Last modified by Mengting Qiu on 2025/06/04 18:42

From version 128.8
edited by Xiaoling
on 2024/01/15 16:30
Change comment: There is no comment for this version
To version 187.1
edited by Dilisi S
on 2024/11/11 05:23
Change comment: Nov 10 edits part 2

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +{{info}}
44 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 +{{/info}}
48 48  )))
49 49  
50 50  (((
... ... @@ -55,155 +55,64 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12V
62 +** 20dB Transmit: 34mA@12V
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01V)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 MHz
78 +** Band 2 (LF): 410 ~~ 528 MHz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 -* LoRaWAN Class A & Class C protocol
179 -
97 +* LoRaWAN Class A & Class C modes
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 192  == 1.4 Applications ==
193 193  
107 +* Smart buildings & home automation
108 +* Logistics and supply chain management
109 +* Smart metering
110 +* Smart agriculture
111 +* Smart cities
112 +* Smart factory
194 194  
195 -* Smart Buildings & Home Automation
196 -
197 -* Logistics and Supply Chain Management
198 -
199 -* Smart Metering
200 -
201 -* Smart Agriculture
202 -
203 -* Smart Cities
204 -
205 -* Smart Factory
206 -
207 207  == 1.5 Hardware Variants ==
208 208  
209 209  
... ... @@ -221,93 +221,179 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
131 += 2. Assembling the device =
225 225  
133 +== 2.1 Connecting the antenna ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
135 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
230 230  
231 -(((
232 -PWR will on when device is properly powered.
137 +{{warning}}
138 +Warning! Do not power on the device without connecting the antenna.
139 +{{/warning}}
233 233  
234 -
235 -)))
141 +== 2.2 Terminals ==
236 236  
237 -[[image:1653297104069-180.png]]
143 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
238 238  
145 +Upper screw terminal block (from left to right):
239 239  
240 -= 3. Operation Mode =
147 +(% style="width:634px" %)
148 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
149 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
150 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
151 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
152 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
153 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
154 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
241 241  
242 -== 3.1 How it works? ==
156 +Lower screw terminal block (from left to right):
243 243  
158 +(% style="width:633px" %)
159 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
160 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
169 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
171 +== 2.3 Powering the device ==
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
173 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
252 252  
175 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
177 +{{warning}}
178 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
179 +{{/warning}}
255 255  
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
182 +[[image:1653297104069-180.png]]
259 259  
260 -
261 -)))
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
185 += 3. Registering with a LoRaWAN Network Server =
264 264  
187 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
189 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
268 268  
269 -
270 -)))
191 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
193 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
195 +[[image:image-20220523172350-1.png||height="266" width="864"]]
279 279  
197 +=== 3.2.1 Prerequisites ===
198 +
199 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
200 +
280 280  [[image:image-20230425173427-2.png||height="246" width="530"]]
281 281  
203 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
205 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
284 284  
285 -**Add APP EUI in the application.**
207 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
209 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
210 +* Create an application with The Things Stack if you do not have one yet.
211 +* Go to your application page and click on the **End devices** in the left menu.
212 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
288 288  
214 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
289 289  
290 -**Add APP KEY and DEV EUI**
216 +* On the **Register end device** page:
217 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
218 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
219 +*** **End device brand**: Dragino Technology Co., Limited
220 +*** **Model**: LT22222-L I/O Controller
221 +*** **Hardware ver**: Unknown
222 +*** **Firmware ver**: 1.6.0
223 +*** **Profile (Region)**: Select the region that matches your device.
224 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
291 291  
292 -[[image:1653298023685-319.png]]
226 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
293 293  
294 294  
295 -(((
296 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
229 +* Register end device page continued...
230 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
231 +** In the **DevEUI** field, enter the **DevEUI**.
232 +** In the **AppKey** field, enter the **AppKey.**
233 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
234 +** Under **After registration**, select the **View registered end device** option.
297 297  
298 -
299 -)))
236 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
300 300  
301 -[[image:1653298044601-602.png||height="405" width="709"]]
238 +==== ====
302 302  
240 +==== 3.2.2.2 Adding device manually ====
303 303  
304 -== 3.3 Uplink Payload ==
242 +* On the **Register end device** page:
243 +** Select the option **Enter end device specifies manually** under **Input method**.
244 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
246 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
247 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
248 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
249 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
305 305  
251 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
306 306  
307 -There are five working modes + one interrupt mode on LT for different type application:
308 308  
309 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
254 +* Register end device page continued...
255 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
256 +** In the **DevEUI** field, enter the **DevEUI**.
257 +** In the **AppKey** field, enter the **AppKey**.
258 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
259 +** Under **After registration**, select the **View registered end device** option.
260 +** Click the **Register end device** button.
310 310  
262 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
263 +
264 +
265 +You will be navigated to the **Device overview** page.
266 +
267 +
268 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
269 +
270 +
271 +==== 3.2.2.3 Joining ====
272 +
273 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
274 +
275 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
276 +
277 +
278 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
279 +
280 +
281 +By default, you will receive an uplink data message from the device every 10 minutes.
282 +
283 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
284 +
285 +[[image:lt-22222-ul-payload-decoded.png]]
286 +
287 +
288 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
289 +
290 +{{info}}
291 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
292 +{{/info}}
293 +
294 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
295 +
296 +
297 +== 3.3 Work Modes and Uplink Payload formats ==
298 +
299 +
300 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
301 +
302 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
303 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
312 312  
313 313  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -318,12 +318,15 @@
318 318  
319 319  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
320 320  
314 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
315 +
321 321  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
322 322  
323 -
324 324  (((
325 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
319 +This is the default mode.
326 326  
321 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
322 +
327 327  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 328  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
329 329  |Value|(((
... ... @@ -334,29 +334,29 @@
334 334  ACI1 Current
335 335  )))|(((
336 336  ACI2 Current
337 -)))|DIDORO*|(((
333 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 342  (((
343 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
339 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
347 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
342 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
343 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
348 348  )))
349 349  
350 -* RO is for relay. ROx=1 : close, ROx=0 always open.
