Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.3
edited by Xiaoling
on 2023/06/19 15:44
Change comment: There is no comment for this version
To version 187.1
edited by Dilisi S
on 2024/11/11 05:23
Change comment: Nov 10 edits part 2

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +{{info}}
44 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 +{{/info}}
48 48  )))
49 49  
50 50  (((
... ... @@ -53,162 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12V
62 +** 20dB Transmit: 34mA@12V
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01V)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 MHz
78 +** Band 2 (LF): 410 ~~ 528 MHz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 -* LoRaWAN Class A & Class C protocol
179 -
97 +* LoRaWAN Class A & Class C modes
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
107 +* Smart buildings & home automation
108 +* Logistics and supply chain management
109 +* Smart metering
110 +* Smart agriculture
111 +* Smart cities
112 +* Smart factory
194 194  
195 -* Smart Buildings & Home Automation
196 -
197 -* Logistics and Supply Chain Management
198 -
199 -* Smart Metering
200 -
201 -* Smart Agriculture
202 -
203 -* Smart Cities
204 -
205 -* Smart Factory
206 -
207 207  == 1.5 Hardware Variants ==
208 208  
209 209  
210 210  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
212 212  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 213  (% style="text-align:center" %)
214 214  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -221,94 +221,179 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
131 += 2. Assembling the device =
225 225  
133 +== 2.1 Connecting the antenna ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
135 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
230 230  
231 -(((
232 -PWR will on when device is properly powered.
137 +{{warning}}
138 +Warning! Do not power on the device without connecting the antenna.
139 +{{/warning}}
233 233  
234 -
235 -)))
141 +== 2.2 Terminals ==
236 236  
237 -[[image:1653297104069-180.png]]
143 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
238 238  
145 +Upper screw terminal block (from left to right):
239 239  
240 -= 3. Operation Mode =
147 +(% style="width:634px" %)
148 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
149 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
150 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
151 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
152 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
153 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
154 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
241 241  
242 -== 3.1 How it works? ==
156 +Lower screw terminal block (from left to right):
243 243  
158 +(% style="width:633px" %)
159 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
160 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
169 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
171 +== 2.3 Powering the device ==
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
173 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
252 252  
175 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
177 +{{warning}}
178 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
179 +{{/warning}}
255 255  
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
182 +[[image:1653297104069-180.png]]
259 259  
260 -
261 -)))
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
185 += 3. Registering with a LoRaWAN Network Server =
264 264  
187 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
189 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
268 268  
269 -
270 -)))
191 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
193 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
195 +[[image:image-20220523172350-1.png||height="266" width="864"]]
279 279  
197 +=== 3.2.1 Prerequisites ===
198 +
199 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
200 +
280 280  [[image:image-20230425173427-2.png||height="246" width="530"]]
281 281  
203 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
205 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
284 284  
285 -**Add APP EUI in the application.**
207 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
209 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
210 +* Create an application with The Things Stack if you do not have one yet.
211 +* Go to your application page and click on the **End devices** in the left menu.
212 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
288 288  
214 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
289 289  
290 -**Add APP KEY and DEV EUI**
216 +* On the **Register end device** page:
217 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
218 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
219 +*** **End device brand**: Dragino Technology Co., Limited
220 +*** **Model**: LT22222-L I/O Controller
221 +*** **Hardware ver**: Unknown
222 +*** **Firmware ver**: 1.6.0
223 +*** **Profile (Region)**: Select the region that matches your device.
224 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
291 291  
292 -[[image:1653298023685-319.png]]
226 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
293 293  
294 294  
229 +* Register end device page continued...
230 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
231 +** In the **DevEUI** field, enter the **DevEUI**.
232 +** In the **AppKey** field, enter the **AppKey.**
233 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
234 +** Under **After registration**, select the **View registered end device** option.
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
236 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
298 298  
299 -
300 -)))
238 +==== ====
301 301  
302 -[[image:1653298044601-602.png||height="405" width="709"]]
240 +==== 3.2.2.2 Adding device manually ====
303 303  
242 +* On the **Register end device** page:
243 +** Select the option **Enter end device specifies manually** under **Input method**.
244 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
246 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
247 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
248 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
249 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
304 304  
305 -== 3.3 Uplink Payload ==
251 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
306 306  
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
254 +* Register end device page continued...
