Last modified by Mengting Qiu on 2025/06/04 18:42

From version 128.6
edited by Xiaoling
on 2023/11/17 08:50
Change comment: There is no comment for this version
To version 182.1
edited by Dilisi S
on 2024/11/10 05:24
Change comment: Uploaded new attachment "thingseye-json.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -55,164 +55,69 @@
55 55  
56 56  == 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -
193 -
194 194  == 1.4 Applications ==
195 195  
196 -
197 197  * Smart Buildings & Home Automation
198 -
199 199  * Logistics and Supply Chain Management
200 -
201 201  * Smart Metering
202 -
203 203  * Smart Agriculture
204 -
205 205  * Smart Cities
206 -
207 207  * Smart Factory
208 208  
209 -
210 -
211 211  == 1.5 Hardware Variants ==
212 212  
213 213  
214 214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
215 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
216 216  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
217 217  (% style="text-align:center" %)
218 218  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -225,95 +225,169 @@
225 225  * 1 x Counting Port
226 226  )))
227 227  
129 += 2. Assembling the Device =
228 228  
131 +== 2.1 What is included in the package? ==
229 229  
230 -= 2. Power ON Device =
133 +The package includes the following items:
231 231  
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
232 232  
233 -(((
234 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
235 -)))
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
237 -(((
238 -PWR will on when device is properly powered.
142 +== 2.2 Terminals ==
239 239  
240 -
241 -)))
144 +Upper screw terminal block (from left to right):
242 242  
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
243 243  [[image:1653297104069-180.png]]
244 244  
245 245  
246 246  = 3. Operation Mode =
247 247  
248 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
249 249  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
250 250  
251 -(((
252 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
253 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
254 254  
255 -(((
256 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
257 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
258 258  
188 +== 3.2 Registering with a LoRaWAN network server ==
259 259  
260 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
261 261  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
262 262  
263 -(((
264 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
265 265  
266 -
267 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
268 268  
269 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
270 270  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
271 271  
272 -(((
273 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
274 274  
275 -
276 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
277 277  
278 -(((
279 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
280 -)))
208 +==== ====
281 281  
282 -(((
283 -Each LT is shipped with a sticker with the default device EUI as below:
284 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
285 285  
286 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
287 287  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
288 288  
289 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
290 290  
291 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
292 292  
293 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
294 294  
230 +==== ====
295 295  
296 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
297 297  
298 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
299 299  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
300 300  
301 -(((
302 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
303 303  
304 -
305 -)))
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
306 306  
307 -[[image:1653298044601-602.png||height="405" width="709"]]
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
308 308  
309 309  
310 -== 3.3 Uplink Payload ==
257 +You will be navigated to the **Device overview** page.
311 311  
312 312  
313 -There are five working modes + one interrupt mode on LT for different type application:
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
314 314  
315 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
316 316  
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
317 317  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
318 318  
319 319  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -324,16 +324,17 @@
324 324  
325 325  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
326 326  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
327 327  
328 -
329 329  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
330 330  
331 -
332 332  (((
333 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
334 334  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
335 335  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
336 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
337 337  |Value|(((
338 338  AVI1 voltage
339 339  )))|(((
... ... @@ -342,29 +342,29 @@
342 342  ACI1 Current
343 343  )))|(((
344 344  ACI2 Current
345 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
346 346  Reserve
347 347  )))|MOD
348 348  )))
349 349  
350 350  (((
351 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
352 352  
353 353  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
354 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
355 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
356 356  )))
357 357  
358 -* RO is for relay. ROx=1 : close, ROx=0 always open.
359 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
360 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
361 361  
362 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
363 363  
364 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
365 365  
366 366  
367 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
368 368  
369 369  AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
370 370  
... ... @@ -374,40 +374,35 @@
374 374  
375 375  ACI2 channel current is 0x1300/1000=4.864mA
376 376  
377 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
378 378  
379 -* [1] RO1 relay channel is close and the RO1 LED is ON.
