Last modified by Mengting Qiu on 2025/06/04 18:42

From version 128.7
edited by Xiaoling
on 2024/01/15 15:53
Change comment: There is no comment for this version
To version 162.1
edited by Dilisi S
on 2024/11/05 03:38
Change comment: edits from section 3.6.3

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -15,36 +15,30 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -55,162 +55,69 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 186  * Remote configure parameters via LoRa Downlink
187 -
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -
193 193  == 1.4 Applications ==
194 194  
195 -
196 196  * Smart Buildings & Home Automation
197 -
198 198  * Logistics and Supply Chain Management
199 -
200 200  * Smart Metering
201 -
202 202  * Smart Agriculture
203 -
204 204  * Smart Cities
205 -
206 206  * Smart Factory
207 207  
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#4F81BD;color:white; width:103px" %)**Model**|(% style="background-color:#4F81BD;color:white; width:131px" %)**Photo**|(% style="background-color:#4F81BD;color:white; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,93 +223,140 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
131 += 2. Assembling the Device =
226 226  
227 -= 2. Power ON Device =
133 +== 2.1 What is included in the package? ==
228 228  
135 +The package includes the following items:
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
233 233  
234 -(((
235 -PWR will on when device is properly powered.
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
236 236  
237 -
238 -)))
144 +== 2.2 Terminals ==
239 239  
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
246 246  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
190 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
258 258  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
210 +==== Using the LoRaWAN Device Repository: ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
282 282  
283 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
284 284  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
287 287  
288 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
291 291  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
292 292  
293 -**Add APP KEY and DEV EUI**
294 294  
295 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
296 296  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
300 300  
301 -
302 -)))
252 +==== Joining ====
303 303  
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
255 +
304 304  [[image:1653298044601-602.png||height="405" width="709"]]
305 305  
306 306  
307 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
308 308  
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
313 313  
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
... ... @@ -321,15 +321,14 @@
321 321  
322 322  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
323 323  
324 -
325 325  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326 326  
327 327  
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
330 330  
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
333 333  |Value|(((
334 334  AVI1 voltage
335 335  )))|(((
... ... @@ -344,23 +344,23 @@
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : close, ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
364 364  
365 365  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
... ... @@ -370,39 +370,38 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
377 -
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
385 385  ** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
392 392  
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
355 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,26 +409,26 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : close , ROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
426 426  
427 427  
428 428  )))
429 429  
430 430  (((
431 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
432 432  )))
433 433  
434 434  (((
... ... @@ -449,17 +449,17 @@
449 449  (((
450 450  **For LT22222-L:**
451 451  
452 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
453 453  
454 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
455 455  
456 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
457 457  
458 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
459 459  
460 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
461 461  
462 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
463 463  )))
464 464  
465 465  
... ... @@ -466,10 +466,10 @@
466 466  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
467 467  
468 468  
469 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
470 470  
471 471  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
472 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
422 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
473 473  |Value|COUNT1|(((
474 474  ACI1 Current
475 475  )))|(((
... ... @@ -477,16 +477,16 @@
477 477  )))|DIDORO*|Reserve|MOD
478 478  
479 479  (((
480 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481 481  
482 482  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
483 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
484 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
485 485  )))
486 486  
487 -* RO is for relay. ROx=1 : close, ROx=0 always open.
488 -* FIRST: Indicate this is the first packet after join network.
489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490 490  
491 491  (((
492 492  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -494,7 +494,7 @@
494 494  
495 495  
496 496  (((
497 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
498 498  )))
499 499  
500 500  (((
... ... @@ -507,7 +507,9 @@
507 507  )))
508 508  
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**4**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
477 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,16 +529,16 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : close, ROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 544  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -547,7 +547,7 @@
547 547  )))
548 548  
549 549  (((
550 -**To use this mode, please run:**
502 +**To activate this mode, please run the following AT command:**
551 551  )))
552 552  
553 553  (((
... ... @@ -564,9 +564,9 @@
564 564  )))
565 565  
566 566  (((
567 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
568 568  
569 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
570 570  
571 571  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
572 572  
... ... @@ -582,7 +582,7 @@
582 582  **LT22222-L**: This mode the DI1 is used as a counting pin.