351 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
352 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
346 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
347 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
348 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
350 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
355 355  
356 -For example if payload is: [[image:image-20220523175847-2.png]]
352 +For example, if the payload is: [[image:image-20220523175847-2.png]]
357 357  
358 358  
359 -**The value for the interface is:  **
355 +**The interface values can be calculated as follows:  **
360 360  
361 361  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
362 362  
... ... @@ -366,35 +366,32 @@
366 366  
367 367  ACI2 channel current is 0x1300/1000=4.864mA
368 368  
369 -The last byte 0xAA= 10101010(B) means
365 +The last byte 0xAA= **10101010**(b) means,
370 370  
371 -* [1] RO1 relay channel is close and the RO1 LED is ON.
372 -* [0] RO2 relay channel is open and RO2 LED is OFF;
367 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
368 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
369 +* **[1] DI3 - not used for LT-22222-L.**
370 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
371 +* [1] DI1 channel input state:
372 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
373 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
374 +** DI1 LED is ON in both cases.
375 +* **[0] DO3 - not used for LT-22222-L.**
376 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
377 +* [0] DO1 channel output state:
378 +** DO1 is FLOATING when there is no load between DO1 and V+.
379 +** DO1 is HIGH when there is a load between DO1 and V+.
380 +** DO1 LED is OFF in both cases.
373 373  
374 -**LT22222-L:**
375 -
376 -* [1] DI2 channel is high input and DI2 LED is ON;
377 -* [0] DI1 channel is low input;
378 -
379 -* [0] DO3 channel output state
380 -** DO3 is float in case no load between DO3 and V+.;
381 -** DO3 is high in case there is load between DO3 and V+.
382 -** DO3 LED is off in both case
383 -* [1] DO2 channel output is low and DO2 LED is ON.
384 -* [0] DO1 channel output state
385 -** DO1 is float in case no load between DO1 and V+.;
386 -** DO1 is high in case there is load between DO1 and V+.
387 -** DO1 LED is off in both case
388 -
389 389  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
390 390  
391 391  
392 392  (((
393 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
386 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
394 394  )))
395 395  
396 396  (((
397 -Total : 11 bytes payload
390 +The uplink payload is 11 bytes long.
398 398  
399 399  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
400 400  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -404,26 +404,26 @@
404 404  )))
405 405  
406 406  (((
407 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
400 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
408 408  
409 409  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
410 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
411 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
403 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
404 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
412 412  
413 -RO is for relay. ROx=1 : close , ROx=0 always open.
406 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
414 414  )))
415 415  
416 -* FIRST: Indicate this is the first packet after join network.
417 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
409 +* FIRST: Indicates that this is the first packet after joining the network.
410 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
418 418  
419 419  (((
420 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
413 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
421 421  
422 422  
423 423  )))
424 424  
425 425  (((
426 -**To use counting mode, please run:**
419 +**To activate this mode, run the following AT commands:**
427 427  )))
428 428  
429 429  (((
... ... @@ -444,17 +444,17 @@
444 444  (((
445 445  **For LT22222-L:**
446 446  
447 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
440 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
448 448  
449 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
442 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
450 450  
451 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
444 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
446 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
448 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
456 456  
457 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
450 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
458 458  )))
459 459  
460 460  
... ... @@ -461,7 +461,7 @@
461 461  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
462 462  
463 463  
464 -**LT22222-L**: This mode the DI1 is used as a counting pin.
457 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
465 465  
466 466  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
467 467  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -472,24 +472,24 @@
472 472  )))|DIDORO*|Reserve|MOD
473 473  
474 474  (((
475 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
468 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
476 476  
477 477  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
478 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
479 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
471 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
472 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
480 480  )))
481 481  
482 -* RO is for relay. ROx=1 : close, ROx=0 always open.
483 -* FIRST: Indicate this is the first packet after join network.
484 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
475 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
476 +* FIRST: Indicates that this is the first packet after joining the network.
477 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
485 485  
486 486  (((
487 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
480 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
488 488  )))
489 489  
490 490  
491 491  (((
492 -**To use counting mode, please run:**
485 +**To activate this mode, run the following AT commands:**
493 493  )))
494 494  
495 495  (((
... ... @@ -502,7 +502,9 @@
502 502  )))
503 503  
504 504  (((
505 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 +AT Commands for counting:
499 +
500 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
506 506  )))
507 507  
508 508  
... ... @@ -510,11 +510,11 @@
510 510  
511 511  
512 512  (((
513 -**LT22222-L**: This mode the DI1 is used as a counting pin.
508 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
514 514  )))
515 515  
516 516  (((
517 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
512 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
518 518  
519 519  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
520 520  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -524,25 +524,25 @@
524 524  )))
525 525  
526 526  (((
527 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
522 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
531 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
525 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
526 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
532 532  )))
533 533  
534 -* RO is for relay. ROx=1 : close, ROx=0 always open.
535 -* FIRST: Indicate this is the first packet after join network.
536 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
529 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
530 +* FIRST: Indicates that this is the first packet after joining the network.
531 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
537 537  
538 538  (((
539 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
534 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
540 540  
541 541  
542 542  )))
543 543  
544 544  (((
545 -**To use this mode, please run:**
540 +**To activate this mode, run the following AT commands:**
546 546  )))
547 547  
548 548  (((
... ... @@ -555,19 +555,19 @@
555 555  )))
556 556  
557 557  (((
558 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
553 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
559 559  )))
560 560  
561 561  (((
562 -**Plus below command for AVI1 Counting:**
557 +**In addition to that, below are the commands for AVI1 Counting:**
563 563  
564 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
559 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
565 565  
566 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
561 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
567 567  
568 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
563 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
569 569  
570 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
565 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  )))
572 572  
573 573  
... ... @@ -574,7 +574,7 @@
574 574  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
575 575  
576 576  
577 -**LT22222-L**: This mode the DI1 is used as a counting pin.
