Last modified by Mengting Qiu on 2025/06/04 18:42

From version 128.7
edited by Xiaoling
on 2024/01/15 15:53
Change comment: There is no comment for this version
To version 181.1
edited by Dilisi S
on 2024/11/10 05:03
Change comment: Uploaded new attachment "thingseye-events.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -55,162 +55,69 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -
193 193  == 1.4 Applications ==
194 194  
195 -
196 196  * Smart Buildings & Home Automation
197 -
198 198  * Logistics and Supply Chain Management
199 -
200 200  * Smart Metering
201 -
202 202  * Smart Agriculture
203 -
204 204  * Smart Cities
205 -
206 206  * Smart Factory
207 207  
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#4F81BD;color:white; width:103px" %)**Model**|(% style="background-color:#4F81BD;color:white; width:131px" %)**Photo**|(% style="background-color:#4F81BD;color:white; width:266px" %)**Description**
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,94 +223,169 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
129 += 2. Assembling the Device =
226 226  
227 -= 2. Power ON Device =
131 +== 2.1 What is included in the package? ==
228 228  
133 +The package includes the following items:
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
233 233  
234 -(((
235 -PWR will on when device is properly powered.
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
237 -
238 -)))
142 +== 2.2 Terminals ==
239 239  
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
246 246  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
188 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
258 258  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
208 +==== ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
282 282  
283 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
284 284  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287 287  
288 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
291 291  
230 +==== ====
292 292  
293 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
294 294  
295 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
296 296  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
300 300  
301 -
302 -)))
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
303 303  
304 -[[image:1653298044601-602.png||height="405" width="709"]]
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
305 305  
306 306  
307 -== 3.3 Uplink Payload ==
257 +You will be navigated to the **Device overview** page.
308 308  
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
313 313  
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
316 316  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -321,15 +321,17 @@
321 321  
322 322  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
323 323  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
324 324  
325 325  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326 326  
327 -
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
330 330  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
333 333  |Value|(((
334 334  AVI1 voltage
335 335  )))|(((
... ... @@ -338,29 +338,29 @@
338 338  ACI1 Current
339 339  )))|(((
340 340  ACI2 Current
341 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
342 342  Reserve
343 343  )))|MOD
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : close, ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
364 364  
365 365  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
... ... @@ -370,39 +370,35 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,26 +409,26 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : close , ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
426 426  
427 427  
428 428  )))
429 429  
430 430  (((
431 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
432 432  )))
433 433  
434 434  (((
... ... @@ -449,17 +449,17 @@
449 449  (((
450 450  **For LT22222-L:**
451 451  
452 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
453 453  
454 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
455 455  
456 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
457 457  
458 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
459 459  
460 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
461 461  
462 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
463 463  )))
464 464  
465 465  
... ... @@ -466,10 +466,10 @@
466 466  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
467 467  
468 468  
469 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
470 470  
471 471  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
472 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
473 473  |Value|COUNT1|(((
474 474  ACI1 Current
475 475  )))|(((
... ... @@ -477,24 +477,24 @@
477 477  )))|DIDORO*|Reserve|MOD
478 478  
479 479  (((
480 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
484 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
485 485  )))
486 486  
487 -* RO is for relay. ROx=1 : close, ROx=0 always open.
488 -* FIRST: Indicate this is the first packet after join network.
489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490 490  
491 491  (((
492 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
493 493  )))
494 494  
495 495  
496 496  (((
497 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
498 498  )))
499 499  
500 500  (((
... ... @@ -507,7 +507,9 @@
507 507  )))
508 508  
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,25 +529,25 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : close, ROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
545 545  
546 546  
547 547  )))
548 548  
549 549  (((
550 -**To use this mode, please run:**
528 +**To activate this mode, run the following AT commands:**
551 551  )))
552 552  
553 553  (((
... ... @@ -560,19 +560,19 @@
560 560  )))
561 561  
562 562  (((
563 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
564 564  )))
565 565  
566 566  (((
567 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
568 568  
569 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
570 570  
571 571  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
572 572  
573 573  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
574 574  
575 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
576 576  )))
577 577  
578 578  
... ... @@ -579,10 +579,10 @@
579 579  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
580 580  
581 581  
582 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
583 583  
584 584  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
585 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
586 586  |Value|(((
587 587  AVI1 voltage
588 588  )))|(((
... ... @@ -594,25 +594,25 @@
594 594  )))|MOD
595 595  
596 596  (((
597 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
598 598  
599 599  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
600 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
601 601  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
602 602  )))
603 603  
604 -* RO is for relay. ROx=1 : close, ROx=0 always open.
