Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.7
edited by Xiaoling
on 2023/06/19 15:51
Change comment: There is no comment for this version
To version 181.1
edited by Dilisi S
on 2024/11/10 05:03
Change comment: Uploaded new attachment "thingseye-events.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,165 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
103 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 -
210 210  == 1.5 Hardware Variants ==
211 211  
212 212  
213 213  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
215 215  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 216  (% style="text-align:center" %)
217 217  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -224,94 +224,169 @@
224 224  * 1 x Counting Port
225 225  )))
226 226  
227 -= 2. Power ON Device =
129 += 2. Assembling the Device =
228 228  
131 +== 2.1 What is included in the package? ==
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
133 +The package includes the following items:
233 233  
234 -(((
235 -PWR will on when device is properly powered.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
236 236  
237 -
238 -)))
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
239 239  
142 +== 2.2 Terminals ==
143 +
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
246 246  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
188 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
258 258  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
208 +==== ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
282 282  
283 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
284 284  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287 287  
288 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
291 291  
230 +==== ====
292 292  
293 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
294 294  
295 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
296 296  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
297 297  
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
301 301  
302 -
303 -)))
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
304 304  
305 -[[image:1653298044601-602.png||height="405" width="709"]]
306 306  
257 +You will be navigated to the **Device overview** page.
307 307  
308 -== 3.3 Uplink Payload ==
309 309  
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
263 +==== 3.2.2.3 Joining ====
314 314  
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
315 315  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316 316  
317 317  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -322,14 +322,17 @@
322 322  
323 323  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
324 324  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
325 325  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
326 326  
327 -
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
330 330  
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
333 333  |Value|(((
334 334  AVI1 voltage
335 335  )))|(((
... ... @@ -338,31 +338,31 @@
338 338  ACI1 Current
339 339  )))|(((
340 340  ACI2 Current
341 -)))|DIDORO*|(((
321 +)))|**DIDORO***|(((
342 342  Reserve
343 343  )))|MOD
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : close,ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
343 +**The interface values can be calculated as follows:  **
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
345 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
... ... @@ -370,41 +370,35 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 -
394 -
395 -
396 396  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
397 397  
398 398  
399 399  (((
400 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
401 401  )))
402 402  
403 403  (((
404 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
405 405  
406 406  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
408 408  |Value|COUNT1|COUNT2 |DIDORO*|(((
409 409  Reserve
410 410  )))|MOD
... ... @@ -411,37 +411,37 @@
411 411  )))
412 412  
413 413  (((
414 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
418 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
419 419  
420 -RO is for relay. ROx=1 : close,ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
421 421  )))
422 422  
423 -* FIRST: Indicate this is the first packet after join network.
424 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
425 425  
426 426  (((
427 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
402 +
403 +
428 428  )))
429 429  
430 430  (((
431 -**To use counting mode, please run:**
407 +**To activate this mode, run the following AT commands:**
432 432  )))
433 433  
410 +(((
434 434  (% class="box infomessage" %)
435 -
436 436  (((
437 437  **AT+MOD=2**
438 -)))
439 439  
440 -(((
441 441  **ATZ**
442 442  )))
417 +)))
443 443  
444 -
445 445  (((
446 446  
447 447  
... ... @@ -451,17 +451,17 @@
451 451  (((
452 452  **For LT22222-L:**
453 453  
454 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
455 455  
456 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
457 457  
458 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
459 459  
460 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
463 463  
464 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
465 465  )))
466 466  
467 467  
... ... @@ -468,10 +468,10 @@
468 468  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
469 469  
470 470  
471 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
472 472  
473 473  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 475  |Value|COUNT1|(((
476 476  ACI1 Current
477 477  )))|(((
... ... @@ -479,41 +479,39 @@
479 479  )))|DIDORO*|Reserve|MOD
480 480  
481 481  (((
482 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
483 483  
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
485 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
486 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
487 487  )))
488 488  
489 -* RO is for relay. ROx=1 : closeROx=0 always open.
490 -* FIRST: Indicate this is the first packet after join network.