572 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
578 578  
579 579  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
580 580  |(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
... ... @@ -589,25 +589,25 @@
589 589  )))|MOD
590 590  
591 591  (((
592 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
587 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
593 593  
594 594  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
595 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
590 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
596 596  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
597 597  )))
598 598  
599 -* RO is for relay. ROx=1 : close, ROx=0 always open.
600 -* FIRST: Indicate this is the first packet after join network.
594 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
595 +* FIRST: Indicates that this is the first packet after joining the network.
601 601  * (((
602 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
597 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
603 603  )))
604 604  
605 605  (((
606 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
601 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
607 607  )))
608 608  
609 609  (((
610 -**To use this mode, please run:**
605 +**To activate this mode, run the following AT commands:**
611 611  )))
612 612  
613 613  (((
... ... @@ -620,7 +620,7 @@
620 620  )))
621 621  
622 622  (((
623 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
618 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
624 624  )))
625 625  
626 626  
... ... @@ -627,49 +627,48 @@
627 627  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
628 628  
629 629  
630 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
625 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
631 631  
632 -For example, if user has configured below commands:
627 +For example, if you configured the following commands:
633 633  
634 -* **AT+MOD=1 ** **~-~->**  The normal working mode
635 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
629 +* **AT+MOD=1 ** **~-~->**  The default work mode
630 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
636 636  
637 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
632 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
638 638  
639 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
640 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
634 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
635 +1. (((
636 +Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
637 +)))
641 641  
642 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
639 +(% style="color:#037691" %)**AT Commands to set Trigger Condition**:
643 643  
641 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
644 644  
645 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
646 -
647 647  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
648 648  
649 649  
650 650  **Example:**
651 651  
652 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
648 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
653 653  
654 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
650 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
655 655  
656 656  
653 +(% style="color:#4f81bd" %)**Trigger based on current**:
657 657  
658 -(% style="color:#4f81bd" %)**Trigger base on current**:
659 -
660 660  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
661 661  
662 662  
663 663  **Example:**
664 664  
665 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
660 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
666 666  
667 667  
663 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
668 668  
669 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
665 +DI status triggers Flag.
670 670  
671 -DI status trigger Flag.
672 -
673 673  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
674 674  
675 675  
... ... @@ -678,39 +678,38 @@
678 678  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
679 679  
680 680  
681 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
675 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
682 682  
683 683  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
684 684  
685 685  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
686 686  
687 - AA: Code for this downlink Command:
681 + AA: Type Code for this downlink Command:
688 688  
689 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
683 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
690 690  
691 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
685 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
692 692  
693 - yy2 yy2: AC1 or AV1 high limit.
687 + yy2 yy2: AC1 or AV1 HIGH limit.
694 694  
695 - yy3 yy3: AC2 or AV2 low limit.
689 + yy3 yy3: AC2 or AV2 LOW limit.
696 696  
697 - Yy4 yy4: AC2 or AV2 high limit.
691 + Yy4 yy4: AC2 or AV2 HIGH limit.
698 698  
699 699  
700 -**Example1**: AA 00 13 88 00 00 00 00 00 00
694 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
701 701  
702 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
696 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
703 703  
704 704  
705 -**Example2**: AA 02 01 00
699 +**Example 2**: AA 02 01 00
706 706  
707 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
701 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
708 708  
709 709  
710 -
711 711  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
712 712  
713 -MOD6 Payload : total 11 bytes payload
706 +MOD6 Payload: total of 11 bytes
714 714  
715 715  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
716 716  |(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
... ... @@ -724,10 +724,10 @@
724 724  MOD(6)
725 725  )))
726 726  
727 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
720 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
728 728  
729 729  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
730 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
723 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
731 731  |(((
732 732  AV1_LOW
733 733  )))|(((
... ... @@ -746,17 +746,17 @@
746 746  AC2_HIGH
747 747  )))
748 748  
749 -* Each bits shows if the corresponding trigger has been configured.
742 +* Each bit shows if the corresponding trigger has been configured.
750 750  
751 751  **Example:**
752 752  
753 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
746 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
754 754  
755 755  
756 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
749 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
757 757  
758 758  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
759 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
752 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
760 760  |(((
761 761  AV1_LOW
762 762  )))|(((
... ... @@ -775,11 +775,11 @@
775 775  AC2_HIGH
776 776  )))
777 777  
778 -* Each bits shows which status has been trigger on this uplink.
771 +* Each bit shows which status has been triggered on this uplink.
779 779  
780 780  **Example:**
781 781  
782 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
775 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
783 783  
784 784  
785 785  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -788,7 +788,7 @@
788 788  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
789 789  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
790 790  
791 -* Each bits shows which status has been trigger on this uplink.
784 +* Each bits shows which status has been triggered on this uplink.
792 792  
793 793  **Example:**
794 794  
... ... @@ -815,63 +815,83 @@
815 815  )))
816 816  
817 817  
818 -== 3.4 ​Configure LT via AT or Downlink ==
811 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
819 819  
820 -
821 821  (((
822 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
814 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
823 823  )))
824 824  
825 825  (((
826 826  (((
827 -There are two kinds of Commands:
819 +There are two tytes of commands:
828 828  )))
829 829  )))
830 830  
831 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
823 +* (% style="color:blue" %)**Common commands**(%%):
832 832  
833 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
825 +* (% style="color:blue" %)**Sensor-related commands**(%%):
834 834  
835 -=== 3.4.1 Common Commands ===
827 +=== 3.4.1 Common commands ===
836 836  
837 -
838 838  (((
839 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
830 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
840 840  )))
841 841  
833 +=== 3.4.2 Sensor-related commands ===
842 842  
843 -=== 3.4.2 Sensor related commands ===
835 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
844 844  
845 845  ==== 3.4.2.1 Set Transmit Interval ====
846 846  
839 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
847 847  
848 -Set device uplink interval.
