Last modified by Mengting Qiu on 2025/06/04 18:42

From version 130.2
edited by Xiaoling
on 2024/02/19 14:44
Change comment: There is no comment for this version
To version 162.1
edited by Dilisi S
on 2024/11/05 03:38
Change comment: edits from section 3.6.3

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -15,36 +15,30 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -55,153 +55,62 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 186  * Remote configure parameters via LoRa Downlink
187 -
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 192  == 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 207  == 1.5 Hardware Variants ==
... ... @@ -221,92 +221,140 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
131 += 2. Assembling the Device =
225 225  
133 +== 2.1 What is included in the package? ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
135 +The package includes the following items:
230 230  
231 -(((
232 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
233 233  
234 -
235 -)))
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
236 236  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
237 237  [[image:1653297104069-180.png]]
238 238  
239 239  
240 240  = 3. Operation Mode =
241 241  
242 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
243 243  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
252 252  
190 +== 3.2 Registering with a LoRaWAN network server ==
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
255 255  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
259 259  
260 -
261 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
264 264  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
268 268  
269 -
270 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
210 +==== Using the LoRaWAN Device Repository: ====
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
281 281  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
284 284  
285 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
288 288  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
289 289  
290 -**Add APP KEY and DEV EUI**
291 291  
292 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
293 293  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
294 294  
295 -(((
296 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
297 297  
298 -
299 -)))
252 +==== Joining ====
300 300  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
301 301  [[image:1653298044601-602.png||height="405" width="709"]]
302 302  
303 303  
304 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
305 305  
306 306  
307 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
308 308  
309 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
310 310  
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 312  
... ... @@ -322,7 +322,7 @@
322 322  
323 323  
324 324  (((
325 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
326 326  
327 327  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 328  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -340,23 +340,23 @@
340 340  )))
341 341  
342 342  (((
343 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
347 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
348 348  )))
349 349  
350 -* RO is for relay. ROx=1 : close, ROx=0 always open.
351 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
352 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
353 353  
354 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
355 355  
356 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
357 357  
358 358  
359 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
360 360  
361 361  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
362 362  
... ... @@ -366,35 +366,35 @@
366 366  
367 367  ACI2 channel current is 0x1300/1000=4.864mA
368 368  
369 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
370 370  
371 -* [1] RO1 relay channel is close and the RO1 LED is ON.
372 -* [0] RO2 relay channel is open and RO2 LED is OFF;
373 -
374 -**LT22222-L:**
375 -
376 -* [1] DI2 channel is high input and DI2 LED is ON;
377 -* [0] DI1 channel is low input;
378 -
379 -* [0] DO3 channel output state
380 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
381 381  ** DO3 is high in case there is load between DO3 and V+.
382 -** DO3 LED is off in both case
383 -* [1] DO2 channel output is low and DO2 LED is ON.
384 -* [0] DO1 channel output state
385 -** DO1 is float in case no load between DO1 and V+.;
386 -** DO1 is high in case there is load between DO1 and V+.
387 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
388 388  
389 389  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
390 390  
391 391  
392 392  (((
393 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
394 394  )))
395 395  
396 396  (((
397 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
398 398  
399 399  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
400 400  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -404,26 +404,26 @@
404 404  )))
405 405  
406 406  (((
407 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
408 408  
409 409  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
410 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
411 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
412 412  
413 -RO is for relay. ROx=1 : close , ROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
414 414  )))
415 415  
416 -* FIRST: Indicate this is the first packet after join network.
