<
From version < 126.7 >
edited by Xiaoling
on 2023/06/19 15:51
To version < 161.1 >
edited by Dilisi S
on 2024/11/04 17:36
>
Change comment: edited 3.6.2

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -15,36 +15,30 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,165 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 186  * Remote configure parameters via LoRa Downlink
187 -
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 -
210 210  == 1.5 Hardware Variants ==
211 211  
212 212  
213 213  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
214 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
215 215  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
216 216  (% style="text-align:center" %)
217 217  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -224,93 +224,140 @@
224 224  * 1 x Counting Port
225 225  )))
226 226  
227 -= 2. Power ON Device =
131 += 2. Assembling the Device =
228 228  
133 +== 2.1 What is included in the package? ==
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
135 +The package includes the following items:
233 233  
234 -(((
235 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
236 236  
237 -
238 -)))
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
239 239  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
246 246  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
190 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
258 258  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
210 +==== Using the LoRaWAN Device Repository: ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
282 282  
283 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
284 284  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
287 287  
288 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
291 291  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
292 292  
293 -**Add APP KEY and DEV EUI**
294 294  
295 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
296 296  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
297 297  
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
301 301  
302 -
303 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
304 304  
305 305  [[image:1653298044601-602.png||height="405" width="709"]]
306 306  
307 307  
308 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
309 309  
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
314 314  
315 315  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
316 316  
... ... @@ -326,10 +326,10 @@
326 326  
327 327  
328 328  (((
329 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
330 330  
331 331  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
333 333  |Value|(((
334 334  AVI1 voltage
335 335  )))|(((
... ... @@ -344,25 +344,25 @@
344 344  )))
345 345  
346 346  (((
347 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
348 348  
349 349  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
351 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
352 352  )))
353 353  
354 -* RO is for relay. ROx=1 : closeROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
361 361  
362 362  
363 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 366  
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
... ... @@ -370,41 +370,38 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
377 -
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
385 385  ** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
392 392  
393 -
394 -
395 -
396 396  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
397 397  
398 398  
399 399  (((
400 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
401 401  )))
402 402  
403 403  (((
404 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
405 405  
406 406  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
407 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
355 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
408 408  |Value|COUNT1|COUNT2 |DIDORO*|(((
409 409  Reserve
410 410  )))|MOD
... ... @@ -411,37 +411,37 @@
411 411  )))
412 412  
413 413  (((
414 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
415 415  
416 416  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
417 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
418 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
419 419  
420 -RO is for relay. ROx=1 : closeROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
421 421  )))
422 422  
423 -* FIRST: Indicate this is the first packet after join network.
424 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
425 425  
426 426  (((
427 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
376 +
377 +
428 428  )))
429 429  
430 430  (((
431 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
432 432  )))
433 433  
384 +(((
434 434  (% class="box infomessage" %)
435 -
436 436  (((
437 437  **AT+MOD=2**
438 -)))
439 439  
440 -(((
441 441  **ATZ**
442 442  )))
391 +)))
443 443  
444 -
445 445  (((
446 446  
447 447  
... ... @@ -451,17 +451,17 @@
451 451  (((
452 452  **For LT22222-L:**
453 453  
454 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
455 455  
456 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
457 457  
458 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
459 459  
460 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
463 463  
464 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
465 465  )))
466 466  
467 467  
... ... @@ -468,10 +468,10 @@
468 468  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
469 469  
470 470  
471 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
472 472  
473 473  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
422 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 475  |Value|COUNT1|(((
476 476  ACI1 Current
477 477  )))|(((
... ... @@ -479,16 +479,16 @@
479 479  )))|DIDORO*|Reserve|MOD
480 480  
481 481  (((
482 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
483 483  
484 484  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
485 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
486 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
487 487  )))
488 488  
489 -* RO is for relay. ROx=1 : closeROx=0 always open.
490 -* FIRST: Indicate this is the first packet after join network.