841 +(% style="color:#037691" %)**AT command**
849 849  
850 -* (% style="color:#037691" %)**AT Command:**
843 +(% style="width:500px" %)
844 +|**Command**|AT+TDC<time>
845 +|**Response**|
846 +|**Parameters**|<time> uplink interval is in milliseconds
847 +|**Example**|(((
848 +AT+TDC=30000
851 851  
852 -(% style="color:blue" %)**AT+TDC=N **
850 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
851 +)))
853 853  
853 +(% style="color:#037691" %)**Downlink payload**
854 854  
855 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
855 +(% style="width:500px" %)
856 +|**Payload**|(((
857 +<prefix><time>
858 +)))
859 +|**Parameters**|(((
860 +<prefix> 0x01
856 856  
862 +<time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
863 +)))
864 +|**Example**|(((
865 +01 **00 75 30**
857 857  
858 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
867 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
859 859  
860 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
869 +Conversion: 30000 (dec) = 00 75 30 (hex)
861 861  
871 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
872 +)))
862 862  
874 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
863 863  
864 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
865 865  
877 +Sets the work mode.
866 866  
867 -Set work mode.
879 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
868 868  
869 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
881 +Where N is the work mode.
870 870  
871 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
883 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
872 872  
873 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
874 874  
886 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
887 +
875 875  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
876 876  
877 877  
... ... @@ -878,11 +878,13 @@
878 878  
879 879  ==== 3.4.2.3 Poll an uplink ====
880 880  
894 +Requests the device to send an uplink.
881 881  
882 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
883 883  
884 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
897 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
885 885  
899 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
900 +
886 886  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
887 887  
888 888  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -889,16 +889,15 @@
889 889  
890 890  
891 891  
892 -==== 3.4.2.4 Enable Trigger Mode ====
907 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
893 893  
909 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
894 894  
895 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
896 -
897 897  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
898 898  
899 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
913 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
900 900  
901 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
915 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
902 902  
903 903  
904 904  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -909,9 +909,8 @@
909 909  
910 910  ==== 3.4.2.5 Poll trigger settings ====
911 911  
926 +Polls the trigger settings.
912 912  
913 -Poll trigger settings
914 -
915 915  * (% style="color:#037691" %)**AT Command:**
916 916  
917 917  There is no AT Command for this feature.
... ... @@ -918,18 +918,17 @@
918 918  
919 919  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
920 920  
921 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
934 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
922 922  
923 923  
924 924  
925 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
938 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
926 926  
940 +Enable or disable DI1/DI2/DI2 as a trigger.
927 927  
928 -Enable Disable DI1/DI2/DI2 as trigger,
929 -
930 930  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
931 931  
932 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
944 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
933 933  
934 934  
935 935  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -938,11 +938,10 @@
938 938  
939 939  
940 940  
941 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
953 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
942 942  
955 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
943 943  
944 -Set DI1 or DI3(for LT-33222-L) trigger.
945 -
946 946  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
947 947  
948 948  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
... ... @@ -957,19 +957,17 @@
957 957  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
958 958  
959 959  
971 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
960 960  
961 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
973 +Sets DI2 as a trigger.
962 962  
963 -
964 -Set DI2 trigger.
965 -
966 966  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
967 967  
968 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
977 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
969 969  
970 970  (% style="color:red" %)**b :** (%%)delay timing.
971 971  
972 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
981 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
973 973  
974 974  
975 975  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -977,12 +977,10 @@
977 977  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
978 978  
979 979  
989 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
980 980  
981 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
991 +Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982 982  
983 -
984 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
985 -
986 986  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
987 987  
988 988  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
... ... @@ -993,9 +993,8 @@
993 993  
994 994  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
995 995  
1003 +Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
996 996  
997 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
998 -
999 999  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1000 1000  
1001 1001  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
... ... @@ -1003,12 +1003,10 @@
1003 1003  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1004 1004  
1005 1005  
1006 -
1007 1007  ==== 3.4.2.11 Trigger – Set minimum interval ====
1008 1008  
1014 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1009 1009  
1010 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1011 -
1012 1012  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1013 1013  
1014 1014  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
... ... @@ -1023,6 +1023,7 @@
1023 1023  
1024 1024  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1025 1025  
1030 +Controls the digital outputs DO1, DO2, and DO3
1026 1026  
1027 1027  * (% style="color:#037691" %)**AT Command**
1028 1028  
... ... @@ -1155,7 +1155,7 @@
1155 1155  )))
1156 1156  
1157 1157  (((
1158 -01: Close ,  00: Open , 11: No action
1163 +00: Closed ,  01: Open , 11: No action
1159 1159  
1160 1160  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1161 1161  |(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
... ... @@ -1277,7 +1277,7 @@
1277 1277  
1278 1278  
1279 1279  
1280 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1285 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1281 1281  
1282 1282  
1283 1283  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1398,74 +1398,145 @@
1398 1398  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1399 1399  
1400 1400  
1401 -== 3.5 Integrate with Mydevice ==
1406 +== 3.5 Integrating with ThingsEye.io ==
1402 1402  
1408 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1403 1403  
1404 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1410 +=== 3.5.1 Configuring The Things Stack ===
1405 1405  
1406 -(((
1407 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1408 -)))
1412 +We use The Things Stack Sandbox in this example:
1409 1409  
1410 -(((
1411 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1414 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1415 +* Select **MQTT** under **Integrations** in the left menu.
1416 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1417 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1412 1412  
1413 -
1414 -)))
1419 +{{info}}
1420 +The username and  password (API key) you created here are required in the next section.
1421 +{{/info}}
1415 1415  
1416 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1423 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1417 1417  
1425 +=== 3.5.2 Configuring ThingsEye.io ===
1418 1418  
1427 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1428 +* Under the **Integrations center**, click **Integrations**.
1429 +* Click the **Add integration** button (the button with the **+** symbol).
1419 1419  
1420 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1431 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1421 1421  
1422 1422  
1423 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1434 +On the **Add integration** window, configure the following:
1424 1424  
1425 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1436 +**Basic settings:**
1426 1426  
1427 -Search under The things network
1438 +* Select **The Things Stack Community** from the **Integration type** list.
1439 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1440 +* Ensure the following options are turned on.