583 583  
584 584  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
585 -|(% style="background-color:#4F81BD;color:white" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**2**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**|(% style="background-color:#4F81BD;color:white" %)**1**
537 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
586 586  |Value|(((
587 587  AVI1 voltage
588 588  )))|(((
... ... @@ -718,7 +718,7 @@
718 718  MOD6 Payload : total 11 bytes payload
719 719  
720 720  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
721 -|(% style="background-color:#4F81BD;color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:69px" %)**1**|(% style="background-color:#4F81BD;color:white; width:69px" %)**1**|(% style="background-color:#4F81BD;color:white; width:109px" %)**1**|(% style="background-color:#4F81BD;color:white; width:49px" %)**6**|(% style="background-color:#4F81BD;color:white; width:109px" %)**1**|(% style="background-color:#4F81BD;color:white; width:50px" %)**1**
673 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
722 722  |Value|(((
723 723  TRI_A FLAG
724 724  )))|(((
... ... @@ -837,7 +837,6 @@
837 837  
838 838  * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
839 839  
840 -
841 841  === 3.4.1 Common Commands ===
842 842  
843 843  
... ... @@ -1047,7 +1047,7 @@
1047 1047  01: Low,  00: High ,  11: No action
1048 1048  
1049 1049  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1050 -|(% style="background-color:#4F81BD;color:white" %)**Downlink Code**|(% style="background-color:#4F81BD;color:white" %)**DO1**|(% style="background-color:#4F81BD;color:white" %)**DO2**|(% style="background-color:#4F81BD;color:white" %)**DO3**
1001 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1051 1051  |02  01  00  11|Low|High|No Action
1052 1052  |02  00  11  01|High|No Action|Low
1053 1053  |02  11  01  00|No Action|Low|High
... ... @@ -1090,7 +1090,7 @@
1090 1090  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1091 1091  
1092 1092  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1093 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1094 1094  |0x01|DO1 set to low
1095 1095  |0x00|DO1 set to high
1096 1096  |0x11|DO1 NO Action
... ... @@ -1098,7 +1098,7 @@
1098 1098  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1099 1099  
1100 1100  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1101 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1052 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1102 1102  |0x01|DO2 set to low
1103 1103  |0x00|DO2 set to high
1104 1104  |0x11|DO2 NO Action
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1109 -|(% style="background-color:#4F81BD;color:white" %)**Second Byte**|(% style="background-color:#4F81BD;color:white" %)**Status**
1060 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1110 1110  |0x01|DO3 set to low
1111 1111  |0x00|DO3 set to high
1112 1112  |0x11|DO3 NO Action
... ... @@ -1161,10 +1161,10 @@
1161 1161  )))
1162 1162  
1163 1163  (((
1164 -01: Close ,  00: Open , 11: No action
1115 +00: Close ,  01: Open , 11: No action
1165 1165  
1166 1166  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1167 -|(% style="background-color:#4F81BD;color:white" %)**Downlink Code**|(% style="background-color:#4F81BD;color:white" %)**RO1**|(% style="background-color:#4F81BD;color:white" %)**RO2**
1118 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1168 1168  |03  00  11|Open|No Action
1169 1169  |03  01  11|Close|No Action
1170 1170  |03  11  00|No Action|Open
... ... @@ -1404,56 +1404,73 @@
1404 1404  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1405 1405  
1406 1406  
1407 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1408 1408  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1409 1409  
1410 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1411 1411  
1412 -(((
1413 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1414 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1415 1415  
1416 -(((
1417 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1418 1418  
1419 -
1420 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1421 1421  
1422 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1423 1423  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1424 1424  
1425 1425  
1426 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1427 1427  
1381 +Basic settings:
1428 1428  
1429 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1430 1430  
1431 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1432 1432  
1433 -Search under The things network
1389 +Uplink Data converter:
1434 1434  
1435 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1436 1436  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1437 1437  