491 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
492 492  
493 493  (((
494 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
495 495  )))
496 496  
497 497  
498 498  (((
499 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
500 500  )))
501 501  
476 +(((
502 502  (% class="box infomessage" %)
503 503  (((
504 -(((
505 -(((
506 506  **AT+MOD=3**
507 -)))
508 508  
509 -(((
510 510  **ATZ**
511 511  )))
512 512  )))
513 -)))
514 514  
515 515  (((
516 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
517 517  )))
518 518  
519 519  
... ... @@ -521,14 +521,14 @@
521 521  
522 522  
523 523  (((
524 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 525  )))
526 526  
527 527  (((
528 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
529 529  
530 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
502 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
532 532  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
533 533  Reserve
534 534  )))|MOD
... ... @@ -535,55 +535,50 @@
535 535  )))
536 536  
537 537  (((
538 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
539 539  
540 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
541 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
542 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
543 543  )))
544 544  
545 -* RO is for relay. ROx=1 : closeROx=0 always open.
546 -* FIRST: Indicate this is the first packet after join network.
547 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
548 548  
549 549  (((
550 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
551 -)))
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
552 552  
553 -(((
554 554  
525 +)))
555 555  
556 -**To use this mode, please run:**
527 +(((
528 +**To activate this mode, run the following AT commands:**
557 557  )))
558 558  
531 +(((
559 559  (% class="box infomessage" %)
560 560  (((
561 -(((
562 -(((
563 563  **AT+MOD=4**
564 -)))
565 565  
566 -(((
567 567  **ATZ**
568 568  )))
569 569  )))
570 -)))
571 571  
572 -
573 573  (((
574 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
575 575  )))
576 576  
577 577  (((
578 -**Plus below command for AVI1 Counting:**
545 +**In addition to that, below are the commands for AVI1 Counting:**
579 579  
580 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
581 581  
582 582  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
583 583  
584 584  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
585 585  
586 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
587 587  )))
588 588  
589 589  
... ... @@ -590,10 +590,10 @@
590 590  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
591 591  
592 592  
593 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
594 594  
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
562 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
597 597  |Value|(((
598 598  AVI1 voltage
599 599  )))|(((
... ... @@ -605,44 +605,38 @@
605 605  )))|MOD
606 606  
607 607  (((
608 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
609 609  
610 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
611 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
577 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
612 612  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
613 613  )))
614 614  
615 -* RO is for relay. ROx=1 : closeROx=0 always open.
616 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
617 617  * (((
618 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
619 619  )))
620 620  
621 621  (((
622 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
623 623  )))
624 624  
625 625  (((
626 -
627 -
628 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
629 629  )))
630 630  
596 +(((
631 631  (% class="box infomessage" %)
632 632  (((
633 -(((
634 -(((
635 635  **AT+MOD=5**
636 -)))
637 637  
638 -(((
639 639  **ATZ**
640 640  )))
641 641  )))
642 -)))
643 643  
644 644  (((
645 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
646 646  )))
647 647  
648 648  
... ... @@ -649,49 +649,46 @@
649 649  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
650 650  
651 651  
652 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
653 653  
654 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
655 655  
656 656  * **AT+MOD=1 ** **~-~->**  The normal working mode
657 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
658 658  
659 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
660 660  
661 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
662 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
663 663  
664 664  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
665 665  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
666 666  
667 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
668 -
669 669  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
670 670  
671 671  
672 672  **Example:**
673 673  
674 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
675 675  
676 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
677 677  
678 678  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
679 679  
680 -(% style="color:#4f81bd" %)**Trigger base on current**:
681 -
682 682  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
683 683  
684 684  
685 685  **Example:**
686 686  
687 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
688 688  
689 689  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
690 690  
691 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
692 692  
693 -DI status trigger Flag.