1441 +** Enable integration
1442 +** Debug mode
1443 +** Allow create devices or assets
1444 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1428 1428  
1429 -[[image:1653356838789-523.png||height="337" width="740"]]
1446 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1430 1430  
1431 1431  
1432 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1449 +**Uplink data converter:**
1433 1433  
1434 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1451 +* Click the **Create new** button if it is not selected by default.
1452 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1453 +* Click the **JavaScript** button.
1454 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1455 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1435 1435  
1457 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436 1436  
1437 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1438 1438  
1460 +**Downlink data converter (this is an optional step):**
1439 1439  
1440 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1462 +* Click the **Create new** button if it is not selected by default.
1463 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1464 +* Click the **JavaScript** button.
1465 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1466 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1441 1441  
1468 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1442 1442  
1443 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1444 1444  
1471 +**Connection:**
1445 1445  
1446 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1473 +* Choose **Region** from the **Host type**.
1474 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1475 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1476 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1447 1447  
1478 +[[image:message-1.png]]
1448 1448  
1449 -== 3.6 Interface Detail ==
1450 1450  
1481 +* Click the **Add** button.
1482 +
1483 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1484 +
1485 +
1486 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1487 +
1488 +
1489 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1490 +
1491 +
1492 +**Viewing integration details**:
1493 +
1494 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1495 +
1496 +[[image:integration-details.png||height="686" width="1000"]]
1497 +
1498 +
1499 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1500 +
1501 +{{info}}
1502 +See also ThingsEye documentation.
1503 +{{/info}}
1504 +
1505 +**Viewing events:**
1506 +
1507 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1508 +
1509 +* Select **Debug **from the **Event type** dropdown.
1510 +* Select the** time frame** from the **time window**.
1511 +
1512 +[[image:thingseye-events.png||height="686" width="1000"]]
1513 +
1514 +
1515 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1516 +
1517 +[[image:thingseye-json.png||width="1000"]]
1518 +
1519 +
1520 +**Deleting the integration**:
1521 +
1522 +If you want to delete this integration, click the **Delete integratio**n button.
1523 +
1524 +
1525 +== 3.6 Interface Details ==
1526 +
1451 1451  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1452 1452  
1453 1453  
1454 -Support NPN Type sensor
1530 +Support NPN-type sensor
1455 1455  
1456 1456  [[image:1653356991268-289.png]]
1457 1457  
1458 1458  
1459 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1535 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1460 1460  
1461 1461  
1462 1462  (((
1463 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1539 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1464 1464  )))
1465 1465  
1466 1466  (((
1467 1467  (((
1468 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1544 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1469 1469  
1470 1470  
1471 1471  )))
... ... @@ -1475,7 +1475,7 @@
1475 1475  
1476 1476  (((
1477 1477  (((
1478 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1554 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1479 1479  )))
1480 1480  )))
1481 1481  
... ... @@ -1484,22 +1484,22 @@
1484 1484  )))
1485 1485  
1486 1486  (((
1487 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1563 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1488 1488  )))
1489 1489  
1490 1490  (((
1491 -This type of sensor will output a low signal GND when active.
1567 +This type of sensor outputs a low (GND) signal when active.
1492 1492  )))
1493 1493  
1494 1494  * (((
1495 -Connect sensor's output to DI1-
1571 +Connect the sensor's output to DI1-
1496 1496  )))
1497 1497  * (((
1498 -Connect sensor's VCC to DI1+.
1574 +Connect the sensor's VCC to DI1+.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1578 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1503 1503  )))
1504 1504  
1505 1505  (((
... ... @@ -1507,7 +1507,7 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1586 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,22 +1515,22 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1594 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -This type of sensor will output a high signal (example 24v) when active.
1598 +This type of sensor outputs a high signal (e.g., 24V) when active.
1523 1523  )))
1524 1524  
1525 1525  * (((
1526 -Connect sensor's output to DI1+
1602 +Connect the sensor's output to DI1+
1527 1527  )))
1528 1528  * (((
1529 -Connect sensor's GND DI1-.
1605 +Connect the sensor's GND DI1-.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1609 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,7 +1538,7 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1617 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1542 1542  )))
1543 1543  
1544 1544  (((
... ... @@ -1546,22 +1546,22 @@
1546 1546  )))
1547 1547  
1548 1548  (((
1549 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1625 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1629 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1554 1554  )))
1555 1555  
1556 1556  * (((
1557 -Connect sensor's output to DI1+ with a serial 50K resistor
1633 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1558 1558  )))
1559 1559  * (((
1560 -Connect sensor's GND DI1-.
1636 +Connect the sensor's GND DI1-.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1640 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,33 +1569,37 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1648 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1573 1573  )))
1574 1574  
1575 1575  
1576 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1652 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1577 1577  
1578 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1654 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1579 1579  
1580 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1656 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1581 1581  
1582 1582  [[image:image-20230616235145-1.png]]
1583 1583  
1660 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1584 1584  
1585 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1662 +[[image:image-20240219115718-1.png]]
1586 1586  
1587 1587  
1588 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1665 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1589 1589  
1590 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1591 1591  
1668 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1669 +
1670 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1671 +
1592 1592  [[image:1653357531600-905.png]]
1593 1593  
1594 1594  
1595 -=== 3.6.4 Analog Input Interface ===
1675 +=== 3.6.4 Analog Input Interfaces ===
1596 1596  
1597 1597  
1598 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1678 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1599 1599  
1600 1600  
1601 1601  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1602,14 +1602,14 @@
1602 1602  
1603 1603  [[image:1653357592296-182.png]]
1604 1604  
1605 -Example to connect a 4~~20mA sensor
1685 +Example: Connecting a 4~~20mA sensor
1606 1606  
1607 -We take the wind speed sensor as an example for reference only.
1687 +We will use the wind speed sensor as an example for reference only.