605 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
606 606  * (((
607 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
608 608  )))
609 609  
610 610  (((
611 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
612 612  )))
613 613  
614 614  (((
615 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
616 616  )))
617 617  
618 618  (((
... ... @@ -625,7 +625,7 @@
625 625  )))
626 626  
627 627  (((
628 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
629 629  )))
630 630  
631 631  
... ... @@ -632,49 +632,46 @@
632 632  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
633 633  
634 634  
635 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
636 636  
637 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
638 638  
639 639  * **AT+MOD=1 ** **~-~->**  The normal working mode
640 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
641 641  
642 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
643 643  
644 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
645 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
646 646  
647 647  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
648 648  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
649 649  
650 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
651 -
652 652  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
653 653  
654 654  
655 655  **Example:**
656 656  
657 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
658 658  
659 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
660 660  
661 661  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
662 662  
663 -(% style="color:#4f81bd" %)**Trigger base on current**:
664 -
665 665  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
666 666  
667 667  
668 668  **Example:**
669 669  
670 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
671 671  
672 672  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
673 673  
674 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
675 675  
676 -DI status trigger Flag.
677 -
678 678  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
679 679  
680 680  
... ... @@ -683,42 +683,41 @@
683 683  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
684 684  
685 685  
686 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
687 687  
688 688  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
689 689  
690 690  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
691 691  
692 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
693 693  
694 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
695 695  
696 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
697 697  
698 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
699 699  
700 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
701 701  
702 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
703 703  
704 704  
705 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
706 706  
707 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
708 708  
709 709  
710 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
711 711  
712 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
713 713  
714 714  
715 -
716 716  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
717 717  
718 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
719 719  
720 720  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
721 -|(% style="background-color:#4F81BD;color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:69px" %)**1**|(% style="background-color:#4F81BD;color:white; width:69px" %)**1**|(% style="background-color:#4F81BD;color:white; width:109px" %)**1**|(% style="background-color:#4F81BD;color:white; width:49px" %)**6**|(% style="background-color:#4F81BD;color:white; width:109px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**1**
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
722 722  |Value|(((
723 723  TRI_A FLAG
724 724  )))|(((
... ... @@ -729,10 +729,10 @@
729 729  MOD(6)
730 730  )))
731 731  
732 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
733 733  
734 734  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
735 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
736 736  |(((
737 737  AV1_LOW
738 738  )))|(((
... ... @@ -751,17 +751,17 @@
751 751  AC2_HIGH
752 752  )))
753 753  
754 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
755 755  
756 756  **Example:**
757 757  
758 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
759 759  
760 760  
761 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
762 762  
763 763  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
764 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
765 765  |(((
766 766  AV1_LOW
767 767  )))|(((
... ... @@ -780,11 +780,11 @@
780 780  AC2_HIGH
781 781  )))
782 782  
783 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
784 784  
785 785  **Example:**
786 786  
787 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
788 788  
789 789  
790 790  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -793,7 +793,7 @@
793 793  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
794 794  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
795 795  
796 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
797 797  
798 798  **Example:**
799 799  
... ... @@ -820,11 +820,11 @@
820 820  )))
821 821  
822 822  
823 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
824 824  
825 825  
826 826  (((
827 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
828 828  )))
829 829  
830 830  (((
... ... @@ -837,12 +837,10 @@
837 837  
838 838  * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
839 839  
840 -
841 841  === 3.4.1 Common Commands ===
842 842  
843 -
844 844  (((
845 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
846 846  )))
847 847  
848 848  
... ... @@ -850,34 +850,37 @@
850 850  
851 851  ==== 3.4.2.1 Set Transmit Interval ====
852 852  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
853 853  
854 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
855 855  
856 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
857 857  
858 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
859 859  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
860 860  
861 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
862 862  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
863 863  
864 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
865 -
866 866  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
867 867  
868 868  
869 869  
870 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
871 871  
872 872  
873 -Set work mode.