694 -
695 695  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
696 696  
697 697  
... ... @@ -700,42 +700,41 @@
700 700  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
701 701  
702 702  
703 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
704 704  
705 705  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
706 706  
707 707  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
708 708  
709 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
710 710  
711 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
712 712  
713 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
714 714  
715 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
716 716  
717 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
718 718  
719 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
720 720  
721 721  
722 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
723 723  
724 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
725 725  
726 726  
727 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
728 728  
729 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
730 730  
731 731  
732 -
733 733  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
734 734  
735 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
736 736  
737 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
738 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
694 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
739 739  |Value|(((
740 740  TRI_A FLAG
741 741  )))|(((
... ... @@ -746,10 +746,10 @@
746 746  MOD(6)
747 747  )))
748 748  
749 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
750 750  
751 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
752 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
753 753  |(((
754 754  AV1_LOW
755 755  )))|(((
... ... @@ -768,17 +768,17 @@
768 768  AC2_HIGH
769 769  )))
770 770  
771 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
772 772  
773 773  **Example:**
774 774  
775 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
776 776  
777 777  
778 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
779 779  
780 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
781 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
782 782  |(((
783 783  AV1_LOW
784 784  )))|(((
... ... @@ -797,20 +797,20 @@
797 797  AC2_HIGH
798 798  )))
799 799  
800 -* Each bits shows which status has been trigger on this uplink.
757 +* Each bit shows which status has been triggered on this uplink.
801 801  
802 802  **Example:**
803 803  
804 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
805 805  
806 806  
807 807  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
808 808  
809 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
766 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
810 810  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
811 811  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
812 812  
813 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
814 814  
815 815  **Example:**
816 816  
... ... @@ -837,11 +837,11 @@
837 837  )))
838 838  
839 839  
840 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
841 841  
842 842  
843 843  (((
844 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
845 845  )))
846 846  
847 847  (((
... ... @@ -856,9 +856,8 @@
856 856  
857 857  === 3.4.1 Common Commands ===
858 858  
859 -
860 860  (((
861 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
862 862  )))
863 863  
864 864  
... ... @@ -866,34 +866,37 @@
866 866  
867 867  ==== 3.4.2.1 Set Transmit Interval ====
868 868  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
869 869  
870 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
871 871  
872 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
873 873  
874 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
875 875  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
876 876  
877 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
878 878  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
879 879  
880 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
881 -
882 882  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
883 883  
884 884  
885 885  
886 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
887 887  
888 888  
889 -Set work mode.
845 +Sets the work mode.
890 890  
891 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
892 892  
893 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
849 +Where N is the work mode.
894 894  
895 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
896 896  
853 +
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
855 +
897 897  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
898 898  
899 899  
... ... @@ -901,10 +901,12 @@
901 901  ==== 3.4.2.3 Poll an uplink ====
902 902  
903 903  
904 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
863 +Asks the device to send an uplink.
905 905  
906 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
907 907  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
868 +
908 908  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
909 909  
910 910  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -911,16 +911,16 @@
911 911  
912 912  
913 913  
914 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
915 915  
916 916  
917 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
918 918  
919 919  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
920 920  
921 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
922 922  
923 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
924 924  
925 925  
926 926  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -932,7 +932,7 @@
932 932  ==== 3.4.2.5 Poll trigger settings ====
933 933  
934 934  
935 -Poll trigger settings
896 +Polls the trigger settings
936 936  
937 937  * (% style="color:#037691" %)**AT Command:**
938 938  
... ... @@ -940,7 +940,7 @@
940 940  
941 941  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
942 942  
943 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
944 944  
945 945  
946 946  
... ... @@ -947,11 +947,11 @@
947 947  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
948 948  
949 949  
950 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
951 951  
952 952  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
953 953  
954 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
955 955  
956 956  
957 957  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -983,15 +983,15 @@
983 983  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
984 984  
985 985  
986 -Set DI2 trigger.
947 +Sets DI2 trigger.
987 987  
988 988  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
989 989  
990 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
991 991  
992 992  (% style="color:red" %)**b :** (%%)delay timing.