1608 1608  
1609 1609  
1610 1610  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1611 1611  
1612 -(% style="color:red" %)**Red:  12~~24v**
1692 +(% style="color:red" %)**Red:  12~~24V**
1613 1613  
1614 1614  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1615 1615  
... ... @@ -1622,7 +1622,7 @@
1622 1622  [[image:1653357648330-671.png||height="155" width="733"]]
1623 1623  
1624 1624  
1625 -Example connected to a regulated power supply to measure voltage
1705 +Example: Connecting to a regulated power supply to measure voltage
1626 1626  
1627 1627  [[image:image-20230608101532-1.png||height="606" width="447"]]
1628 1628  
... ... @@ -1631,7 +1631,7 @@
1631 1631  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1632 1632  
1633 1633  
1634 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1714 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1635 1635  
1636 1636  (% style="color:red" %)**Red:  12~~24v**
1637 1637  
... ... @@ -1642,9 +1642,9 @@
1642 1642  
1643 1643  
1644 1644  (((
1645 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1725 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1646 1646  
1647 -**Note**: RO pins go to Open(NO) when device is power off.
1727 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1648 1648  )))
1649 1649  
1650 1650  [[image:image-20220524100215-9.png]]
... ... @@ -1655,13 +1655,11 @@
1655 1655  
1656 1656  == 3.7 LEDs Indicators ==
1657 1657  
1738 +The table below lists the behavior of LED indicators for each port function.
1658 1658  
1659 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1660 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:470px" %)**Feature**
1661 -|**PWR**|Always on if there is power
1662 -|**SYS**|(((
1663 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1664 -)))
1740 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1741 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1742 +|**PWR**|Always on when there is power
1665 1665  |**TX**|(((
1666 1666  (((
1667 1667  Device boot: TX blinks 5 times.
... ... @@ -1668,7 +1668,7 @@
1668 1668  )))
1669 1669  
1670 1670  (((
1671 -Successful join network: TX ON for 5 seconds.
1749 +Successful network join: TX remains ON for 5 seconds.
1672 1672  )))
1673 1673  
1674 1674  (((
... ... @@ -1675,40 +1675,33 @@
1675 1675  Transmit a LoRa packet: TX blinks once
1676 1676  )))
1677 1677  )))
1678 -|**RX**|RX blinks once when receive a packet.
1679 -|**DO1**|
1680 -|**DO2**|
1681 -|**DO3**|
1682 -|**DI2**|(((
1683 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1756 +|**RX**|RX blinks once when a packet is received.
1757 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1758 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1759 +|**DI1**|(((
1760 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1684 1684  )))
1685 1685  |**DI2**|(((
1686 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1763 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1687 1687  )))
1688 -|**DI2**|(((
1689 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1690 -)))
1691 -|**RO1**|
1692 -|**RO2**|
1765 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1766 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1693 1693  
1694 -= 4. Use AT Command =
1768 += 4. Using AT Commands =
1695 1695  
1696 -== 4.1 Access AT Command ==
1770 +The LT-22222-L supports programming using AT Commands.
1697 1697  
1772 +== 4.1 Connecting the LT-22222-L to a PC ==
1698 1698  
1699 1699  (((
1700 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1775 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1701 1701  )))
1702 1702  
1703 -(((
1704 -
1705 -)))
1706 -
1707 1707  [[image:1653358238933-385.png]]
1708 1708  
1709 1709  
1710 1710  (((
1711 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1782 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1712 1712  )))
1713 1713  
1714 1714  [[image:1653358355238-883.png]]
... ... @@ -1715,194 +1715,63 @@
1715 1715  
1716 1716  
1717 1717  (((
1718 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1719 -)))
1789 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1720 1720  
1721 -(((
1722 -AT+<CMD>?        : Help on <CMD>
1791 +== 4.2 LT-22222-L related AT commands ==
1723 1723  )))
1724 1724  
1725 1725  (((
1726 -AT+<CMD>         : Run <CMD>
1727 -)))
1795 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1728 1728  
1729 -(((
1730 -AT+<CMD>=<value> : Set the value
1797 +* AT+<CMD>? : Help on <CMD>
1798 +* AT+<CMD> : Run <CMD>
1799 +* AT+<CMD>=<value> : Set the value
1800 +* AT+<CMD>=? : Get the value
1801 +* ATZ: Trigger a reset of the MCU
1802 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1803 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1804 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1805 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1806 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1807 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1808 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1809 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1810 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1811 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1812 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1813 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1814 +* AT+RX2FQ: Get or set the Rx2 window frequency
1815 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1816 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1817 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1818 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1819 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1820 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1821 +* AT+NWKID: Get or set the Network ID
1822 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1823 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1824 +* AT+CLASS: Get or set the Device Class
1825 +* AT+JOIN: Join network
1826 +* AT+NJS: Get OTAA Join Status
1827 +* AT+SENDB: Send hexadecimal data along with the application port
1828 +* AT+SEND: Send text data along with the application port
1829 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1830 +* AT+RECV: Print last received data in raw format
1831 +* AT+VER: Get current image version and Frequency Band
1832 +* AT+CFM: Get or Set the confirmation mode (0-1)
1833 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1834 +* AT+SNR: Get the SNR of the last received packet
1835 +* AT+RSSI: Get the RSSI of the last received packet
1836 +* AT+TDC: Get or set the application data transmission interval in ms
1837 +* AT+PORT: Get or set the application port
1838 +* AT+DISAT: Disable AT commands
1839 +* AT+PWORD: Set password, max 9 digits
1840 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1841 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1842 +* AT+CFG: Print all settings
1731 1731  )))
1732 1732  