380 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
381 381  
382 -**LT22222-L:**
383 -
384 -* [1] DI2 channel is high input and DI2 LED is ON;
385 -* [0] DI1 channel is low input;
386 -
387 -* [0] DO3 channel output state
388 -** DO3 is float in case no load between DO3 and V+.;
389 -** DO3 is high in case there is load between DO3 and V+.
390 -** DO3 LED is off in both case
391 -* [1] DO2 channel output is low and DO2 LED is ON.
392 -* [0] DO1 channel output state
393 -** DO1 is float in case no load between DO1 and V+.;
394 -** DO1 is high in case there is load between DO1 and V+.
395 -** DO1 LED is off in both case
396 -
397 -
398 -
399 399  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
400 400  
401 401  
402 402  (((
403 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
404 404  )))
405 405  
406 406  (((
407 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
408 408  
409 409  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
410 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
411 411  |Value|COUNT1|COUNT2 |DIDORO*|(((
412 412  Reserve
413 413  )))|MOD
... ... @@ -414,26 +414,26 @@
414 414  )))
415 415  
416 416  (((
417 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
418 418  
419 419  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
420 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
421 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
422 422  
423 -RO is for relay. ROx=1 : close , ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
424 424  )))
425 425  
426 -* FIRST: Indicate this is the first packet after join network.
427 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
428 428  
429 429  (((
430 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
431 431  
432 432  
433 433  )))
434 434  
435 435  (((
436 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
437 437  )))
438 438  
439 439  (((
... ... @@ -454,17 +454,17 @@
454 454  (((
455 455  **For LT22222-L:**
456 456  
457 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
460 460  
461 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
462 462  
463 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
464 464  
465 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
466 466  
467 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
468 468  )))
469 469  
470 470  
... ... @@ -471,10 +471,10 @@
471 471  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
472 472  
473 473  
474 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
475 475  
476 476  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
477 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
478 478  |Value|COUNT1|(((
479 479  ACI1 Current
480 480  )))|(((
... ... @@ -482,24 +482,24 @@
482 482  )))|DIDORO*|Reserve|MOD
483 483  
484 484  (((
485 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
486 486  
487 487  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
488 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
489 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
490 490  )))
491 491  
492 -* RO is for relay. ROx=1 : close, ROx=0 always open.
493 -* FIRST: Indicate this is the first packet after join network.
494 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
495 495  
496 496  (((
497 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
498 498  )))
499 499  
500 500  
501 501  (((
502 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
503 503  )))
504 504  
505 505  (((
... ... @@ -512,7 +512,9 @@
512 512  )))
513 513  
514 514  (((
515 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
516 516  )))
517 517  
518 518  
... ... @@ -520,14 +520,14 @@
520 520  
521 521  
522 522  (((
523 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
524 524  )))
525 525  
526 526  (((
527 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
528 528  
529 529  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
531 531  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
532 532  Reserve
533 533  )))|MOD
... ... @@ -534,25 +534,25 @@
534 534  )))
535 535  
536 536  (((
537 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
538 538  
539 539  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
540 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
541 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
542 542  )))
543 543  
544 -* RO is for relay. ROx=1 : close, ROx=0 always open.
545 -* FIRST: Indicate this is the first packet after join network.
546 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
547 547  
548 548  (((
549 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
550 550  
551 551  
552 552  )))
553 553  
554 554  (((
555 -**To use this mode, please run:**
528 +**To activate this mode, run the following AT commands:**
556 556  )))
557 557  
558 558  (((
... ... @@ -565,19 +565,19 @@
565 565  )))
566 566  
567 567  (((
568 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
569 569  )))
570 570  
571 571  (((
572 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
573 573  
574 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
575 575  
576 576  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
577 577  
578 578  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
579 579  
580 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
581 581  )))
582 582  
583 583  
... ... @@ -584,10 +584,10 @@
584 584  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
585 585  
586 586  
587 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
588 588  
589 589  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
590 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
591 591  |Value|(((
592 592  AVI1 voltage
593 593  )))|(((
... ... @@ -599,25 +599,25 @@
599 599  )))|MOD
600 600  
601 601  (((
602 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
603 603  
604 604  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
605 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
606 606  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
607 607  )))
608 608  
609 -* RO is for relay. ROx=1 : close, ROx=0 always open.