993 993  
994 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
995 995  
996 996  
997 997  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1029,7 +1029,7 @@
1029 1029  ==== 3.4.2.11 Trigger – Set minimum interval ====
1030 1030  
1031 1031  
1032 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1033 1033  
1034 1034  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1035 1035  
... ... @@ -1063,7 +1063,7 @@
1063 1063  01: Low,  00: High ,  11: No action
1064 1064  
1065 1065  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1066 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1067 1067  |02  01  00  11|Low|High|No Action
1068 1068  |02  00  11  01|High|No Action|Low
1069 1069  |02  11  01  00|No Action|Low|High
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1109 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1110 1110  |0x01|DO1 set to low
1111 1111  |0x00|DO1 set to high
1112 1112  |0x11|DO1 NO Action
... ... @@ -1114,7 +1114,7 @@
1114 1114  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1115 1115  
1116 1116  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1117 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1118 1118  |0x01|DO2 set to low
1119 1119  |0x00|DO2 set to high
1120 1120  |0x11|DO2 NO Action
... ... @@ -1122,7 +1122,7 @@
1122 1122  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1123 1123  
1124 1124  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1125 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1126 1126  |0x01|DO3 set to low
1127 1127  |0x00|DO3 set to high
1128 1128  |0x11|DO3 NO Action
... ... @@ -1159,7 +1159,7 @@
1159 1159  
1160 1160  
1161 1161  
1162 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1123 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1163 1163  
1164 1164  
1165 1165  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1177,10 +1177,10 @@
1177 1177  )))
1178 1178  
1179 1179  (((
1180 -01: Close ,  00: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1181 1181  
1182 1182  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1183 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1184 1184  |03  00  11|Open|No Action
1185 1185  |03  01  11|Close|No Action
1186 1186  |03  11  00|No Action|Open
... ... @@ -1299,7 +1299,7 @@
1299 1299  
1300 1300  
1301 1301  
1302 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1303 1303  
1304 1304  
1305 1305  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1420,75 +1420,144 @@
1420 1420  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1421 1421  
1422 1422  
1423 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1424 1424  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1425 1425  
1426 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1427 1427  
1428 -(((
1429 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1430 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1431 1431  
1432 -(((
1433 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1434 1434  
1435 -
1436 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1437 1437  
1438 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1439 1439  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1440 1440  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1441 1441  
1442 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1443 1443  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1444 1444  
1445 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1446 1446  
1447 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1448 1448  
1449 -Search under The things network
1414 +**Basic settings:**
1450 1450  
1451 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1452 1452  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1453 1453  
1454 1454  
1455 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1427 +**Uplink data converter:**
1456 1456  
1457 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1458 1458  
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1459 1459  
1460 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1461 1461  
1438 +**Downlink data converter (this is an optional step):**
1462 1462  
1463 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1464 1464  
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1465 1465  
1466 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1467 1467  
1449 +**Connection:**
1468 1468  
1469 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1470 1470  
1456 +[[image:message-1.png]]
1471 1471  
1472 -== 3.6 Interface Detail ==
1473 1473  
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1474 1474  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1475 1475  
1476 1476  
1477 -Support NPN Type sensor
1507 +Support NPN-type sensor
1478 1478  
1479 1479  [[image:1653356991268-289.png]]
1480 1480  
1481 1481  
1482 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1483 1483  
1484 1484  
1485 1485  (((
1486 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1487 1487  )))
1488 1488  
1489 1489  (((
1490 1490  (((
1491 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1492 1492  
1493 1493  
1494 1494  )))
... ... @@ -1498,7 +1498,7 @@
1498 1498  
1499 1499  (((
1500 1500  (((
1501 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1502 1502  )))