1733 -(((
1734 -AT+<CMD>=?       :  Get the value
1735 -)))
1736 1736  
1737 -(((
1738 -ATZ: Trig a reset of the MCU
1739 -)))
1740 -
1741 -(((
1742 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1743 -)))
1744 -
1745 -(((
1746 -AT+DEUI: Get or Set the Device EUI
1747 -)))
1748 -
1749 -(((
1750 -AT+DADDR: Get or Set the Device Address
1751 -)))
1752 -
1753 -(((
1754 -AT+APPKEY: Get or Set the Application Key
1755 -)))
1756 -
1757 -(((
1758 -AT+NWKSKEY: Get or Set the Network Session Key
1759 -)))
1760 -
1761 -(((
1762 -AT+APPSKEY:  Get or Set the Application Session Key
1763 -)))
1764 -
1765 -(((
1766 -AT+APPEUI:  Get or Set the Application EUI
1767 -)))
1768 -
1769 -(((
1770 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1771 -)))
1772 -
1773 -(((
1774 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1775 -)))
1776 -
1777 -(((
1778 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1779 -)))
1780 -
1781 -(((
1782 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1783 -)))
1784 -
1785 -(((
1786 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1787 -)))
1788 -
1789 -(((
1790 -AT+RX2FQ: Get or Set the Rx2 window frequency
1791 -)))
1792 -
1793 -(((
1794 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1795 -)))
1796 -
1797 -(((
1798 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1799 -)))
1800 -
1801 -(((
1802 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1803 -)))
1804 -
1805 -(((
1806 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1807 -)))
1808 -
1809 -(((
1810 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1811 -)))
1812 -
1813 -(((
1814 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1815 -)))
1816 -
1817 -(((
1818 -AT+NWKID: Get or Set the Network ID
1819 -)))
1820 -
1821 -(((
1822 -AT+FCU: Get or Set the Frame Counter Uplink
1823 -)))
1824 -
1825 -(((
1826 -AT+FCD: Get or Set the Frame Counter Downlink
1827 -)))
1828 -
1829 -(((
1830 -AT+CLASS: Get or Set the Device Class
1831 -)))
1832 -
1833 -(((
1834 -AT+JOIN: Join network
1835 -)))
1836 -
1837 -(((
1838 -AT+NJS: Get OTAA Join Status
1839 -)))
1840 -
1841 -(((
1842 -AT+SENDB: Send hexadecimal data along with the application port
1843 -)))
1844 -
1845 -(((
1846 -AT+SEND: Send text data along with the application port
1847 -)))
1848 -
1849 -(((
1850 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1851 -)))
1852 -
1853 -(((
1854 -AT+RECV: Print last received data in raw format
1855 -)))
1856 -
1857 -(((
1858 -AT+VER:  Get current image version and Frequency Band
1859 -)))
1860 -
1861 -(((
1862 -AT+CFM: Get or Set the confirmation mode (0-1)
1863 -)))
1864 -
1865 -(((
1866 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1867 -)))
1868 -
1869 -(((
1870 -AT+SNR: Get the SNR of the last received packet
1871 -)))
1872 -
1873 -(((
1874 -AT+RSSI: Get the RSSI of the last received packet
1875 -)))
1876 -
1877 -(((
1878 -AT+TDC: Get or set the application data transmission interval in ms
1879 -)))
1880 -
1881 -(((
1882 -AT+PORT: Get or set the application port
1883 -)))
1884 -
1885 -(((
1886 -AT+DISAT: Disable AT commands
1887 -)))
1888 -
1889 -(((
1890 -AT+PWORD: Set password, max 9 digits
1891 -)))
1892 -
1893 -(((
1894 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1895 -)))
1896 -
1897 -(((
1898 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1899 -)))
1900 -
1901 -(((
1902 -AT+CFG: Print all settings
1903 -)))
1904 -
1905 -
1906 1906  == 4.2 Common AT Command Sequence ==
1907 1907  
1908 1908  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1911,41 +1911,41 @@
1911 1911  
1912 1912  
1913 1913  (((
1914 -(% style="color:blue" %)**If device has not joined network yet:**
1854 +(% style="color:blue" %)**If the device has not joined the network yet:**
1915 1915  )))
1916 1916  )))
1917 1917  
1918 1918  (((
1919 -(% style="background-color:#dcdcdc" %)**123456**
1859 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1920 1920  )))
1921 1921  
1922 1922  (((
1923 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1863 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1924 1924  )))
1925 1925  
1926 1926  (((
1927 -(% style="background-color:#dcdcdc" %)**123456**
1867 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1928 1928  )))
1929 1929  
1930 1930  (((
1931 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1871 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1932 1932  )))
1933 1933  
1934 1934  (((
1935 -(% style="background-color:#dcdcdc" %)**ATZ**
1875 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1936 1936  )))
1937 1937  
1938 1938  
1939 1939  (((
1940 -(% style="color:blue" %)**If device already joined network:**
1880 +(% style="color:blue" %)**If the device has already joined the network:**
1941 1941  )))
1942 1942  
1943 1943  (((
1944 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1884 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1945 1945  )))
1946 1946  
1947 1947  (((
1948 -(% style="background-color:#dcdcdc" %)**ATZ**
1888 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1949 1949  )))
1950 1950  
1951 1951  
... ... @@ -2043,37 +2043,50 @@
2043 2043  
2044 2044  = 5. Case Study =
2045 2045  
2046 -== 5.1 Counting how many objects pass in Flow Line ==
1986 +== 5.1 Counting how many objects pass through the flow Line ==
2047 2047  
1988 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2048 2048  
2049 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2050 2050  
2051 -
2052 2052  = 6. FAQ =
2053 2053  
2054 -== 6.1 How to upgrade the image? ==
1993 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2055 2055  
2056 2056  
2057 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1996 +== 6.1 How to update the firmware? ==
2058 2058  
1998 +Dragino frequently releases firmware updates for the LT-22222-L.
1999 +
2000 +Updating your LT-22222-L with the latest firmware version helps to:
2001 +
2059 2059  * Support new features
2060 -* For bug fix
2061 -* Change LoRaWAN bands.
2003 +* Fix bugs
2004 +* Change LoRaWAN frequency bands
2062 2062  
2063 -Below shows the hardware connection for how to upload an image to the LT:
2006 +You will need the following things before proceeding:
2064 2064  
2008 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2009 +* USB to TTL adapter
2010 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2011 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2012 +
2013 +{{info}}
2014 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2015 +{{/info}}
2016 +
2017 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2018 +
2019 +
2065 2065  [[image:1653359603330-121.png]]
2066 2066  
2067 2067  
2068 -(((
2069 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2070 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2071 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2072 -
2023 +Start the STM32 Flash Loader and choose the correct COM port to update.