610 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
611 611  * (((
612 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
613 613  )))
614 614  
615 615  (((
616 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
617 617  )))
618 618  
619 619  (((
620 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
621 621  )))
622 622  
623 623  (((
... ... @@ -630,7 +630,7 @@
630 630  )))
631 631  
632 632  (((
633 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
634 634  )))
635 635  
636 636  
... ... @@ -637,49 +637,46 @@
637 637  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
638 638  
639 639  
640 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
641 641  
642 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
643 643  
644 644  * **AT+MOD=1 ** **~-~->**  The normal working mode
645 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
646 646  
647 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
648 648  
649 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
650 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
651 651  
652 652  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
653 653  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
654 654  
655 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
656 -
657 657  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
658 658  
659 659  
660 660  **Example:**
661 661  
662 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
663 663  
664 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
665 665  
666 666  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
667 667  
668 -(% style="color:#4f81bd" %)**Trigger base on current**:
669 -
670 670  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
671 671  
672 672  
673 673  **Example:**
674 674  
675 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
676 676  
677 677  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
678 678  
679 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
680 680  
681 -DI status trigger Flag.
682 -
683 683  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
684 684  
685 685  
... ... @@ -688,42 +688,41 @@
688 688  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
689 689  
690 690  
691 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
692 692  
693 693  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
694 694  
695 695  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
696 696  
697 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
698 698  
699 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
700 700  
701 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
702 702  
703 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
704 704  
705 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
706 706  
707 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
708 708  
709 709  
710 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
711 711  
712 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
713 713  
714 714  
715 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
716 716  
717 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
718 718  
719 719  
720 -
721 721  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
722 722  
723 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
724 724  
725 725  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
726 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
727 727  |Value|(((
728 728  TRI_A FLAG
729 729  )))|(((
... ... @@ -734,10 +734,10 @@
734 734  MOD(6)
735 735  )))
736 736  
737 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
738 738  
739 739  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
740 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
741 741  |(((
742 742  AV1_LOW
743 743  )))|(((
... ... @@ -756,17 +756,17 @@
756 756  AC2_HIGH
757 757  )))
758 758  
759 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
760 760  
761 761  **Example:**
762 762  
763 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
764 764  
765 765  
766 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
767 767  
768 768  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
769 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
770 770  |(((
771 771  AV1_LOW
772 772  )))|(((
... ... @@ -785,11 +785,11 @@
785 785  AC2_HIGH
786 786  )))
787 787  
788 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
789 789  
790 790  **Example:**
791 791  
792 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
793 793  
794 794  
795 795  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -798,7 +798,7 @@
798 798  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
799 799  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
800 800  
801 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
802 802  
803 803  **Example:**
804 804  
... ... @@ -825,11 +825,11 @@
825 825  )))
826 826  
827 827  
828 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
829 829  
830 830  
831 831  (((
832 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
833 833  )))
834 834  
835 835  (((
... ... @@ -842,13 +842,10 @@
842 842  
843 843  * (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
844 844  
845 -
846 -
847 847  === 3.4.1 Common Commands ===
848 848  
849 -
850 850  (((
851 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
852 852  )))
853 853  
854 854  
... ... @@ -856,34 +856,37 @@
856 856  
857 857  ==== 3.4.2.1 Set Transmit Interval ====
858 858  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
859 859  
860 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
861 861  
862 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
863 863  
864 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
865 865  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
866 866  
867 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
868 868  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
869 869  
870 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
871 -
872 872  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
873 873  
874 874  
875 875  
876 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
877 877  
878 878  
879 -Set work mode.
845 +Sets the work mode.