1438 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1398 +Downlink Data converter (this is an optional step):
1439 1439  
1440 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1441 1441  
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1442 1442  
1443 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1407 +Connection:
1444 1444  
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1445 1445  
1446 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1447 1447  
1448 1448  
1449 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1450 1450  
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1451 1451  
1452 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1453 1453  
1423 +== 3.6 Interface Details ==
1454 1454  
1455 -== 3.6 Interface Detail ==
1456 -
1457 1457  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1458 1458  
1459 1459  
... ... @@ -1462,16 +1462,16 @@
1462 1462  [[image:1653356991268-289.png]]
1463 1463  
1464 1464  
1465 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1433 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1466 1466  
1467 1467  
1468 1468  (((
1469 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1470 1470  )))
1471 1471  
1472 1472  (((
1473 1473  (((
1474 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1475 1475  
1476 1476  
1477 1477  )))
... ... @@ -1481,7 +1481,7 @@
1481 1481  
1482 1482  (((
1483 1483  (((
1484 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1485 1485  )))
1486 1486  )))
1487 1487  
... ... @@ -1490,22 +1490,22 @@
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1498 1498  )))
1499 1499  
1500 1500  * (((
1501 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1502 1502  )))
1503 1503  * (((
1504 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1505 1505  )))
1506 1506  
1507 1507  (((
1508 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1509 1509  )))
1510 1510  
1511 1511  (((
... ... @@ -1513,7 +1513,7 @@
1513 1513  )))
1514 1514  
1515 1515  (((
1516 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1517 1517  )))
1518 1518  
1519 1519  (((
... ... @@ -1521,22 +1521,22 @@
1521 1521  )))
1522 1522  
1523 1523  (((
1524 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1529 1529  )))
1530 1530  
1531 1531  * (((
1532 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1533 1533  )))
1534 1534  * (((
1535 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1536 1536  )))
1537 1537  
1538 1538  (((
1539 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1540 1540  )))
1541 1541  
1542 1542  (((
... ... @@ -1544,7 +1544,7 @@
1544 1544  )))
1545 1545  
1546 1546  (((
1547 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1548 1548  )))
1549 1549  
1550 1550  (((
... ... @@ -1552,22 +1552,22 @@
1552 1552  )))
1553 1553  
1554 1554  (((
1555 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1556 1556  )))
1557 1557  
1558 1558  (((
1559 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1560 1560  )))
1561 1561  
1562 1562  * (((
1563 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1564 1564  )))
1565 1565  * (((
1566 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1567 1567  )))
1568 1568  
1569 1569  (((
1570 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1571 1571  )))
1572 1572  
1573 1573  (((
... ... @@ -1575,33 +1575,37 @@
1575 1575  )))
1576 1576  
1577 1577  (((
1578 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1579 1579  )))
1580 1580  
1581 1581  
1582 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1583 1583  
1584 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1585 1585  
1586 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1587 1587  
1588 1588  [[image:image-20230616235145-1.png]]
1589 1589  
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1590 1590  
1591 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1560 +[[image:image-20240219115718-1.png]]
1592 1592  
1593 1593  
1594 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1563 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1595 1595  
1596 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1597 1597  
1566 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1567 +
1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1569 +
1598 1598  [[image:1653357531600-905.png]]
1599 1599  
1600 1600  
1601 -=== 3.6.4 Analog Input Interface ===
1573 +=== 3.6.4 Analog Input Interfaces ===
1602 1602  
1603 1603  
1604 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1605 1605  
1606 1606  
1607 1607  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1608,14 +1608,14 @@
1608 1608  
1609 1609  [[image:1653357592296-182.png]]
1610 1610  
1611 -Example to connect a 4~~20mA sensor
1583 +Example: Connecting a 4~~20mA sensor
1612 1612  
1613 -We take the wind speed sensor as an example for reference only.