1503 1503  )))
1504 1504  
... ... @@ -1507,22 +1507,22 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1515 1515  )))
1516 1516  
1517 1517  * (((
1518 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1519 1519  )))
1520 1520  * (((
1521 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1522 1522  )))
1523 1523  
1524 1524  (((
1525 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1526 1526  )))
1527 1527  
1528 1528  (((
... ... @@ -1530,7 +1530,7 @@
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,22 +1538,22 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1546 1546  )))
1547 1547  
1548 1548  * (((
1549 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1550 1550  )))
1551 1551  * (((
1552 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1553 1553  )))
1554 1554  
1555 1555  (((
1556 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1557 1557  )))
1558 1558  
1559 1559  (((
... ... @@ -1561,7 +1561,7 @@
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,22 +1569,22 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1573 1573  )))
1574 1574  
1575 1575  (((
1576 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1577 1577  )))
1578 1578  
1579 1579  * (((
1580 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1581 1581  )))
1582 1582  * (((
1583 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1584 1584  )))
1585 1585  
1586 1586  (((
1587 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1588 1588  )))
1589 1589  
1590 1590  (((
... ... @@ -1592,34 +1592,37 @@
1592 1592  )))
1593 1593  
1594 1594  (((
1595 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1596 1596  )))
1597 1597  
1598 1598  
1599 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1600 1600  
1601 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1602 1602  
1603 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1604 1604  
1605 1605  [[image:image-20230616235145-1.png]]
1606 1606  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1607 1607  
1639 +[[image:image-20240219115718-1.png]]
1608 1608  
1609 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1610 1610  
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1611 1611  
1612 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1613 1613  
1614 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1615 1615  
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1616 1616  [[image:1653357531600-905.png]]
1617 1617  
1618 1618  
1619 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1620 1620  
1621 1621  
1622 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1623 1623  
1624 1624  
1625 1625  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1626,14 +1626,14 @@
1626 1626  
1627 1627  [[image:1653357592296-182.png]]
1628 1628  
1629 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1630 1630  
1631 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1632 1632  
1633 1633  
1634 1634  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1635 1635  
1636 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1637 1637  
1638 1638  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1639 1639  
... ... @@ -1646,7 +1646,7 @@
1646 1646  [[image:1653357648330-671.png||height="155" width="733"]]
1647 1647  
1648 1648  
1649 -Example connected to a regulated power supply to measure voltage
1682 +Example: Connecting to a regulated power supply to measure voltage
1650 1650  
1651 1651  [[image:image-20230608101532-1.png||height="606" width="447"]]
1652 1652  
... ... @@ -1655,7 +1655,7 @@
1655 1655  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1656 1656  
1657 1657  
1658 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1659 1659  
1660 1660  (% style="color:red" %)**Red:  12~~24v**
1661 1661  
... ... @@ -1666,9 +1666,9 @@
1666 1666  
1667 1667  
1668 1668  (((
1669 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1670 1670  
1671 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1672 1672  )))
1673 1673  
1674 1674  [[image:image-20220524100215-9.png]]
... ... @@ -1680,12 +1680,9 @@
1680 1680  == 3.7 LEDs Indicators ==
1681 1681  
1682 1682  
1683 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1684 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1685 1685  |**PWR**|Always on if there is power
1686 -|**SYS**|(((
1687 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1688 -)))
1689 1689  |**TX**|(((
1690 1690  (((
1691 1691  Device boot: TX blinks 5 times.
... ... @@ -1699,40 +1699,33 @@
1699 1699  Transmit a LoRa packet: TX blinks once
1700 1700  )))
1701 1701  )))
1702 -|**RX**|RX blinks once when receive a packet.
1703 -|**DO1**|
1704 -|**DO2**|
1705 -|**DO3**|
1706 -|**DI2**|(((
1707 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1708 1708  )))
1709 1709  |**DI2**|(((
1710 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1711 1711  )))
1712 -|**DI2**|(((
1713 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1714 -)))
1715 -|**RO1**|
1716 -|**RO2**|
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1717 1717  
1718 -= 4. Use AT Command =
1744 += 4. Using AT Commands =
1719 1719  
1720 -== 4.1 Access AT Command ==
1746 +The LT-22222-L supports programming using AT Commands.