491 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
492 492  
493 493  (((
494 494  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -496,24 +496,22 @@
496 496  
497 497  
498 498  (((
499 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
500 500  )))
501 501  
450 +(((
502 502  (% class="box infomessage" %)
503 503  (((
504 -(((
505 -(((
506 506  **AT+MOD=3**
507 -)))
508 508  
509 -(((
510 510  **ATZ**
511 511  )))
512 512  )))
513 -)))
514 514  
515 515  (((
516 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
517 517  )))
518 518  
519 519  
... ... @@ -521,14 +521,14 @@
521 521  
522 522  
523 523  (((
524 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
525 525  )))
526 526  
527 527  (((
528 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
529 529  
530 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
531 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
476 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
477 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
532 532  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
533 533  Reserve
534 534  )))|MOD
... ... @@ -535,49 +535,44 @@
535 535  )))
536 536  
537 537  (((
538 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
539 539  
540 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
541 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
542 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
543 543  )))
544 544  
545 -* RO is for relay. ROx=1 : closeROx=0 always open.
546 -* FIRST: Indicate this is the first packet after join network.
547 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
548 548  
549 549  (((
550 550  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
551 -)))
552 552  
553 -(((
554 554  
499 +)))
555 555  
556 -**To use this mode, please run:**
501 +(((
502 +**To activate this mode, please run the following AT command:**
557 557  )))
558 558  
505 +(((
559 559  (% class="box infomessage" %)
560 560  (((
561 -(((
562 -(((
563 563  **AT+MOD=4**
564 -)))
565 565  
566 -(((
567 567  **ATZ**
568 568  )))
569 569  )))
570 -)))
571 571  
572 -
573 573  (((
574 574  Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
575 575  )))
576 576  
577 577  (((
578 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
579 579  
580 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
581 581  
582 582  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
583 583  
... ... @@ -592,8 +592,8 @@
592 592  
593 593  **LT22222-L**: This mode the DI1 is used as a counting pin.
594 594  
595 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
596 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
536 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
537 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
597 597  |Value|(((
598 598  AVI1 voltage
599 599  )))|(((
... ... @@ -607,12 +607,12 @@
607 607  (((
608 608  (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
609 609  
610 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
611 611  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
612 612  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
613 613  )))
614 614  
615 -* RO is for relay. ROx=1 : closeROx=0 always open.
556 +* RO is for relay. ROx=1 : close, ROx=0 always open.
616 616  * FIRST: Indicate this is the first packet after join network.
617 617  * (((
618 618  DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
... ... @@ -623,23 +623,17 @@
623 623  )))
624 624  
625 625  (((
626 -
627 -
628 628  **To use this mode, please run:**
629 629  )))
630 630  
570 +(((
631 631  (% class="box infomessage" %)
632 632  (((
633 -(((
634 -(((
635 635  **AT+MOD=5**
636 -)))
637 637  
638 -(((
639 639  **ATZ**
640 640  )))
641 641  )))
642 -)))
643 643  
644 644  (((
645 645  Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
... ... @@ -734,8 +734,8 @@
734 734  
735 735  MOD6 Payload : total 11 bytes payload
736 736  
737 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
738 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
672 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
673 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
739 739  |Value|(((
740 740  TRI_A FLAG
741 741  )))|(((
... ... @@ -748,7 +748,7 @@
748 748  
749 749  (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
750 750  
751 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
686 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
752 752  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
753 753  |(((
754 754  AV1_LOW
... ... @@ -777,7 +777,7 @@
777 777  
778 778  (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
779 779  
780 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
715 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
781 781  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
782 782  |(((
783 783  AV1_LOW
... ... @@ -806,7 +806,7 @@
806 806  
807 807  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
808 808  
809 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
744 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
810 810  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
811 811  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
812 812  
... ... @@ -1063,7 +1063,7 @@
1063 1063  01: Low,  00: High ,  11: No action
1064 1064  
1065 1065  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1066 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1001 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1067 1067  |02  01  00  11|Low|High|No Action
1068 1068  |02  00  11  01|High|No Action|Low
1069 1069  |02  11  01  00|No Action|Low|High
... ... @@ -1106,7 +1106,7 @@
1106 1106  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1107 1107  
1108 1108  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1109 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1110 1110  |0x01|DO1 set to low
1111 1111  |0x00|DO1 set to high
1112 1112  |0x11|DO1 NO Action
... ... @@ -1114,7 +1114,7 @@
1114 1114  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1115 1115  
1116 1116  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1117 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1052 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1118 1118  |0x01|DO2 set to low
1119 1119  |0x00|DO2 set to high
1120 1120  |0x11|DO2 NO Action
... ... @@ -1122,7 +1122,7 @@
1122 1122  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1123 1123  