1585 +We will use the wind speed sensor as an example for reference only.
1614 1614  
1615 1615  
1616 1616  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1617 1617  
1618 -(% style="color:red" %)**Red:  12~~24v**
1590 +(% style="color:red" %)**Red:  12~~24V**
1619 1619  
1620 1620  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1621 1621  
... ... @@ -1628,7 +1628,7 @@
1628 1628  [[image:1653357648330-671.png||height="155" width="733"]]
1629 1629  
1630 1630  
1631 -Example connected to a regulated power supply to measure voltage
1603 +Example: Connecting to a regulated power supply to measure voltage
1632 1632  
1633 1633  [[image:image-20230608101532-1.png||height="606" width="447"]]
1634 1634  
... ... @@ -1637,7 +1637,7 @@
1637 1637  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1638 1638  
1639 1639  
1640 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1641 1641  
1642 1642  (% style="color:red" %)**Red:  12~~24v**
1643 1643  
... ... @@ -1648,9 +1648,9 @@
1648 1648  
1649 1649  
1650 1650  (((
1651 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1623 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1652 1652  
1653 -**Note**: RO pins go to Open(NO) when device is power off.
1625 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1654 1654  )))
1655 1655  
1656 1656  [[image:image-20220524100215-9.png]]
... ... @@ -1662,12 +1662,9 @@
1662 1662  == 3.7 LEDs Indicators ==
1663 1663  
1664 1664  
1665 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1666 -|(% style="background-color:#4F81BD;color:white; width:50px" %)**LEDs**|(% style="background-color:#4F81BD;color:white; width:470px" %)**Feature**
1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1667 1667  |**PWR**|Always on if there is power
1668 -|**SYS**|(((
1669 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1670 -)))
1671 1671  |**TX**|(((
1672 1672  (((
1673 1673  Device boot: TX blinks 5 times.
... ... @@ -1682,40 +1682,31 @@
1682 1682  )))
1683 1683  )))
1684 1684  |**RX**|RX blinks once when receive a packet.
1685 -|**DO1**|
1686 -|**DO2**|
1687 -|**DO3**|
1688 -|**DI2**|(((
1689 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1656 +|**DI1**|(((
1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1690 1690  )))
1691 1691  |**DI2**|(((
1692 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1693 1693  )))
1694 -|**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1696 -)))
1697 -|**RO1**|
1698 -|**RO2**|
1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1699 1699  
1665 += 4. Using AT Command =
1700 1700  
1701 -= 4. Use AT Command =
1667 +== 4.1 Connecting the LT-22222-L to a computer ==
1702 1702  
1703 -== 4.1 Access AT Command ==
1704 1704  
1705 -
1706 1706  (((
1707 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1671 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1708 1708  )))
1709 1709  
1710 -(((
1711 -
1712 -)))
1713 -
1714 1714  [[image:1653358238933-385.png]]
1715 1715  
1716 1716  
1717 1717  (((
1718 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1719 1719  )))
1720 1720  
1721 1721  [[image:1653358355238-883.png]]
... ... @@ -1722,10 +1722,12 @@
1722 1722  
1723 1723  
1724 1724  (((
1725 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1685 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1726 1726  )))
1727 1727  
1728 1728  (((
1689 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1690 +
1729 1729  AT+<CMD>?        : Help on <CMD>
1730 1730  )))
1731 1731  
... ... @@ -2305,7 +2305,6 @@
2305 2305  * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2306 2306  * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2307 2307  
2308 -
2309 2309  = 9. Packing Info =
2310 2310  
2311 2311  
... ... @@ -2323,7 +2323,6 @@
2323 2323  * Package Size / pcs : 14.5 x 8 x 5 cm
2324 2324  * Weight / pcs : 170g
2325 2325  
2326 -
2327 2327  = 10. Support =
2328 2328  
2329 2329  
... ... @@ -2343,5 +2343,3 @@
2343 2343  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2344 2344  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2345 2345  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2346 -
2347 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content