845 +Sets the work mode.
874 874  
875 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
876 876  
877 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
878 878  
879 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
880 880  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
881 881  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
882 882  
883 883  
... ... @@ -885,10 +885,12 @@
885 885  ==== 3.4.2.3 Poll an uplink ====
886 886  
887 887  
888 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
889 889  
890 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
891 891  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
892 892  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
893 893  
894 894  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -895,16 +895,16 @@
895 895  
896 896  
897 897  
898 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
899 899  
900 900  
901 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
902 902  
903 903  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
904 904  
905 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
906 906  
907 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
908 908  
909 909  
910 910  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -916,7 +916,7 @@
916 916  ==== 3.4.2.5 Poll trigger settings ====
917 917  
918 918  
919 -Poll trigger settings
896 +Polls the trigger settings
920 920  
921 921  * (% style="color:#037691" %)**AT Command:**
922 922  
... ... @@ -924,7 +924,7 @@
924 924  
925 925  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
926 926  
927 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
928 928  
929 929  
930 930  
... ... @@ -931,11 +931,11 @@
931 931  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
932 932  
933 933  
934 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
935 935  
936 936  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
937 937  
938 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
939 939  
940 940  
941 941  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -967,15 +967,15 @@
967 967  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
968 968  
969 969  
970 -Set DI2 trigger.
947 +Sets DI2 trigger.
971 971  
972 972  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
973 973  
974 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
975 975  
976 976  (% style="color:red" %)**b :** (%%)delay timing.
977 977  
978 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
979 979  
980 980  
981 981  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1013,7 +1013,7 @@
1013 1013  ==== 3.4.2.11 Trigger – Set minimum interval ====
1014 1014  
1015 1015  
1016 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1017 1017  
1018 1018  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1019 1019  
... ... @@ -1047,7 +1047,7 @@
1047 1047  01: Low,  00: High ,  11: No action
1048 1048  
1049 1049  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1050 -|(% style="background-color:#4F81BD;color:white" %)**Downlink Code**|(% style="background-color:#4F81BD;color:white" %)**DO1**|(% style="background-color:#4F81BD;color:white" %)**DO2**|(% style="background-color:#4F81BD;color:white" %)**DO3**
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1051 1051  |02  01  00  11|Low|High|No Action
1052 1052  |02  00  11  01|High|No Action|Low
1053 1053  |02  11  01  00|No Action|Low|High
... ... @@ -1090,7 +1090,7 @@
1090 1090  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1091 1091  
1092 1092  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1093 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1094 1094  |0x01|DO1 set to low
1095 1095  |0x00|DO1 set to high
1096 1096  |0x11|DO1 NO Action
... ... @@ -1098,7 +1098,7 @@
1098 1098  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1099 1099  
1100 1100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1101 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1102 1102  |0x01|DO2 set to low
1103 1103  |0x00|DO2 set to high
1104 1104  |0x11|DO2 NO Action
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1109 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1110 1110  |0x01|DO3 set to low
1111 1111  |0x00|DO3 set to high
1112 1112  |0x11|DO3 NO Action
... ... @@ -1161,10 +1161,10 @@
1161 1161  )))
1162 1162  
1163 1163  (((
1164 -01: Close ,  00: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1165 1165  
1166 1166  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1167 -|(% style="background-color:#4F81BD;color:white" %)**Downlink Code**|(% style="background-color:#4F81BD;color:white" %)**RO1**|(% style="background-color:#4F81BD;color:white" %)**RO2**
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1168 1168  |03  00  11|Open|No Action
1169 1169  |03  01  11|Close|No Action
1170 1170  |03  11  00|No Action|Open
... ... @@ -1283,7 +1283,7 @@
1283 1283  
1284 1284  
1285 1285  
1286 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1287 1287  
1288 1288  
1289 1289  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1404,74 +1404,144 @@
1404 1404  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1405 1405  
1406 1406  
1407 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1408 1408  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1409 1409  
1410 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1411 1411  
1412 -(((
1413 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1414 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1415 1415  
1416 -(((
1417 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1418 1418  
1419 -
1420 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1421 1421  
1422 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1423 1423  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1424 1424  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1425 1425  
1426 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1427 1427  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1428 1428  
1429 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1430 1430  
1431 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1432 1432  
1433 -Search under The things network
1414 +**Basic settings:**
1434 1434  
1435 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1436 1436  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1437 1437  