1124 1124  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1125 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1060 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1126 1126  |0x01|DO3 set to low
1127 1127  |0x00|DO3 set to high
1128 1128  |0x11|DO3 NO Action
... ... @@ -1159,7 +1159,7 @@
1159 1159  
1160 1160  
1161 1161  
1162 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1097 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1163 1163  
1164 1164  
1165 1165  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1177,10 +1177,10 @@
1177 1177  )))
1178 1178  
1179 1179  (((
1180 -01: Close ,  00: Open , 11: No action
1115 +00: Close ,  01: Open , 11: No action
1181 1181  
1182 1182  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1183 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1118 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1184 1184  |03  00  11|Open|No Action
1185 1185  |03  01  11|Close|No Action
1186 1186  |03  11  00|No Action|Open
... ... @@ -1420,57 +1420,73 @@
1420 1420  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1421 1421  
1422 1422  
1423 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1424 1424  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1425 1425  
1426 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1427 1427  
1428 -(((
1429 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1430 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1431 1431  
1432 -(((
1433 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1434 1434  
1435 -
1436 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1437 1437  
1438 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1439 1439  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1440 1440  
1441 1441  
1442 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1443 1443  
1381 +Basic settings:
1444 1444  
1445 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1446 1446  
1447 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1448 1448  
1449 -Search under The things network
1389 +Uplink Data converter:
1450 1450  
1451 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1452 1452  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1453 1453  
1398 +Downlink Data converter (this is an optional step):
1454 1454  
1455 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1456 1456  
1457 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1458 1458  
1407 +Connection:
1459 1459  
1460 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1461 1461  
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 1462  
1463 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1464 1464  
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1465 1465  
1466 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1467 1467  
1468 1468  
1469 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1423 +== 3.6 Interface Details ==
1470 1470  
1471 -
1472 -== 3.6 Interface Detail ==
1473 -
1474 1474  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1475 1475  
1476 1476  
... ... @@ -1483,12 +1483,12 @@
1483 1483  
1484 1484  
1485 1485  (((
1486 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1487 1487  )))
1488 1488  
1489 1489  (((
1490 1490  (((
1491 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1492 1492  
1493 1493  
1494 1494  )))
... ... @@ -1498,7 +1498,7 @@
1498 1498  
1499 1499  (((
1500 1500  (((
1501 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1502 1502  )))
1503 1503  )))
1504 1504  
... ... @@ -1507,22 +1507,22 @@
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1511 1511  )))
1512 1512  
1513 1513  (((
1514 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1515 1515  )))
1516 1516  
1517 1517  * (((
1518 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1519 1519  )))
1520 1520  * (((
1521 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1522 1522  )))
1523 1523  
1524 1524  (((
1525 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1526 1526  )))
1527 1527  
1528 1528  (((
... ... @@ -1530,7 +1530,7 @@
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1534 1534  )))
1535 1535  
1536 1536  (((
... ... @@ -1538,22 +1538,22 @@
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1542 1542  )))
1543 1543  
1544 1544  (((
1545 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1546 1546  )))
1547 1547  
1548 1548  * (((
1549 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1550 1550  )))
1551 1551  * (((
1552 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1553 1553  )))
1554 1554  
1555 1555  (((
1556 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1557 1557  )))
1558 1558  
1559 1559  (((
... ... @@ -1561,7 +1561,7 @@
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1565 1565  )))
1566 1566  
1567 1567  (((
... ... @@ -1569,22 +1569,22 @@
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1573 1573  )))
1574 1574  
1575 1575  (((
1576 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1577 1577  )))
1578 1578  
1579 1579  * (((
1580 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1581 1581  )))
1582 1582  * (((
1583 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1584 1584  )))
1585 1585  
1586 1586  (((
1587 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1588 1588  )))
1589 1589  
1590 1590  (((
... ... @@ -1592,20 +1592,23 @@
1592 1592  )))
1593 1593  
1594 1594  (((
1595 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1596 1596  )))
1597 1597  
1598 1598  
1599 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1600 1600  
1601 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1602 1602  
1603 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1604 1604  
1605 1605  [[image:image-20230616235145-1.png]]
1606 1606  
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1607 1607  
1560 +[[image:image-20240219115718-1.png]]
1608 1608  
1562 +
1609 1609  === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1610 1610  
1611 1611  
... ... @@ -1680,12 +1680,9 @@
1680 1680  == 3.7 LEDs Indicators ==
1681 1681  
1682 1682  
1683 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1684 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1685 1685  |**PWR**|Always on if there is power
1686 -|**SYS**|(((
1687 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1688 -)))
1689 1689  |**TX**|(((
1690 1690  (((
1691 1691  Device boot: TX blinks 5 times.