417 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
418 418  
419 419  (((
420 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
421 421  
422 422  
423 423  )))
424 424  
425 425  (((
426 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
427 427  )))
428 428  
429 429  (((
... ... @@ -444,17 +444,17 @@
444 444  (((
445 445  **For LT22222-L:**
446 446  
447 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
448 448  
449 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
450 450  
451 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
456 456  
457 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
458 458  )))
459 459  
460 460  
... ... @@ -461,7 +461,7 @@
461 461  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
462 462  
463 463  
464 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
465 465  
466 466  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
467 467  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,16 +472,16 @@
472 472  )))|DIDORO*|Reserve|MOD
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 487  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -489,7 +489,7 @@
489 489  
490 490  
491 491  (((
492 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
493 493  )))
494 494  
495 495  (((
... ... @@ -502,7 +502,9 @@
502 502  )))
503 503  
504 504  (((
505 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
506 506  )))
507 507  
508 508  
... ... @@ -510,11 +510,11 @@
510 510  
511 511  
512 512  (((
513 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
514 514  )))
515 515  
516 516  (((
517 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 520  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -524,16 +524,16 @@
524 524  )))
525 525  
526 526  (((
527 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
531 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
532 532  )))
533 533  
534 -* RO is for relay. ROx=1 : close, ROx=0 always open.
535 -* FIRST: Indicate this is the first packet after join network.
536 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
537 537  
538 538  (((
539 539  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -542,7 +542,7 @@
542 542  )))
543 543  
544 544  (((
545 -**To use this mode, please run:**
502 +**To activate this mode, please run the following AT command:**
546 546  )))
547 547  
548 548  (((
... ... @@ -559,9 +559,9 @@
559 559  )))
560 560  
561 561  (((
562 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
563 563  
564 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
565 565  
566 566  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
567 567  
... ... @@ -1155,7 +1155,7 @@
1155 1155  )))
1156 1156  
1157 1157  (((
1158 -01: Close ,  00: Open , 11: No action
1115 +00: Close ,  01: Open , 11: No action
1159 1159  
1160 1160  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1161 1161  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1398,56 +1398,73 @@
1398 1398  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1399 1399  
1400 1400  
1401 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1402 1402  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1403 1403  
1404 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1405 1405  
1406 -(((
1407 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1408 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1412 1412  
1413 -
1414 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1415 1415  
1416 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1417 1417  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1418 1418  
1419 1419  
1420 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1421 1421  
1381 +Basic settings:
1422 1422  
1423 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1424 1424  
1425 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1426 1426  
1427 -Search under The things network
1389 +Uplink Data converter:
1428 1428  
1429 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1430 1430  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1431 1431  
1432 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398 +Downlink Data converter (this is an optional step):
1433 1433  
1434 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1435 1435  
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1436 1436  
1437 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1407 +Connection:
1438 1438  
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1439 1439  
1440 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1441 1441  
1442 1442  
1443 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1444 1444  
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1445 1445  
1446 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1447 1447  
1423 +== 3.6 Interface Details ==
1448 1448  
1449 -== 3.6 Interface Detail ==
1450 -
1451 1451  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1452 1452  
1453 1453  
... ... @@ -1456,16 +1456,16 @@
1456 1456  [[image:1653356991268-289.png]]
1457 1457  
1458 1458  
1459 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1433 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1460 1460  
1461 1461  
1462 1462  (((
1463 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1464 1464  )))
1465 1465  
1466 1466  (((
1467 1467  (((
1468 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1469 1469  
1470 1470  
1471 1471  )))
... ... @@ -1475,7 +1475,7 @@
1475 1475  
1476 1476  (((
1477 1477  (((
1478 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1479 1479  )))
1480 1480  )))
1481 1481  
... ... @@ -1484,22 +1484,22 @@
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1492 1492  )))
1493 1493  
1494 1494  * (((
1495 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1496 1496  )))
1497 1497  * (((
1498 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1503 1503  )))
1504 1504  
1505 1505  (((
... ... @@ -1507,7 +1507,7 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,22 +1515,22 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1523 1523  )))
1524 1524  
1525 1525  * (((
1526 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1527 1527  )))
1528 1528  * (((
1529 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,7 +1538,7 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1542 1542  )))
1543 1543  
1544 1544  (((
... ... @@ -1546,22 +1546,22 @@
1546 1546  )))
1547 1547  
1548 1548  (((
1549 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1554 1554  )))
1555 1555  
1556 1556  * (((
1557 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1558 1558  )))
1559 1559  * (((
1560 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,38 +1569,37 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1573 1573  )))
1574 1574  
1575 1575  
1576 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1577 1577  
1578 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1579 1579  
1580 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1581 1581  
1582 1582  [[image:image-20230616235145-1.png]]
1583 1583  
1584 -(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1585 1585  
1586 1586  [[image:image-20240219115718-1.png]]
1587 1587  
1588 1588  
1563 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1589 1589  
1590 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1591 1591  
1566 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1592 1592  
1593 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1594 1594  
1595 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1596 -
1597 1597  [[image:1653357531600-905.png]]
1598 1598  
1599 1599  
1600 -=== 3.6.4 Analog Input Interface ===
1573 +=== 3.6.4 Analog Input Interfaces ===
1601 1601  
1602 1602  
1603 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1604 1604  
1605 1605  
1606 1606  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1607,14 +1607,14 @@
1607 1607  
1608 1608  [[image:1653357592296-182.png]]
1609 1609  
1610 -Example to connect a 4~~20mA sensor
1583 +Example: Connecting a 4~~20mA sensor
1611 1611  
1612 -We take the wind speed sensor as an example for reference only.