1438 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1439 1439  
1440 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1427 +**Uplink data converter:**
1441 1441  
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1442 1442  
1443 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1444 1444  
1445 1445  
1446 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1438 +**Downlink data converter (this is an optional step):**
1447 1447  
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1448 1448  
1449 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1450 1450  
1451 1451  
1452 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1449 +**Connection:**
1453 1453  
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1454 1454  
1455 -== 3.6 Interface Detail ==
1456 +[[image:message-1.png]]
1456 1456  
1458 +
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1457 1457  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1458 1458  
1459 1459  
1460 -Support NPN Type sensor
1507 +Support NPN-type sensor
1461 1461  
1462 1462  [[image:1653356991268-289.png]]
1463 1463  
1464 1464  
1465 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1466 1466  
1467 1467  
1468 1468  (((
1469 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1470 1470  )))
1471 1471  
1472 1472  (((
1473 1473  (((
1474 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1475 1475  
1476 1476  
1477 1477  )))
... ... @@ -1481,7 +1481,7 @@
1481 1481  
1482 1482  (((
1483 1483  (((
1484 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1485 1485  )))
1486 1486  )))
1487 1487  
... ... @@ -1490,22 +1490,22 @@
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1498 1498  )))
1499 1499  
1500 1500  * (((
1501 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1502 1502  )))
1503 1503  * (((
1504 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1505 1505  )))
1506 1506  
1507 1507  (((
1508 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1509 1509  )))
1510 1510  
1511 1511  (((
... ... @@ -1513,7 +1513,7 @@
1513 1513  )))
1514 1514  
1515 1515  (((
1516 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1517 1517  )))
1518 1518  
1519 1519  (((
... ... @@ -1521,22 +1521,22 @@
1521 1521  )))
1522 1522  
1523 1523  (((
1524 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1529 1529  )))
1530 1530  
1531 1531  * (((
1532 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1533 1533  )))
1534 1534  * (((
1535 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1536 1536  )))
1537 1537  
1538 1538  (((
1539 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1540 1540  )))
1541 1541  
1542 1542  (((
... ... @@ -1544,7 +1544,7 @@
1544 1544  )))
1545 1545  
1546 1546  (((
1547 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1548 1548  )))
1549 1549  
1550 1550  (((
... ... @@ -1552,22 +1552,22 @@
1552 1552  )))
1553 1553  
1554 1554  (((
1555 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1556 1556  )))
1557 1557  
1558 1558  (((
1559 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1560 1560  )))
1561 1561  
1562 1562  * (((
1563 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1564 1564  )))
1565 1565  * (((
1566 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1567 1567  )))
1568 1568  
1569 1569  (((
1570 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1571 1571  )))
1572 1572  
1573 1573  (((
... ... @@ -1575,33 +1575,37 @@
1575 1575  )))
1576 1576  
1577 1577  (((
1578 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1579 1579  )))
1580 1580  
1581 1581  
1582 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1583 1583  
1584 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1585 1585  
1586 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1587 1587  
1588 1588  [[image:image-20230616235145-1.png]]
1589 1589  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1590 1590  
1591 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1639 +[[image:image-20240219115718-1.png]]
1592 1592  
1593 1593  
1594 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1595 1595  
1596 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1597 1597  
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 +
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1598 1598  [[image:1653357531600-905.png]]
1599 1599  
1600 1600  
1601 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1602 1602  
1603 1603  
1604 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1605 1605  
1606 1606  
1607 1607  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1608,14 +1608,14 @@
1608 1608  
1609 1609  [[image:1653357592296-182.png]]
1610 1610  
1611 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1612 1612  
1613 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1614 1614  
1615 1615  
1616 1616  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1617 1617  
1618 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1619 1619  
1620 1620  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1621 1621  
... ... @@ -1628,7 +1628,7 @@
1628 1628  [[image:1653357648330-671.png||height="155" width="733"]]
1629 1629  
1630 1630  
1631 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1632 1632  
1633 1633  [[image:image-20230608101532-1.png||height="606" width="447"]]
1634 1634  
... ... @@ -1637,7 +1637,7 @@
1637 1637  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1638 1638  
1639 1639  
1640 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1641 1641  
1642 1642  (% style="color:red" %)**Red:  12~~24v**
1643 1643  
... ... @@ -1648,9 +1648,9 @@
1648 1648  
1649 1649  
1650 1650  (((
1651 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1652 1652  
1653 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1654 1654  )))
1655 1655  
1656 1656  [[image:image-20220524100215-9.png]]
... ... @@ -1662,12 +1662,9 @@
1662 1662  == 3.7 LEDs Indicators ==
1663 1663  
1664 1664  
1665 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1666 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**LEDs**|(% style="background-color:#4F81BD;color:white; width:470px" %)**Feature**
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1667 1667  |**PWR**|Always on if there is power
1668 -|**SYS**|(((
1669 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1670 -)))
1671 1671  |**TX**|(((
1672 1672  (((
1673 1673  Device boot: TX blinks 5 times.