1721 1721  
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1722 1722  
1723 1723  (((
1724 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1725 1725  )))
1726 1726  
1727 -(((
1728 -
1729 -)))
1730 -
1731 1731  [[image:1653358238933-385.png]]
1732 1732  
1733 1733  
1734 1734  (((
1735 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1736 1736  )))
1737 1737  
1738 1738  [[image:1653358355238-883.png]]
... ... @@ -1739,194 +1739,63 @@
1739 1739  
1740 1740  
1741 1741  (((
1742 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1743 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1744 1744  
1745 -(((
1746 -AT+<CMD>?        : Help on <CMD>
1767 +== 4.2 LT-22222-L related AT commands ==
1747 1747  )))
1748 1748  
1749 1749  (((
1750 -AT+<CMD>         : Run <CMD>
1751 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1752 1752  
1753 -(((
1754 -AT+<CMD>=<value> : Set the value
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1755 1755  )))
1756 1756  
1757 -(((
1758 -AT+<CMD>=?       :  Get the value
1759 -)))
1760 1760  
1761 -(((
1762 -ATZ: Trig a reset of the MCU
1763 -)))
1764 -
1765 -(((
1766 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1767 -)))
1768 -
1769 -(((
1770 -AT+DEUI: Get or Set the Device EUI
1771 -)))
1772 -
1773 -(((
1774 -AT+DADDR: Get or Set the Device Address
1775 -)))
1776 -
1777 -(((
1778 -AT+APPKEY: Get or Set the Application Key
1779 -)))
1780 -
1781 -(((
1782 -AT+NWKSKEY: Get or Set the Network Session Key
1783 -)))
1784 -
1785 -(((
1786 -AT+APPSKEY:  Get or Set the Application Session Key
1787 -)))
1788 -
1789 -(((
1790 -AT+APPEUI:  Get or Set the Application EUI
1791 -)))
1792 -
1793 -(((
1794 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1795 -)))
1796 -
1797 -(((
1798 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1799 -)))
1800 -
1801 -(((
1802 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1803 -)))
1804 -
1805 -(((
1806 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1807 -)))
1808 -
1809 -(((
1810 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1811 -)))
1812 -
1813 -(((
1814 -AT+RX2FQ: Get or Set the Rx2 window frequency
1815 -)))
1816 -
1817 -(((
1818 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1819 -)))
1820 -
1821 -(((
1822 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1823 -)))
1824 -
1825 -(((
1826 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1827 -)))
1828 -
1829 -(((
1830 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1831 -)))
1832 -
1833 -(((
1834 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1835 -)))
1836 -
1837 -(((
1838 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1839 -)))
1840 -
1841 -(((
1842 -AT+NWKID: Get or Set the Network ID
1843 -)))
1844 -
1845 -(((
1846 -AT+FCU: Get or Set the Frame Counter Uplink
1847 -)))
1848 -
1849 -(((
1850 -AT+FCD: Get or Set the Frame Counter Downlink
1851 -)))
1852 -
1853 -(((
1854 -AT+CLASS: Get or Set the Device Class
1855 -)))
1856 -
1857 -(((
1858 -AT+JOIN: Join network
1859 -)))
1860 -
1861 -(((
1862 -AT+NJS: Get OTAA Join Status
1863 -)))
1864 -
1865 -(((
1866 -AT+SENDB: Send hexadecimal data along with the application port
1867 -)))
1868 -
1869 -(((
1870 -AT+SEND: Send text data along with the application port
1871 -)))
1872 -
1873 -(((
1874 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1875 -)))
1876 -
1877 -(((
1878 -AT+RECV: Print last received data in raw format
1879 -)))
1880 -
1881 -(((
1882 -AT+VER:  Get current image version and Frequency Band
1883 -)))
1884 -
1885 -(((
1886 -AT+CFM: Get or Set the confirmation mode (0-1)
1887 -)))
1888 -
1889 -(((
1890 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1891 -)))
1892 -
1893 -(((
1894 -AT+SNR: Get the SNR of the last received packet
1895 -)))
1896 -
1897 -(((
1898 -AT+RSSI: Get the RSSI of the last received packet
1899 -)))
1900 -
1901 -(((
1902 -AT+TDC: Get or set the application data transmission interval in ms
1903 -)))
1904 -
1905 -(((
1906 -AT+PORT: Get or set the application port
1907 -)))
1908 -
1909 -(((
1910 -AT+DISAT: Disable AT commands
1911 -)))
1912 -
1913 -(((
1914 -AT+PWORD: Set password, max 9 digits
1915 -)))
1916 -
1917 -(((
1918 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1919 -)))
1920 -
1921 -(((
1922 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1923 -)))
1924 -
1925 -(((
1926 -AT+CFG: Print all settings
1927 -)))
1928 -
1929 -
1930 1930  == 4.2 Common AT Command Sequence ==
1931 1931  
1932 1932  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1935,41 +1935,41 @@
1935 1935  
1936 1936  
1937 1937  (((
1938 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1939 1939  )))
1940 1940  )))
1941 1941  
1942 1942  (((