255 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
256 +** In the **DevEUI** field, enter the **DevEUI**.
257 +** In the **AppKey** field, enter the **AppKey**.
258 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
259 +** Under **After registration**, select the **View registered end device** option.
260 +** Click the **Register end device** button.
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
262 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
311 311  
264 +
265 +You will be navigated to the **Device overview** page.
266 +
267 +
268 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
269 +
270 +
271 +==== 3.2.2.3 Joining ====
272 +
273 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
274 +
275 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
276 +
277 +
278 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
279 +
280 +
281 +By default, you will receive an uplink data message from the device every 10 minutes.
282 +
283 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
284 +
285 +[[image:lt-22222-ul-payload-decoded.png]]
286 +
287 +
288 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
289 +
290 +{{info}}
291 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
292 +{{/info}}
293 +
294 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
295 +
296 +
297 +== 3.3 Work Modes and Uplink Payload formats ==
298 +
299 +
300 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
301 +
302 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
303 +
312 312  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
313 313  
314 314  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -319,14 +319,17 @@
319 319  
320 320  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
321 321  
314 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
315 +
322 322  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
323 323  
324 -
325 325  (((
326 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
319 +This is the default mode.
327 327  
328 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
329 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
321 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
322 +
323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
324 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
330 330  |Value|(((
331 331  AVI1 voltage
332 332  )))|(((
... ... @@ -335,31 +335,31 @@
335 335  ACI1 Current
336 336  )))|(((
337 337  ACI2 Current
338 -)))|DIDORO*|(((
333 +)))|**DIDORO***|(((
339 339  Reserve
340 340  )))|MOD
341 341  )))
342 342  
343 343  (((
344 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
339 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
345 345  
346 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
347 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
348 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
341 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
342 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
343 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
349 349  )))
350 350  
351 -* RO is for relay. ROx=1 : close,ROx=0 always open.
352 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
353 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
346 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
347 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
348 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
354 354  
355 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
350 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
356 356  
357 -For example if payload is: [[image:image-20220523175847-2.png]]
352 +For example, if the payload is: [[image:image-20220523175847-2.png]]
358 358  
359 359  
360 -**The value for the interface is:  **
355 +**The interface values can be calculated as follows:  **
361 361  
362 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
357 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
363 363  
364 364  AVI2 channel voltage is 0x04AC/1000=1.196V
365 365  
... ... @@ -367,38 +367,35 @@
367 367  
368 368  ACI2 channel current is 0x1300/1000=4.864mA
369 369  
370 -The last byte 0xAA= 10101010(B) means
365 +The last byte 0xAA= **10101010**(b) means,
371 371  
372 -* [1] RO1 relay channel is close and the RO1 LED is ON.
373 -* [0] RO2 relay channel is open and RO2 LED is OFF;
367 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
368 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
369 +* **[1] DI3 - not used for LT-22222-L.**
370 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
371 +* [1] DI1 channel input state:
372 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
373 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
374 +** DI1 LED is ON in both cases.
375 +* **[0] DO3 - not used for LT-22222-L.**
376 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
377 +* [0] DO1 channel output state:
378 +** DO1 is FLOATING when there is no load between DO1 and V+.
379 +** DO1 is HIGH when there is a load between DO1 and V+.
380 +** DO1 LED is OFF in both cases.
374 374  
375 -**LT22222-L:**
376 -
377 -* [1] DI2 channel is high input and DI2 LED is ON;
378 -* [0] DI1 channel is low input;
379 -
380 -* [0] DO3 channel output state
381 -** DO3 is float in case no load between DO3 and V+.;
382 -** DO3 is high in case there is load between DO3 and V+.
383 -** DO3 LED is off in both case
384 -* [1] DO2 channel output is low and DO2 LED is ON.
385 -* [0] DO1 channel output state
386 -** DO1 is float in case no load between DO1 and V+.;
387 -** DO1 is high in case there is load between DO1 and V+.
388 -** DO1 LED is off in both case
389 -
390 390  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
391 391  
392 392  
393 393  (((
394 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
386 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
395 395  )))
396 396  
397 397  (((
398 -Total : 11 bytes payload
390 +The uplink payload is 11 bytes long.