... ... @@ -1700,20 +1700,16 @@
1700 1700  )))
1701 1701  )))
1702 1702  |**RX**|RX blinks once when receive a packet.
1703 -|**DO1**|
1704 -|**DO2**|
1705 -|**DO3**|
1706 -|**DI2**|(((
1707 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1656 +|**DI1**|(((
1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1708 1708  )))
1709 1709  |**DI2**|(((
1710 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1711 1711  )))
1712 -|**DI2**|(((
1713 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1714 -)))
1715 -|**RO1**|
1716 -|**RO2**|
1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1717 1717  
1718 1718  = 4. Use AT Command =
1719 1719  
... ... @@ -1724,10 +1724,6 @@
1724 1724  LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1725 1725  )))
1726 1726  
1727 -(((
1728 -
1729 -)))
1730 -
1731 1731  [[image:1653358238933-385.png]]
1732 1732  
1733 1733  
... ... @@ -2046,8 +2046,6 @@
2046 2046  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2047 2047  
2048 2048  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2049 -
2050 -
2051 2051  )))
2052 2052  
2053 2053  (((
... ... @@ -2054,9 +2054,6 @@
2054 2054  [[image:1653359097980-169.png||height="188" width="729"]]
2055 2055  )))
2056 2056  
2057 -(((
2058 -
2059 -)))
2060 2060  
2061 2061  === 4.2.3 Change to Class A ===
2062 2062  
... ... @@ -2064,8 +2064,9 @@
2064 2064  (((
2065 2065  (% style="color:blue" %)**If sensor JOINED:**
2066 2066  
2067 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2068 -ATZ**
2005 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2006 +
2007 +(% style="background-color:#dcdcdc" %)**ATZ**
2069 2069  )))
2070 2070  
2071 2071  
... ... @@ -2118,7 +2118,6 @@
2118 2118  
2119 2119  (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2120 2120  
2121 -
2122 2122  [[image:1653360054704-518.png||height="186" width="745"]]
2123 2123  
2124 2124  
... ... @@ -2182,13 +2182,21 @@
2182 2182  
2183 2183  (((
2184 2184  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2123 +
2185 2185  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2125 +
2186 2186  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2127 +
2187 2187  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2129 +
2188 2188  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2131 +
2189 2189  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2133 +
2190 2190  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2135 +
2191 2191  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2137 +
2192 2192  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2193 2193  )))
2194 2194  
... ... @@ -2200,7 +2200,7 @@
2200 2200  [[image:1653360498588-932.png||height="485" width="726"]]
2201 2201  
2202 2202  
2203 -== 6.4 How to change the uplink interval ==
2149 +== 6.4 How to change the uplink interval? ==
2204 2204  
2205 2205  
2206 2206  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
... ... @@ -2249,6 +2249,12 @@
2249 2249  Firmware version needs to be no less than 1.6.0.
2250 2250  
2251 2251  
2198 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2199 +
2200 +
2201 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2202 +
2203 +
2252 2252  = 7. Trouble Shooting =
2253 2253  )))
2254 2254  
... ... @@ -2289,6 +2289,13 @@
2289 2289  )))
2290 2290  
2291 2291  
2244 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2245 +
2246 +
2247 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2248 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2249 +
2250 +
2292 2292  = 8. Order Info =
2293 2293  
2294 2294  
... ... @@ -2342,5 +2342,3 @@
2342 2342  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2343 2343  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2344 2344  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2345 -
2346 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0