... ... @@ -1681,41 +1681,33 @@
1681 1681  Transmit a LoRa packet: TX blinks once
1682 1682  )))
1683 1683  )))
1684 -|**RX**|RX blinks once when receive a packet.
1685 -|**DO1**|
1686 -|**DO2**|
1687 -|**DO3**|
1688 -|**DI2**|(((
1689 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1690 1690  )))
1691 1691  |**DI2**|(((
1692 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1693 1693  )))
1694 -|**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1696 -)))
1697 -|**RO1**|
1698 -|**RO2**|
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1699 1699  
1744 += 4. Using AT Commands =
1700 1700  
1701 -= 4. Use AT Command =
1746 +The LT-22222-L supports programming using AT Commands.
1702 1702  
1703 -== 4.1 Access AT Command ==
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1704 1704  
1705 -
1706 1706  (((
1707 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1708 1708  )))
1709 1709  
1710 -(((
1711 -
1712 -)))
1713 -
1714 1714  [[image:1653358238933-385.png]]
1715 1715  
1716 1716  
1717 1717  (((
1718 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1719 1719  )))
1720 1720  
1721 1721  [[image:1653358355238-883.png]]
... ... @@ -1722,194 +1722,63 @@
1722 1722  
1723 1723  
1724 1724  (((
1725 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1726 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1727 1727  
1728 -(((
1729 -AT+<CMD>?        : Help on <CMD>
1767 +== 4.2 LT-22222-L related AT commands ==
1730 1730  )))
1731 1731  
1732 1732  (((
1733 -AT+<CMD>         : Run <CMD>
1734 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1735 1735  
1736 -(((
1737 -AT+<CMD>=<value> : Set the value
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1738 1738  )))
1739 1739  
1740 -(((
1741 -AT+<CMD>=?       :  Get the value
1742 -)))
1743 1743  
1744 -(((
1745 -ATZ: Trig a reset of the MCU
1746 -)))
1747 -
1748 -(((
1749 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1750 -)))
1751 -
1752 -(((
1753 -AT+DEUI: Get or Set the Device EUI
1754 -)))
1755 -
1756 -(((
1757 -AT+DADDR: Get or Set the Device Address
1758 -)))
1759 -
1760 -(((
1761 -AT+APPKEY: Get or Set the Application Key
1762 -)))
1763 -
1764 -(((
1765 -AT+NWKSKEY: Get or Set the Network Session Key
1766 -)))
1767 -
1768 -(((
1769 -AT+APPSKEY:  Get or Set the Application Session Key
1770 -)))
1771 -
1772 -(((
1773 -AT+APPEUI:  Get or Set the Application EUI
1774 -)))
1775 -
1776 -(((
1777 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1778 -)))
1779 -
1780 -(((
1781 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1782 -)))
1783 -
1784 -(((
1785 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1786 -)))
1787 -
1788 -(((
1789 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1790 -)))
1791 -
1792 -(((
1793 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1794 -)))
1795 -
1796 -(((
1797 -AT+RX2FQ: Get or Set the Rx2 window frequency
1798 -)))
1799 -
1800 -(((
1801 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1802 -)))
1803 -
1804 -(((
1805 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1806 -)))
1807 -
1808 -(((
1809 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1810 -)))
1811 -
1812 -(((
1813 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1814 -)))
1815 -
1816 -(((
1817 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1818 -)))
1819 -
1820 -(((
1821 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1822 -)))
1823 -
1824 -(((
1825 -AT+NWKID: Get or Set the Network ID
1826 -)))
1827 -
1828 -(((
1829 -AT+FCU: Get or Set the Frame Counter Uplink
1830 -)))
1831 -
1832 -(((
1833 -AT+FCD: Get or Set the Frame Counter Downlink
1834 -)))
1835 -
1836 -(((
1837 -AT+CLASS: Get or Set the Device Class
1838 -)))
1839 -
1840 -(((
1841 -AT+JOIN: Join network
1842 -)))
1843 -
1844 -(((
1845 -AT+NJS: Get OTAA Join Status
1846 -)))
1847 -
1848 -(((
1849 -AT+SENDB: Send hexadecimal data along with the application port
1850 -)))
1851 -
1852 -(((
1853 -AT+SEND: Send text data along with the application port
1854 -)))
1855 -
1856 -(((
1857 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1858 -)))
1859 -
1860 -(((
1861 -AT+RECV: Print last received data in raw format
1862 -)))
1863 -
1864 -(((
1865 -AT+VER:  Get current image version and Frequency Band
1866 -)))
1867 -
1868 -(((
1869 -AT+CFM: Get or Set the confirmation mode (0-1)
1870 -)))
1871 -
1872 -(((
1873 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1874 -)))
1875 -
1876 -(((