880 880  
881 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
882 882  
883 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
884 884  
885 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
886 886  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
887 887  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
888 888  
889 889  
... ... @@ -891,10 +891,12 @@
891 891  ==== 3.4.2.3 Poll an uplink ====
892 892  
893 893  
894 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
895 895  
896 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
897 897  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
898 898  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
899 899  
900 900  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -901,16 +901,16 @@
901 901  
902 902  
903 903  
904 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
905 905  
906 906  
907 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
908 908  
909 909  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
910 910  
911 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
912 912  
913 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
914 914  
915 915  
916 916  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -922,7 +922,7 @@
922 922  ==== 3.4.2.5 Poll trigger settings ====
923 923  
924 924  
925 -Poll trigger settings
896 +Polls the trigger settings
926 926  
927 927  * (% style="color:#037691" %)**AT Command:**
928 928  
... ... @@ -930,7 +930,7 @@
930 930  
931 931  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
932 932  
933 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
934 934  
935 935  
936 936  
... ... @@ -937,11 +937,11 @@
937 937  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
938 938  
939 939  
940 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
941 941  
942 942  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
943 943  
944 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
945 945  
946 946  
947 947  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -973,15 +973,15 @@
973 973  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
974 974  
975 975  
976 -Set DI2 trigger.
947 +Sets DI2 trigger.
977 977  
978 978  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
979 979  
980 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
981 981  
982 982  (% style="color:red" %)**b :** (%%)delay timing.
983 983  
984 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
985 985  
986 986  
987 987  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1019,7 +1019,7 @@
1019 1019  ==== 3.4.2.11 Trigger – Set minimum interval ====
1020 1020  
1021 1021  
1022 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1023 1023  
1024 1024  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1025 1025  
... ... @@ -1053,7 +1053,7 @@
1053 1053  01: Low,  00: High ,  11: No action
1054 1054  
1055 1055  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1056 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1057 1057  |02  01  00  11|Low|High|No Action
1058 1058  |02  00  11  01|High|No Action|Low
1059 1059  |02  11  01  00|No Action|Low|High
... ... @@ -1096,7 +1096,7 @@
1096 1096  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1097 1097  
1098 1098  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1099 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1100 1100  |0x01|DO1 set to low
1101 1101  |0x00|DO1 set to high
1102 1102  |0x11|DO1 NO Action
... ... @@ -1104,7 +1104,7 @@
1104 1104  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1105 1105  
1106 1106  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1107 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1108 1108  |0x01|DO2 set to low
1109 1109  |0x00|DO2 set to high
1110 1110  |0x11|DO2 NO Action
... ... @@ -1112,7 +1112,7 @@
1112 1112  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1113 1113  
1114 1114  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1115 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1116 1116  |0x01|DO3 set to low
1117 1117  |0x00|DO3 set to high
1118 1118  |0x11|DO3 NO Action
... ... @@ -1167,10 +1167,10 @@
1167 1167  )))
1168 1168  
1169 1169  (((
1170 -01: Close ,  00: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1171 1171  
1172 1172  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1173 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1174 1174  |03  00  11|Open|No Action
1175 1175  |03  01  11|Close|No Action
1176 1176  |03  11  00|No Action|Open
... ... @@ -1289,7 +1289,7 @@
1289 1289  
1290 1290  
1291 1291  
1292 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1293 1293  
1294 1294  
1295 1295  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1410,74 +1410,144 @@
1410 1410  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1411 1411  
1412 1412  
1413 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1414 1414  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1415 1415  
1416 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1417 1417  
1418 -(((
1419 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1420 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1421 1421  
1422 -(((
1423 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1424 1424  
1425 -
1426 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1427 1427  
1428 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1429 1429  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1430 1430  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1431 1431  
1432 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1433 1433  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1434 1434  
1435 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1436 1436  
1437 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1438 1438  
1439 -Search under The things network
1414 +**Basic settings:**
1440 1440  
1441 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1442 1442  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1443 1443  
1444 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1445 1445  
1446 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1427 +**Uplink data converter:**