399 399  
400 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
401 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
393 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
402 402  |Value|COUNT1|COUNT2 |DIDORO*|(((
403 403  Reserve
404 404  )))|MOD
... ... @@ -405,40 +405,36 @@
405 405  )))
406 406  
407 407  (((
408 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
400 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
409 409  
410 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
411 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
412 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
402 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
404 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
413 413  
414 -RO is for relay. ROx=1 : close,ROx=0 always open.
406 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
415 415  )))
416 416  
417 -* FIRST: Indicate this is the first packet after join network.
418 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
409 +* FIRST: Indicates that this is the first packet after joining the network.
410 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
419 419  
420 420  (((
421 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
422 -)))
413 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
423 423  
424 -(((
425 425  
416 +)))
426 426  
427 -**To use counting mode, please run:**
418 +(((
419 +**To activate this mode, run the following AT commands:**
428 428  )))
429 429  
422 +(((
430 430  (% class="box infomessage" %)
431 431  (((
432 -(((
433 -(((
434 434  **AT+MOD=2**
435 -)))
436 436  
437 -(((
438 438  **ATZ**
439 439  )))
440 440  )))
441 -)))
442 442  
443 443  (((
444 444  
... ... @@ -449,17 +449,17 @@
449 449  (((
450 450  **For LT22222-L:**
451 451  
452 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
440 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
453 453  
454 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
442 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
455 455  
456 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
444 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
457 457  
458 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
446 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
459 459  
460 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
448 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
461 461  
462 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
450 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
463 463  )))
464 464  
465 465  
... ... @@ -466,10 +466,10 @@
466 466  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
467 467  
468 468  
469 -**LT22222-L**: This mode the DI1 is used as a counting pin.
457 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
470 470  
471 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
472 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
460 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
473 473  |Value|COUNT1|(((
474 474  ACI1 Current
475 475  )))|(((
... ... @@ -477,41 +477,39 @@
477 477  )))|DIDORO*|Reserve|MOD
478 478  
479 479  (((
480 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
468 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
481 481  
482 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
483 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
484 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
470 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
472 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
485 485  )))
486 486  
487 -* RO is for relay. ROx=1 : closeROx=0 always open.
488 -* FIRST: Indicate this is the first packet after join network.
489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
475 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
476 +* FIRST: Indicates that this is the first packet after joining the network.
477 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
490 490  
491 491  (((
492 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
480 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
493 493  )))
494 494  
495 495  
496 496  (((
497 -**To use counting mode, please run:**
485 +**To activate this mode, run the following AT commands:**
498 498  )))
499 499  
488 +(((
500 500  (% class="box infomessage" %)
501 501  (((
502 -(((
503 -(((
504 504  **AT+MOD=3**
505 -)))
506 506  
507 -(((
508 508  **ATZ**
509 509  )))
510 510  )))
511 -)))
512 512  
513 513  (((
514 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
498 +AT Commands for counting:
499 +
500 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
515 515  )))
516 516  
517 517  
... ... @@ -519,14 +519,14 @@
519 519  
520 520  
521 521  (((
522 -**LT22222-L**: This mode the DI1 is used as a counting pin.
508 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
523 523  )))
524 524  
525 525  (((
526 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
512 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
527 527  
528 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
514 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
515 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
530 530  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
531 531  Reserve
532 532  )))|MOD
... ... @@ -533,55 +533,50 @@
533 533  )))
534 534  
535 535  (((
536 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
522 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
537 537  
538 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
539 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
540 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
526 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
541 541  )))
542 542  
543 -* RO is for relay. ROx=1 : closeROx=0 always open.
544 -* FIRST: Indicate this is the first packet after join network.
545 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
529 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
530 +* FIRST: Indicates that this is the first packet after joining the network.