1877 -AT+SNR: Get the SNR of the last received packet
1878 -)))
1879 -
1880 -(((
1881 -AT+RSSI: Get the RSSI of the last received packet
1882 -)))
1883 -
1884 -(((
1885 -AT+TDC: Get or set the application data transmission interval in ms
1886 -)))
1887 -
1888 -(((
1889 -AT+PORT: Get or set the application port
1890 -)))
1891 -
1892 -(((
1893 -AT+DISAT: Disable AT commands
1894 -)))
1895 -
1896 -(((
1897 -AT+PWORD: Set password, max 9 digits
1898 -)))
1899 -
1900 -(((
1901 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1902 -)))
1903 -
1904 -(((
1905 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1906 -)))
1907 -
1908 -(((
1909 -AT+CFG: Print all settings
1910 -)))
1911 -
1912 -
1913 1913  == 4.2 Common AT Command Sequence ==
1914 1914  
1915 1915  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1918,41 +1918,41 @@
1918 1918  
1919 1919  
1920 1920  (((
1921 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1922 1922  )))
1923 1923  )))
1924 1924  
1925 1925  (((
1926 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1927 1927  )))
1928 1928  
1929 1929  (((
1930 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1931 1931  )))
1932 1932  
1933 1933  (((
1934 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1935 1935  )))
1936 1936  
1937 1937  (((
1938 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1939 1939  )))
1940 1940  
1941 1941  (((
1942 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1943 1943  )))
1944 1944  
1945 1945  
1946 1946  (((
1947 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1948 1948  )))
1949 1949  
1950 1950  (((
1951 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1952 1952  )))
1953 1953  
1954 1954  (((
1955 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1956 1956  )))
1957 1957  
1958 1958  
... ... @@ -2050,37 +2050,50 @@
2050 2050  
2051 2051  = 5. Case Study =
2052 2052  
2053 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2054 2054  
2055 2055  
2056 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2057 2057  
2058 2058  
2059 2059  = 6. FAQ =
2060 2060  
2061 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2062 2062  
1972 +== 6.1 How to update the firmware? ==
2063 2063  
2064 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2065 2065  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
2066 2066  * Support new features
2067 -* For bug fix
2068 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
2069 2069  
2070 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
2071 2071  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
2072 2072  [[image:1653359603330-121.png]]
2073 2073  
2074 2074  
2075 -(((
2076 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2077 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2078 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2079 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2080 2080  
2081 2081  (((
2002 +(((
2082 2082  (% style="color:blue" %)**For LT-22222-L**(%%):
2083 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2084 2084  )))
2085 2085  
2086 2086  
... ... @@ -2095,7 +2095,7 @@
2095 2095  [[image:image-20220524104033-15.png]]
2096 2096  
2097 2097  
2098 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2099 2099  
2100 2100  [[image:1653360054704-518.png||height="186" width="745"]]
2101 2101  
... ... @@ -2102,7 +2102,7 @@
2102 2102  
2103 2103  (((
2104 2104  (((
2105 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2106 2106  
2107 2107  
2108 2108  )))
... ... @@ -2109,13 +2109,13 @@
2109 2109  )))
2110 2110  
2111 2111  (((
2112 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2113 2113  )))
2114 2114  
2115 2115  (((
2116 2116  
2117 2117  
2118 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2119 2119  
2120 2120  
2121 2121  )))
... ... @@ -2122,13 +2122,13 @@
2122 2122  
2123 2123  (((
2124 2124  (((
2125 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2126 2126  )))
2127 2127  )))
2128 2128  
2129 2129  (((
2130 2130  (((
2131 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2132 2132  
2133 2133  
2134 2134  )))
... ... @@ -2135,7 +2135,7 @@
2135 2135  )))
2136 2136  
2137 2137  (((
2138 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2139 2139  
2140 2140  
2141 2141  )))
... ... @@ -2192,61 +2192,55 @@
2192 2192  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2193 2193  
2194 2194  
2195 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2196 2196  