1447 1447  
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1448 1448  
1449 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1450 1450  
1451 1451  
1452 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1438 +**Downlink data converter (this is an optional step):**
1453 1453  
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1454 1454  
1455 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1456 1456  
1457 1457  
1458 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1449 +**Connection:**
1459 1459  
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1460 1460  
1461 -== 3.6 Interface Detail ==
1456 +[[image:message-1.png]]
1462 1462  
1458 +
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1463 1463  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1464 1464  
1465 1465  
1466 -Support NPN Type sensor
1507 +Support NPN-type sensor
1467 1467  
1468 1468  [[image:1653356991268-289.png]]
1469 1469  
1470 1470  
1471 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1472 1472  
1473 1473  
1474 1474  (((
1475 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1476 1476  )))
1477 1477  
1478 1478  (((
1479 1479  (((
1480 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1481 1481  
1482 1482  
1483 1483  )))
... ... @@ -1487,7 +1487,7 @@
1487 1487  
1488 1488  (((
1489 1489  (((
1490 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1491 1491  )))
1492 1492  )))
1493 1493  
... ... @@ -1496,22 +1496,22 @@
1496 1496  )))
1497 1497  
1498 1498  (((
1499 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1500 1500  )))
1501 1501  
1502 1502  (((
1503 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1504 1504  )))
1505 1505  
1506 1506  * (((
1507 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1508 1508  )))
1509 1509  * (((
1510 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1515 1515  )))
1516 1516  
1517 1517  (((
... ... @@ -1519,7 +1519,7 @@
1519 1519  )))
1520 1520  
1521 1521  (((
1522 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1523 1523  )))
1524 1524  
1525 1525  (((
... ... @@ -1527,22 +1527,22 @@
1527 1527  )))
1528 1528  
1529 1529  (((
1530 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1531 1531  )))
1532 1532  
1533 1533  (((
1534 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1535 1535  )))
1536 1536  
1537 1537  * (((
1538 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1539 1539  )))
1540 1540  * (((
1541 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1546 1546  )))
1547 1547  
1548 1548  (((
... ... @@ -1550,7 +1550,7 @@
1550 1550  )))
1551 1551  
1552 1552  (((
1553 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1554 1554  )))
1555 1555  
1556 1556  (((
... ... @@ -1558,22 +1558,22 @@
1558 1558  )))
1559 1559  
1560 1560  (((
1561 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1562 1562  )))
1563 1563  
1564 1564  (((
1565 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1566 1566  )))
1567 1567  
1568 1568  * (((
1569 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1570 1570  )))
1571 1571  * (((
1572 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1573 1573  )))
1574 1574  
1575 1575  (((
1576 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1577 1577  )))
1578 1578  
1579 1579  (((
... ... @@ -1581,33 +1581,37 @@
1581 1581  )))
1582 1582  
1583 1583  (((
1584 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1585 1585  )))
1586 1586  
1587 1587  
1588 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1589 1589  
1590 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1591 1591  
1592 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1593 1593  
1594 1594  [[image:image-20230616235145-1.png]]
1595 1595  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1596 1596  
1597 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1639 +[[image:image-20240219115718-1.png]]
1598 1598  
1599 1599  
1600 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1601 1601  
1602 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1603 1603  
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 +
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1604 1604  [[image:1653357531600-905.png]]
1605 1605  
1606 1606  
1607 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1608 1608  
1609 1609  
1610 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1611 1611  
1612 1612  
1613 1613  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1614,14 +1614,14 @@
1614 1614  
1615 1615  [[image:1653357592296-182.png]]
1616 1616  
1617 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1618 1618  
1619 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1620 1620  
1621 1621  
1622 1622  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1623 1623  
1624 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1625 1625  
1626 1626  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1627 1627  
... ... @@ -1634,7 +1634,7 @@
1634 1634  [[image:1653357648330-671.png||height="155" width="733"]]
1635 1635  
1636 1636  
1637 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1638 1638  
1639 1639  [[image:image-20230608101532-1.png||height="606" width="447"]]
1640 1640  
... ... @@ -1643,7 +1643,7 @@
1643 1643  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1644 1644  
1645 1645  
1646 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1647 1647  
1648 1648  (% style="color:red" %)**Red:  12~~24v**
1649 1649  
... ... @@ -1654,9 +1654,9 @@
1654 1654  
1655 1655  
1656 1656  (((
1657 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1658 1658  
1659 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1660 1660  )))
1661 1661  
1662 1662  [[image:image-20220524100215-9.png]]
... ... @@ -1668,12 +1668,9 @@
1668 1668  == 3.7 LEDs Indicators ==
1669 1669  
1670 1670  
1671 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1672 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1673 1673  |**PWR**|Always on if there is power
1674 -|**SYS**|(((
1675 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1676 -)))
1677 1677  |**TX**|(((
1678 1678  (((
1679 1679  Device boot: TX blinks 5 times.