1943 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1944 1944  )))
1945 1945  
1946 1946  (((
1947 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1948 1948  )))
1949 1949  
1950 1950  (((
1951 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1952 1952  )))
1953 1953  
1954 1954  (((
1955 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1956 1956  )))
1957 1957  
1958 1958  (((
1959 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1960 1960  )))
1961 1961  
1962 1962  
1963 1963  (((
1964 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1965 1965  )))
1966 1966  
1967 1967  (((
1968 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1969 1969  )))
1970 1970  
1971 1971  (((
1972 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1973 1973  )))
1974 1974  
1975 1975  
... ... @@ -2046,8 +2046,6 @@
2046 2046  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2047 2047  
2048 2048  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2049 -
2050 -
2051 2051  )))
2052 2052  
2053 2053  (((
... ... @@ -2054,9 +2054,6 @@
2054 2054  [[image:1653359097980-169.png||height="188" width="729"]]
2055 2055  )))
2056 2056  
2057 -(((
2058 -
2059 -)))
2060 2060  
2061 2061  === 4.2.3 Change to Class A ===
2062 2062  
... ... @@ -2064,44 +2064,58 @@
2064 2064  (((
2065 2065  (% style="color:blue" %)**If sensor JOINED:**
2066 2066  
2067 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2068 -ATZ**
1954 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1955 +
1956 +(% style="background-color:#dcdcdc" %)**ATZ**
2069 2069  )))
2070 2070  
2071 2071  
2072 2072  = 5. Case Study =
2073 2073  
2074 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2075 2075  
2076 2076  
2077 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2078 2078  
2079 2079  
2080 2080  = 6. FAQ =
2081 2081  
2082 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2083 2083  
1972 +== 6.1 How to update the firmware? ==
2084 2084  
2085 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2086 2086  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
2087 2087  * Support new features
2088 -* For bug fix
2089 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
2090 2090  
2091 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
2092 2092  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
2093 2093  [[image:1653359603330-121.png]]
2094 2094  
2095 2095  
2096 -(((
2097 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2098 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2099 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2100 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2101 2101  
2102 2102  (((
2002 +(((
2103 2103  (% style="color:blue" %)**For LT-22222-L**(%%):
2104 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2105 2105  )))
2106 2106  
2107 2107  
... ... @@ -2116,15 +2116,14 @@
2116 2116  [[image:image-20220524104033-15.png]]
2117 2117  
2118 2118  
2119 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2120 2120  
2121 -
2122 2122  [[image:1653360054704-518.png||height="186" width="745"]]
2123 2123  
2124 2124  
2125 2125  (((
2126 2126  (((
2127 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2128 2128  
2129 2129  
2130 2130  )))
... ... @@ -2131,13 +2131,13 @@
2131 2131  )))
2132 2132  
2133 2133  (((
2134 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2135 2135  )))
2136 2136  
2137 2137  (((
2138 2138  
2139 2139  
2140 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2141 2141  
2142 2142  
2143 2143  )))
... ... @@ -2144,13 +2144,13 @@
2144 2144  
2145 2145  (((
2146 2146  (((
2147 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2148 2148  )))
2149 2149  )))
2150 2150  
2151 2151  (((
2152 2152  (((
2153 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2154 2154  
2155 2155  
2156 2156  )))
... ... @@ -2157,7 +2157,7 @@
2157 2157  )))
2158 2158  
2159 2159  (((
2160 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2161 2161  
2162 2162  
2163 2163  )))
... ... @@ -2182,13 +2182,21 @@
2182 2182  
2183 2183  (((
2184 2184  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2085 +
2185 2185  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2087 +
2186 2186  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2089 +
2187 2187  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2091 +
2188 2188  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2093 +
2189 2189  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2095 +
2190 2190  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2097 +
2191 2191  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2099 +
2192 2192  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2193 2193  )))