2073 2073  
2074 2074  (((
2026 +(((
2075 2075  (% style="color:blue" %)**For LT-22222-L**(%%):
2076 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2028 +
2029 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2077 2077  )))
2078 2078  
2079 2079  
... ... @@ -2088,7 +2088,7 @@
2088 2088  [[image:image-20220524104033-15.png]]
2089 2089  
2090 2090  
2091 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2044 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2092 2092  
2093 2093  [[image:1653360054704-518.png||height="186" width="745"]]
2094 2094  
... ... @@ -2095,33 +2095,29 @@
2095 2095  
2096 2096  (((
2097 2097  (((
2098 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2099 -
2100 -
2051 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2101 2101  )))
2102 2102  )))
2103 2103  
2104 2104  (((
2105 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2056 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2106 2106  )))
2107 2107  
2108 2108  (((
2109 2109  
2110 2110  
2111 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2112 -
2113 -
2062 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2114 2114  )))
2115 2115  
2116 2116  (((
2117 2117  (((
2118 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2067 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2119 2119  )))
2120 2120  )))
2121 2121  
2122 2122  (((
2123 2123  (((
2124 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2073 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2125 2125  
2126 2126  
2127 2127  )))
... ... @@ -2128,7 +2128,7 @@
2128 2128  )))
2129 2129  
2130 2130  (((
2131 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2080 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2132 2132  
2133 2133  
2134 2134  )))
... ... @@ -2181,158 +2181,140 @@
2181 2181  
2182 2182  == 6.4 How to change the uplink interval? ==
2183 2183  
2184 -
2185 2185  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2186 2186  
2187 2187  
2188 -== 6.5 Can I see counting event in Serial? ==
2136 +== 6.5 Can I see the counting event in the serial output? ==
2189 2189  
2190 -
2191 2191  (((
2192 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2139 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2193 2193  
2194 2194  
2195 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2142 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2196 2196  
2144 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2197 2197  
2198 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2199 -
2200 2200  
2201 2201  )))
2202 2202  
2203 2203  (((
2204 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2150 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2205 2205  
2152 +* If the device is not properly shut down and is directly powered off.
2153 +* It will default to a power-off state.
2154 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2155 +* After a restart, the status before the power failure will be read from flash.
2206 2206  
2207 -If the device is not shut down, but directly powered off.
2208 2208  
2209 -It will default that this is a power-off state.
2158 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2210 2210  
2211 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2160 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2212 2212  
2213 -After restart, the status before power failure will be read from flash.
2214 2214  
2215 -
2216 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2217 -
2218 -
2219 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2220 -
2221 -
2222 2222  [[image:image-20221006170630-1.png||height="610" width="945"]]
2223 2223  
2224 2224  
2225 -== 6.9 Can LT22222-L save RO state? ==
2166 +== 6.9 Can the LT-22222-L save the RO state? ==
2226 2226  
2168 +The firmware version must be at least 1.6.0.
2227 2227  
2228 -Firmware version needs to be no less than 1.6.0.
2229 2229  
2171 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2230 2230  
2231 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2173 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2232 2232  
2233 2233  
2234 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2176 += 7. Troubleshooting =
2235 2235  
2178 +This section provides some known troubleshooting tips.
2236 2236  
2237 -= 7. Trouble Shooting =
2180 +
2238 2238  )))
2239 2239  
2240 2240  (((
2241 2241  (((
2242 -== 7.1 Downlink doesn't work, how to solve it? ==
2243 -
2244 -
2185 +== 7.1 Downlink isn't working. How can I solve this? ==
2245 2245  )))
2246 2246  )))
2247 2247  
2248 2248  (((
2249 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2190 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2250 2250  )))
2251 2251  
2252 2252  (((
2253 2253  
2254 2254  
2255 -== 7.2 Have trouble to upload image. ==
2256 -
2257 -
2196 +== 7.2 Having trouble uploading an image? ==
2258 2258  )))
2259 2259  
2260 2260  (((
2261 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2200 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2262 2262  )))
2263 2263  
2264 2264  (((
2265 2265  
2266 2266  
2267 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2268 -
2269 -
2206 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2270 2270  )))
2271 2271  
2272 2272  (((
2273 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2210 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2274 2274  )))
2275 2275  
2276 2276  
2277 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2214 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2278 2278  
2216 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2217 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2279 2279  
2280 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2281 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2282 2282  
2220 += 8. Ordering information =
2283 2283  
2284 -= 8. Order Info =
2285 -
2286 -
2287 2287  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2288 2288  
2289 2289  (% style="color:#4f81bd" %)**XXX:**
2290 2290  
2291 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2292 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2293 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2294 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2295 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2296 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2297 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2298 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2299 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2226 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2227 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2228 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2229 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2230 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2231 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2232 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2233 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2234 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2300 2300  
2301 -= 9. Packing Info =
2302 2302  
2237 += 9. Packing information =
2303 2303  
2304 -**Package Includes**:
2239 +**Package includes**:
2305 2305  
2306 -* LT-22222-L I/O Controller x 1
2307 -* Stick Antenna for LoRa RF part x 1
2308 -* Bracket for controller x1
2309 -* Program cable x 1
2241 +* 1 x LT-22222-L I/O Controller
2242 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2243 +* 1 x bracket for DIN rail mounting
2244 +* 1 x 3.5mm programming cable
2310 2310  
2311 2311  **Dimension and weight**:
2312 2312  
2313 2313  * Device Size: 13.5 x 7 x 3 cm
2314 -* Device Weight: 105g
2249 +* Device Weight: 105 g
2315 2315  * Package Size / pcs : 14.5 x 8 x 5 cm
2316 -* Weight / pcs : 170g
2251 +* Weight / pcs : 170 g
2317 2317  
2253 +
2318 2318  = 10. Support =
2319 2319  
2320 -
2321 2321  * (((
2322 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2257 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2323 2323  )))
2324 2324  * (((
2325 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2260 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2326 2326  
2327 -
2328 2328  
2329 2329  )))
2330 2330  
2331 2331  = 11. Reference​​​​​ =
2332 2332  
2333 -
2334 2334  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2335 2335  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2336 2336  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2337 -
2338 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content