726"]]
... ... @@ -2186,156 +2186,137 @@
2186 2186  
2187 2187  == 6.4 How to change the uplink interval? ==
2188 2188  
2189 -
2190 2190  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2191 2191  
2192 2192  
2193 -== 6.5 Can I see counting event in Serial? ==
2751 +== 6.5 Can I see the counting event in the serial output? ==
2194 2194  
2195 -
2196 2196  (((
2197 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2754 +You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2198 2198  
2199 2199  
2200 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2757 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2201 2201  
2759 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2202 2202  
2203 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2204 -
2205 2205  
2206 2206  )))
2207 2207  
2208 2208  (((
2209 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2765 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2210 2210  
2767 +* If the device is not properly shut down and is directly powered off.
2768 +* It will default to a power-off state.
2769 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2770 +* After a restart, the status before the power failure will be read from flash.
2211 2211  
2212 -If the device is not shut down, but directly powered off.
2772 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2213 2213  
2214 -It will default that this is a power-off state.
2774 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2215 2215  
2216 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2217 2217  
2218 -After restart, the status before power failure will be read from flash.
2219 -
2220 -
2221 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2222 -
2223 -
2224 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2225 -
2226 -
2227 2227  [[image:image-20221006170630-1.png||height="610" width="945"]]
2228 2228  
2229 2229  
2230 -== 6.9 Can LT22222-L save RO state? ==
2780 +== 6.9 Can the LT-22222-L save the RO state? ==
2231 2231  
2782 +To enable this feature, the firmware version must be 1.6.0 or higher.
2232 2232  
2233 -Firmware version needs to be no less than 1.6.0.
2234 2234  
2785 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2235 2235  
2236 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2787 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2237 2237  
2238 2238  
2239 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2790 += 7. Troubleshooting =
2240 2240  
2792 +This section provides some known troubleshooting tips.
2241 2241  
2242 -= 7. Trouble Shooting =
2794 +
2243 2243  )))
2244 2244  
2245 2245  (((
2246 2246  (((
2247 -== 7.1 Downlink doesn't work, how to solve it? ==
2248 -
2249 -
2799 +== 7.1 Downlink isn't working. How can I solve this? ==
2250 2250  )))
2251 2251  )))
2252 2252  
2253 2253  (((
2254 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2804 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2255 2255  )))
2256 2256  
2257 2257  (((
2258 2258  
2259 2259  
2260 -== 7.2 Have trouble to upload image. ==
2261 -
2262 -
2810 +== 7.2 Having trouble uploading an image? ==
2263 2263  )))
2264 2264  
2265 2265  (((
2266 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2814 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2267 2267  )))
2268 2268  
2269 2269  (((
2270 2270  
2271 2271  
2272 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2273 -
2274 -
2820 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2275 2275  )))
2276 2276  
2277 2277  (((
2278 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2824 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2279 2279  )))
2280 2280  
2281 2281  
2282 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2828 +== 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2283 2283  
2830 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2831 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2284 2284  
2285 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2286 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2287 2287  
2834 += 8. Ordering information =
2288 2288  
2289 -= 8. Order Info =
2290 -
2291 -
2292 2292  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2293 2293  
2294 2294  (% style="color:#4f81bd" %)**XXX:**
2295 2295  
2296 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2297 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2298 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2299 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2300 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2301 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2302 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2303 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2304 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2840 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2841 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2842 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2843 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2844 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2845 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2846 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2847 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2848 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2305 2305  
2306 -= 9. Packing Info =
2850 += 9. Package information =
2307 2307  
2852 +**Package includes**:
2308 2308  
2309 -**Package Includes**:
2854 +* 1 x LT-22222-L I/O Controller
2855 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2856 +* 1 x bracket for DIN rail mounting
2857 +* 1 x 3.5 mm programming cable
2310 2310  
2311 -* LT-22222-L I/O Controller x 1
2312 -* Stick Antenna for LoRa RF part x 1
2313 -* Bracket for controller x1
2314 -* Program cable x 1
2315 -
2316 2316  **Dimension and weight**:
2317 2317  
2318 2318  * Device Size: 13.5 x 7 x 3 cm
2319 -* Device Weight: 105g
2862 +* Device Weight: 105 g
2320 2320  * Package Size / pcs : 14.5 x 8 x 5 cm
2321 -* Weight / pcs : 170g
2864 +* Weight / pcs : 170 g
2322 2322  
2323 2323  = 10. Support =
2324 2324  
2325 -
2326 2326  * (((
2327 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2869 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2328 2328  )))
2329 2329  * (((
2330 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2872 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2331 2331  
2332 -
2333 2333  
2334 2334  )))
2335 2335  
2336 2336  = 11. Reference​​​​​ =
2337 2337  
2338 -
2339 2339  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2340 2340  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2341 2341  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
dragino-lorawan-nw-lt-22222-n.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +267.3 KB
Content
dragino-ttn-te.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +273.8 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lorawan-nw.jpg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +250.6 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-abp.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +321.4 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
usb-ttl-programming.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +462.9 KB
Content