... ... @@ -1687,42 +1687,33 @@
1687 1687  Transmit a LoRa packet: TX blinks once
1688 1688  )))
1689 1689  )))
1690 -|**RX**|RX blinks once when receive a packet.
1691 -|**DO1**|
1692 -|**DO2**|
1693 -|**DO3**|
1694 -|**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1696 1696  )))
1697 1697  |**DI2**|(((
1698 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1699 1699  )))
1700 -|**DI2**|(((
1701 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1702 -)))
1703 -|**RO1**|
1704 -|**RO2**|
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1705 1705  
1744 += 4. Using AT Commands =
1706 1706  
1746 +The LT-22222-L supports programming using AT Commands.
1707 1707  
1708 -= 4. Use AT Command =
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1709 1709  
1710 -== 4.1 Access AT Command ==
1711 -
1712 -
1713 1713  (((
1714 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1715 1715  )))
1716 1716  
1717 -(((
1718 -
1719 -)))
1720 -
1721 1721  [[image:1653358238933-385.png]]
1722 1722  
1723 1723  
1724 1724  (((
1725 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1726 1726  )))
1727 1727  
1728 1728  [[image:1653358355238-883.png]]
... ... @@ -1729,194 +1729,63 @@
1729 1729  
1730 1730  
1731 1731  (((
1732 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1733 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1734 1734  
1735 -(((
1736 -AT+<CMD>?        : Help on <CMD>
1767 +== 4.2 LT-22222-L related AT commands ==
1737 1737  )))
1738 1738  
1739 1739  (((
1740 -AT+<CMD>         : Run <CMD>
1741 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1742 1742  
1743 -(((
1744 -AT+<CMD>=<value> : Set the value
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1745 1745  )))
1746 1746  
1747 -(((
1748 -AT+<CMD>=?       :  Get the value
1749 -)))
1750 1750  
1751 -(((
1752 -ATZ: Trig a reset of the MCU
1753 -)))
1754 -
1755 -(((
1756 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1757 -)))
1758 -
1759 -(((
1760 -AT+DEUI: Get or Set the Device EUI
1761 -)))
1762 -
1763 -(((
1764 -AT+DADDR: Get or Set the Device Address
1765 -)))
1766 -
1767 -(((
1768 -AT+APPKEY: Get or Set the Application Key
1769 -)))
1770 -
1771 -(((
1772 -AT+NWKSKEY: Get or Set the Network Session Key
1773 -)))
1774 -
1775 -(((
1776 -AT+APPSKEY:  Get or Set the Application Session Key
1777 -)))
1778 -
1779 -(((
1780 -AT+APPEUI:  Get or Set the Application EUI
1781 -)))
1782 -
1783 -(((
1784 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1785 -)))
1786 -
1787 -(((
1788 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1789 -)))
1790 -
1791 -(((
1792 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1793 -)))
1794 -
1795 -(((
1796 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1797 -)))
1798 -
1799 -(((
1800 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1801 -)))
1802 -
1803 -(((
1804 -AT+RX2FQ: Get or Set the Rx2 window frequency
1805 -)))
1806 -
1807 -(((
1808 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1809 -)))
1810 -
1811 -(((
1812 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1813 -)))
1814 -
1815 -(((
1816 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1817 -)))
1818 -
1819 -(((
1820 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1821 -)))
1822 -
1823 -(((
1824 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1825 -)))
1826 -
1827 -(((
1828 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1829 -)))
1830 -
1831 -(((
1832 -AT+NWKID: Get or Set the Network ID
1833 -)))
1834 -
1835 -(((
1836 -AT+FCU: Get or Set the Frame Counter Uplink
1837 -)))
1838 -
1839 -(((
1840 -AT+FCD: Get or Set the Frame Counter Downlink
1841 -)))
1842 -
1843 -(((
1844 -AT+CLASS: Get or Set the Device Class
1845 -)))
1846 -
1847 -(((
1848 -AT+JOIN: Join network
1849 -)))
1850 -
1851 -(((
1852 -AT+NJS: Get OTAA Join Status
1853 -)))
1854 -
1855 -(((
1856 -AT+SENDB: Send hexadecimal data along with the application port
1857 -)))
1858 -
1859 -(((
1860 -AT+SEND: Send text data along with the application port
1861 -)))
1862 -
1863 -(((
1864 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1865 -)))
1866 -
1867 -(((
1868 -AT+RECV: Print last received data in raw format
1869 -)))
1870 -
1871 -(((
1872 -AT+VER:  Get current image version and Frequency Band
1873 -)))
1874 -
1875 -(((
1876 -AT+CFM: Get or Set the confirmation mode (0-1)
1877 -)))
1878 -
1879 -(((
1880 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1881 -)))
1882 -
1883 -(((
1884 -AT+SNR: Get the SNR of the last received packet