2194 2194  
... ... @@ -2200,61 +2200,61 @@
2200 2200  [[image:1653360498588-932.png||height="485" width="726"]]
2201 2201  
2202 2202  
2203 -== 6.4 How to change the uplink interval ==
2111 +== 6.4 How to change the uplink interval? ==
2204 2204  
2205 2205  
2206 2206  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2207 2207  
2208 2208  
2209 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2210 2210  
2211 2211  
2212 2212  (((
2213 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2214 2214  
2215 2215  
2216 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2217 2217  
2218 2218  
2219 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2220 -
2221 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2222 2222  )))
2223 2223  
2224 2224  (((
2225 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2226 2226  
2227 2227  
2228 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2229 2229  
2230 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2231 2231  
2232 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2233 2233  
2234 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2235 2235  
2236 2236  
2237 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2145 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2238 2238  
2239 2239  
2240 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2241 2241  
2242 2242  
2243 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2151 +The firmware version must be at least 1.6.0.
2244 2244  
2245 2245  
2246 -== 6.9 Can LT22222-L save RO state? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2247 2247  
2248 2248  
2249 -Firmware version needs to be no less than 1.6.0.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2250 2250  
2251 2251  
2252 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2253 2253  )))
2254 2254  
2255 2255  (((
2256 2256  (((
2257 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2258 2258  
2259 2259  
2260 2260  )))
... ... @@ -2261,78 +2261,84 @@
2261 2261  )))
2262 2262  
2263 2263  (((
2264 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2265 2265  )))
2266 2266  
2267 2267  (((
2268 2268  
2269 2269  
2270 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2271 2271  
2272 2272  
2273 2273  )))
2274 2274  
2275 2275  (((
2276 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2277 2277  )))
2278 2278  
2279 2279  (((
2280 2280  
2281 2281  
2282 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2283 2283  
2284 2284  
2285 2285  )))
2286 2286  
2287 2287  (((
2288 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2289 2289  )))
2290 2290  
2291 2291  
2292 -= 8. Order Info =
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2293 2293  
2294 2294  
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2205 +
2206 +
2207 += 8. Ordering information =
2208 +
2209 +
2295 2295  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2296 2296  
2297 2297  (% style="color:#4f81bd" %)**XXX:**
2298 2298  
2299 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2300 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2301 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2302 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2303 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2304 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2305 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2306 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2307 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2308 2308  
2309 -= 9. Packing Info =
2224 += 9. Packing information =
2310 2310  
2311 2311  
2312 -**Package Includes**:
2227 +**Package includes**:
2313 2313  
2314 2314  * LT-22222-L I/O Controller x 1
2315 2315  * Stick Antenna for LoRa RF part x 1
2316 2316  * Bracket for controller x1
2317 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2318 2318  
2319 2319  **Dimension and weight**:
2320 2320  
2321 2321  * Device Size: 13.5 x 7 x 3 cm
2322 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2323 2323  * Package Size / pcs : 14.5 x 8 x 5 cm
2324 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2325 2325  
2326 2326  = 10. Support =
2327 2327  
2328 2328  
2329 2329  * (((
2330 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2331 2331  )))
2332 2332  * (((
2333 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2334 2334  
2335 -
2336 2336  
2337 2337  )))
2338 2338  
... ... @@ -2342,5 +2342,3 @@
2342 2342  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2343 2343  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2344 2344  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2345 -
2346 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content