1585 +We will use the wind speed sensor as an example for reference only.
1613 1613  
1614 1614  
1615 1615  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1616 1616  
1617 -(% style="color:red" %)**Red:  12~~24v**
1590 +(% style="color:red" %)**Red:  12~~24V**
1618 1618  
1619 1619  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1620 1620  
... ... @@ -1627,7 +1627,7 @@
1627 1627  [[image:1653357648330-671.png||height="155" width="733"]]
1628 1628  
1629 1629  
1630 -Example connected to a regulated power supply to measure voltage
1603 +Example: Connecting to a regulated power supply to measure voltage
1631 1631  
1632 1632  [[image:image-20230608101532-1.png||height="606" width="447"]]
1633 1633  
... ... @@ -1636,7 +1636,7 @@
1636 1636  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1637 1637  
1638 1638  
1639 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1640 1640  
1641 1641  (% style="color:red" %)**Red:  12~~24v**
1642 1642  
... ... @@ -1647,9 +1647,9 @@
1647 1647  
1648 1648  
1649 1649  (((
1650 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1623 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1651 1651  
1652 -**Note**: RO pins go to Open(NO) when device is power off.
1625 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1653 1653  )))
1654 1654  
1655 1655  [[image:image-20220524100215-9.png]]
... ... @@ -1661,12 +1661,9 @@
1661 1661  == 3.7 LEDs Indicators ==
1662 1662  
1663 1663  
1664 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1665 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:470px" %)**Feature**
1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1666 1666  |**PWR**|Always on if there is power
1667 -|**SYS**|(((
1668 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1669 -)))
1670 1670  |**TX**|(((
1671 1671  (((
1672 1672  Device boot: TX blinks 5 times.
... ... @@ -1681,39 +1681,31 @@
1681 1681  )))
1682 1682  )))
1683 1683  |**RX**|RX blinks once when receive a packet.
1684 -|**DO1**|
1685 -|**DO2**|
1686 -|**DO3**|
1687 -|**DI2**|(((
1688 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1656 +|**DI1**|(((
1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1689 1689  )))
1690 1690  |**DI2**|(((
1691 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1692 1692  )))
1693 -|**DI2**|(((
1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1695 -)))
1696 -|**RO1**|
1697 -|**RO2**|
1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1698 1698  
1699 -= 4. Use AT Command =
1665 += 4. Using AT Command =
1700 1700  
1701 -== 4.1 Access AT Command ==
1667 +== 4.1 Connecting the LT-22222-L to a computer ==
1702 1702  
1703 1703  
1704 1704  (((
1705 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1671 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1706 1706  )))
1707 1707  
1708 -(((
1709 -
1710 -)))
1711 -
1712 1712  [[image:1653358238933-385.png]]
1713 1713  
1714 1714  
1715 1715  (((
1716 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1717 1717  )))
1718 1718  
1719 1719  [[image:1653358355238-883.png]]
... ... @@ -1720,10 +1720,12 @@
1720 1720  
1721 1721  
1722 1722  (((
1723 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1685 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1724 1724  )))
1725 1725  
1726 1726  (((
1689 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1690 +
1727 1727  AT+<CMD>?        : Help on <CMD>
1728 1728  )))
1729 1729  
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content