531 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
546 546  
547 547  (((
548 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
549 -)))
534 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
550 550  
551 -(((
552 552  
537 +)))
553 553  
554 -**To use this mode, please run:**
539 +(((
540 +**To activate this mode, run the following AT commands:**
555 555  )))
556 556  
543 +(((
557 557  (% class="box infomessage" %)
558 558  (((
559 -(((
560 -(((
561 561  **AT+MOD=4**
562 -)))
563 563  
564 -(((
565 565  **ATZ**
566 566  )))
567 567  )))
568 -)))
569 569  
570 -
571 571  (((
572 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
553 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
573 573  )))
574 574  
575 575  (((
576 -**Plus below command for AVI1 Counting:**
557 +**In addition to that, below are the commands for AVI1 Counting:**
577 577  
578 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
559 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
579 579  
580 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
561 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
581 581  
582 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
563 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
583 583  
584 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
565 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
585 585  )))
586 586  
587 587  
... ... @@ -588,10 +588,10 @@
588 588  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
589 589  
590 590  
591 -**LT22222-L**: This mode the DI1 is used as a counting pin.
572 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
592 592  
593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
594 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
574 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
575 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
595 595  |Value|(((
596 596  AVI1 voltage
597 597  )))|(((
... ... @@ -603,44 +603,38 @@
603 603  )))|MOD
604 604  
605 605  (((
606 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
587 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
607 607  
608 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
609 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
589 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
590 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
610 610  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
611 611  )))
612 612  
613 -* RO is for relay. ROx=1 : closeROx=0 always open.
614 -* FIRST: Indicate this is the first packet after join network.
594 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
595 +* FIRST: Indicates that this is the first packet after joining the network.
615 615  * (((
616 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
597 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
617 617  )))
618 618  
619 619  (((
620 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
601 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
621 621  )))
622 622  
623 623  (((
624 -
625 -
626 -**To use this mode, please run:**
605 +**To activate this mode, run the following AT commands:**
627 627  )))
628 628  
608 +(((
629 629  (% class="box infomessage" %)
630 630  (((
631 -(((
632 -(((
633 633  **AT+MOD=5**
634 -)))
635 635  
636 -(((
637 637  **ATZ**
638 638  )))
639 639  )))
640 -)))
641 641  
642 642  (((
643 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
618 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
644 644  )))
645 645  
646 646  
... ... @@ -647,49 +647,48 @@
647 647  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
648 648  
649 649  
650 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
625 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
651 651  
652 -For example, if user has configured below commands:
627 +For example, if you configured the following commands:
653 653  
654 -* **AT+MOD=1 ** **~-~->**  The normal working mode
655 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
629 +* **AT+MOD=1 ** **~-~->**  The default work mode
630 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
656 656  
657 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
632 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
658 658  
659 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
660 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
634 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
635 +1. (((
636 +Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
637 +)))
661 661  
662 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
639 +(% style="color:#037691" %)**AT Commands to set Trigger Condition**:
663 663  
641 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
664 664  
665 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
666 -
667 667  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
668 668  
669 669  
670 670  **Example:**
671 671  
672 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
648 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
673 673  
674 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
650 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
675 675  
676 676  
653 +(% style="color:#4f81bd" %)**Trigger based on current**:
677 677  
678 -(% style="color:#4f81bd" %)**Trigger base on current**:
679 -
680 680  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
681 681  
682 682  
683 683  **Example:**
684 684  
685 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
660 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
686 686  
687 687  
663 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
688 688  
689 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
665 +DI status triggers Flag.
690 690  
691 -DI status trigger Flag.
692 -
693 693  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
694 694  
695 695  
... ... @@ -698,42 +698,41 @@
698 698  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
699 699  
700 700  
701 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
675 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
702 702  
703 703  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
704 704  
705 705  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
706 706  
707 - AA: Code for this downlink Command:
681 + AA: Type Code for this downlink Command:
708 708  
709 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
683 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
710 710  
711 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
685 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
712 712  
713 - yy2 yy2: AC1 or AV1 high limit.
687 + yy2 yy2: AC1 or AV1 HIGH limit.
714 714  
715 - yy3 yy3: AC2 or AV2 low limit.
689 + yy3 yy3: AC2 or AV2 LOW limit.
716 716  
717 - Yy4 yy4: AC2 or AV2 high limit.
691 + Yy4 yy4: AC2 or AV2 HIGH limit.