2197 2197  
2198 2198  (((
2199 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2200 2200  
2201 2201  
2202 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2203 2203  
2204 2204  
2205 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2206 -
2207 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2208 2208  )))
2209 2209  
2210 2210  (((
2211 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2212 2212  
2213 2213  
2214 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2215 2215  
2216 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2217 2217  
2218 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2219 2219  
2220 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2221 2221  
2222 2222  
2223 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2224 -
2225 -
2226 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2227 -
2228 -
2229 2229  [[image:image-20221006170630-1.png||height="610" width="945"]]
2230 2230  
2231 2231  
2232 -== 6.9 Can LT22222-L save RO state? ==
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2233 2233  
2234 2234  
2235 -Firmware version needs to be no less than 1.6.0.
2151 +The firmware version must be at least 1.6.0.
2236 2236  
2237 2237  
2238 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2239 2239  
2240 2240  
2241 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2242 2242  
2243 2243  
2244 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2245 2245  )))
2246 2246  
2247 2247  (((
2248 2248  (((
2249 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2250 2250  
2251 2251  
2252 2252  )))
... ... @@ -2253,42 +2253,42 @@
2253 2253  )))
2254 2254  
2255 2255  (((
2256 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2257 2257  )))
2258 2258  
2259 2259  (((
2260 2260  
2261 2261  
2262 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2263 2263  
2264 2264  
2265 2265  )))
2266 2266  
2267 2267  (((
2268 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2269 2269  )))
2270 2270  
2271 2271  (((
2272 2272  
2273 2273  
2274 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2275 2275  
2276 2276  
2277 2277  )))
2278 2278  
2279 2279  (((
2280 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2281 2281  )))
2282 2282  
2283 2283  
2284 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2285 2285  
2286 2286  
2287 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2288 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2289 2289  
2290 2290  
2291 -= 8. Order Info =
2207 += 8. Ordering information =
2292 2292  
2293 2293  
2294 2294  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2295,45 +2295,42 @@
2295 2295  
2296 2296  (% style="color:#4f81bd" %)**XXX:**
2297 2297  
2298 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2299 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2300 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2301 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2302 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2303 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2304 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2305 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2306 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2307 2307  
2224 += 9. Packing information =
2308 2308  
2309 -= 9. Packing Info =
2310 2310  
2227 +**Package includes**:
2311 2311  
2312 -**Package Includes**:
2313 -
2314 2314  * LT-22222-L I/O Controller x 1
2315 2315  * Stick Antenna for LoRa RF part x 1
2316 2316  * Bracket for controller x1
2317 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2318 2318  
2319 2319  **Dimension and weight**:
2320 2320  
2321 2321  * Device Size: 13.5 x 7 x 3 cm
2322 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2323 2323  * Package Size / pcs : 14.5 x 8 x 5 cm
2324 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2325 2325  
2326 -
2327 2327  = 10. Support =
2328 2328  
2329 2329  
2330 2330  * (((
2331 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2332 2332  )))
2333 2333  * (((
2334 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2335 2335  
2336 -
2337 2337  
2338 2338  )))
2339 2339  
... ... @@ -2343,5 +2343,3 @@
2343 2343  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2344 2344  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2345 2345  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2346 -
2347 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content