1885 -)))
1886 -
1887 -(((
1888 -AT+RSSI: Get the RSSI of the last received packet
1889 -)))
1890 -
1891 -(((
1892 -AT+TDC: Get or set the application data transmission interval in ms
1893 -)))
1894 -
1895 -(((
1896 -AT+PORT: Get or set the application port
1897 -)))
1898 -
1899 -(((
1900 -AT+DISAT: Disable AT commands
1901 -)))
1902 -
1903 -(((
1904 -AT+PWORD: Set password, max 9 digits
1905 -)))
1906 -
1907 -(((
1908 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1909 -)))
1910 -
1911 -(((
1912 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1913 -)))
1914 -
1915 -(((
1916 -AT+CFG: Print all settings
1917 -)))
1918 -
1919 -
1920 1920  == 4.2 Common AT Command Sequence ==
1921 1921  
1922 1922  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1925,41 +1925,41 @@
1925 1925  
1926 1926  
1927 1927  (((
1928 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1929 1929  )))
1930 1930  )))
1931 1931  
1932 1932  (((
1933 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1934 1934  )))
1935 1935  
1936 1936  (((
1937 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1938 1938  )))
1939 1939  
1940 1940  (((
1941 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1942 1942  )))
1943 1943  
1944 1944  (((
1945 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1946 1946  )))
1947 1947  
1948 1948  (((
1949 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1950 1950  )))
1951 1951  
1952 1952  
1953 1953  (((
1954 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1955 1955  )))
1956 1956  
1957 1957  (((
1958 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1959 1959  )))
1960 1960  
1961 1961  (((
1962 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1963 1963  )))
1964 1964  
1965 1965  
... ... @@ -2057,37 +2057,50 @@
2057 2057  
2058 2058  = 5. Case Study =
2059 2059  
2060 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2061 2061  
2062 2062  
2063 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2064 2064  
2065 2065  
2066 2066  = 6. FAQ =
2067 2067  
2068 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2069 2069  
1972 +== 6.1 How to update the firmware? ==
2070 2070  
2071 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2072 2072  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
2073 2073  * Support new features
2074 -* For bug fix
2075 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
2076 2076  
2077 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
2078 2078  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
2079 2079  [[image:1653359603330-121.png]]
2080 2080  
2081 2081  
2082 -(((
2083 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2084 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2085 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2086 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2087 2087  
2088 2088  (((
2002 +(((
2089 2089  (% style="color:blue" %)**For LT-22222-L**(%%):
2090 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2091 2091  )))
2092 2092  
2093 2093  
... ... @@ -2102,7 +2102,7 @@
2102 2102  [[image:image-20220524104033-15.png]]
2103 2103  
2104 2104  
2105 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2106 2106  
2107 2107  [[image:1653360054704-518.png||height="186" width="745"]]
2108 2108  
... ... @@ -2109,7 +2109,7 @@
2109 2109  
2110 2110  (((
2111 2111  (((
2112 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2113 2113  
2114 2114  
2115 2115  )))
... ... @@ -2116,13 +2116,13 @@
2116 2116  )))
2117 2117  
2118 2118  (((
2119 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2120 2120  )))
2121 2121  
2122 2122  (((
2123 2123  
2124 2124  
2125 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2126 2126  
2127 2127  
2128 2128  )))
... ... @@ -2129,13 +2129,13 @@
2129 2129  
2130 2130  (((
2131 2131  (((
2132 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2133 2133  )))
2134 2134  )))
2135 2135  
2136 2136  (((
2137 2137  (((
2138 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2139 2139  
2140 2140  
2141 2141  )))
... ... @@ -2142,7 +2142,7 @@
2142 2142  )))
2143 2143  
2144 2144  (((
2145 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2146 2146  
2147 2147  
2148 2148  )))
... ... @@ -2199,61 +2199,55 @@
2199 2199  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2200 2200  
2201 2201  
2202 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2203 2203  
2204 2204  
2205 2205  (((
2206 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2207 2207  
2208 2208  
2209 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2210 2210  
2211 2211  
2212 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2213 -
2214 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2215 2215  )))
2216 2216  
2217 2217  (((
2218 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2219 2219  
2220 2220  
2221 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2222 2222  
2223 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2224 2224  
2225 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2226 2226  
2227 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2228 2228  
2229 2229  
2230 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2231 -
2232 -
2233 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2234 -
2235 -
2236 2236  [[image:image-20221006170630-1.png||height="610" width="945"]]
2237 2237  
2238 2238  
2239 -== 6.9 Can LT22222-L save RO state? ==
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2240 2240  
2241 2241  
2242 -Firmware version needs to be no less than 1.6.0.
2151 +The firmware version must be at least 1.6.0.
2243 2243  
2244 2244  
2245 -== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2246 2246  
2247 2247  
2248 -It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2249 2249  
2250 2250  
2251 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2252 2252  )))
2253 2253  
2254 2254  (((
2255 2255  (((
2256 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2257 2257  
2258 2258  
2259 2259  )))
... ... @@ -2260,42 +2260,42 @@
2260 2260  )))
2261 2261  
2262 2262  (((
2263 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2264 2264  )))
2265 2265  
2266 2266  (((
2267 2267  
2268 2268  
2269 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2270 2270  
2271 2271  
2272 2272  )))
2273 2273  
2274 2274  (((
2275 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2276 2276  )))
2277 2277  
2278 2278  (((
2279 2279  
2280 2280  
2281 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2282 2282  
2283 2283  
2284 2284  )))
2285 2285  
2286 2286  (((
2287 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2288 2288  )))
2289 2289  
2290 2290  
2291 -== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2292 2292  
2293 2293  
2294 -The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2295 -Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2296 2296  
2297 2297  
2298 -= 8. Order Info =
2207 += 8. Ordering information =
2299 2299  
2300 2300  
2301 2301  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
... ... @@ -2302,47 +2302,42 @@
2302 2302  
2303 2303  (% style="color:#4f81bd" %)**XXX:**
2304 2304  
2305 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2306 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2307 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2308 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2309 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2310 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2311 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2312 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2313 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2314 2314  
2224 += 9. Packing information =
2315 2315  
2316 2316  
2317 -= 9. Packing Info =
2227 +**Package includes**:
2318 2318  
2319 -
2320 -**Package Includes**:
2321 -
2322 2322  * LT-22222-L I/O Controller x 1
2323 2323  * Stick Antenna for LoRa RF part x 1
2324 2324  * Bracket for controller x1
2325 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2326 2326  
2327 2327  **Dimension and weight**:
2328 2328  
2329 2329  * Device Size: 13.5 x 7 x 3 cm
2330 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2331 2331  * Package Size / pcs : 14.5 x 8 x 5 cm
2332 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2333 2333  
2334 -
2335 -
2336 2336  = 10. Support =
2337 2337  
2338 2338  
2339 2339  * (((
2340 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2341 2341  )))
2342 2342  * (((
2343 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2344 2344  
2345 -
2346 2346  
2347 2347  )))
2348 2348  
... ... @@ -2352,5 +2352,3 @@
2352 2352  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2353 2353  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2354 2354  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2355 -
2356 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +567.7 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content