718 718  
719 719  
720 -**Example1**: AA 00 13 88 00 00 00 00 00 00
694 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
721 721  
722 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
696 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
723 723  
724 724  
725 -**Example2**: AA 02 01 00
699 +**Example 2**: AA 02 01 00
726 726  
727 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
701 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
728 728  
729 729  
730 -
731 731  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
732 732  
733 -MOD6 Payload : total 11 bytes payload
706 +MOD6 Payload: total of 11 bytes
734 734  
735 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
736 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
737 737  |Value|(((
738 738  TRI_A FLAG
739 739  )))|(((
... ... @@ -744,10 +744,10 @@
744 744  MOD(6)
745 745  )))
746 746  
747 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
720 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
748 748  
749 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
750 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
722 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
723 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
751 751  |(((
752 752  AV1_LOW
753 753  )))|(((
... ... @@ -766,17 +766,17 @@
766 766  AC2_HIGH
767 767  )))
768 768  
769 -* Each bits shows if the corresponding trigger has been configured.
742 +* Each bit shows if the corresponding trigger has been configured.
770 770  
771 771  **Example:**
772 772  
773 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
746 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
774 774  
775 775  
776 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
749 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
777 777  
778 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
779 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
751 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
752 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
780 780  |(((
781 781  AV1_LOW
782 782  )))|(((
... ... @@ -795,20 +795,20 @@
795 795  AC2_HIGH
796 796  )))
797 797  
798 -* Each bits shows which status has been trigger on this uplink.
771 +* Each bit shows which status has been triggered on this uplink.
799 799  
800 800  **Example:**
801 801  
802 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
775 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
803 803  
804 804  
805 805  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
806 806  
807 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
780 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
808 808  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
809 809  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
810 810  
811 -* Each bits shows which status has been trigger on this uplink.
784 +* Each bits shows which status has been triggered on this uplink.
812 812  
813 813  **Example:**
814 814  
... ... @@ -835,63 +835,83 @@
835 835  )))
836 836  
837 837  
838 -== 3.4 ​Configure LT via AT or Downlink ==
811 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
839 839  
840 -
841 841  (((
842 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
814 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
843 843  )))
844 844  
845 845  (((
846 846  (((
847 -There are two kinds of Commands:
819 +There are two tytes of commands:
848 848  )))
849 849  )))
850 850  
851 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
823 +* (% style="color:blue" %)**Common commands**(%%):
852 852  
853 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
825 +* (% style="color:blue" %)**Sensor-related commands**(%%):
854 854  
855 -=== 3.4.1 Common Commands ===
827 +=== 3.4.1 Common commands ===
856 856  
857 -
858 858  (((
859 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
830 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
860 860  )))
861 861  
833 +=== 3.4.2 Sensor-related commands ===
862 862  
863 -=== 3.4.2 Sensor related commands ===
835 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
864 864  
865 865  ==== 3.4.2.1 Set Transmit Interval ====
866 866  
839 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
867 867  
868 -Set device uplink interval.
841 +(% style="color:#037691" %)**AT command**
869 869  
870 -* (% style="color:#037691" %)**AT Command:**
843 +(% style="width:500px" %)
844 +|**Command**|AT+TDC<time>
845 +|**Response**|
846 +|**Parameters**|<time> uplink interval is in milliseconds
847 +|**Example**|(((
848 +AT+TDC=30000
871 871  
872 -(% style="color:blue" %)**AT+TDC=N **
850 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
851 +)))
873 873  
853 +(% style="color:#037691" %)**Downlink payload**
874 874  
875 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
855 +(% style="width:500px" %)
856 +|**Payload**|(((
857 +<prefix><time>
858 +)))
859 +|**Parameters**|(((
860 +<prefix> 0x01
876 876  
862 +<time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
863 +)))
864 +|**Example**|(((
865 +01 **00 75 30**
877 877  
878 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
867 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
879 879  
880 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
869 +Conversion: 30000 (dec) = 00 75 30 (hex)
881 881  
871 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
872 +)))
882 882  
874 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
883 883  
884 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
885 885  
877 +Sets the work mode.
886 886  
887 -Set work mode.
879 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
888 888  
889 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
881 +Where N is the work mode.
890 890  
891 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
883 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
892 892  
893 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
894 894  
886 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
887 +
895 895  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
896 896  
897 897  
... ... @@ -898,11 +898,13 @@
898 898  
899 899  ==== 3.4.2.3 Poll an uplink ====
900 900  
894 +Requests the device to send an uplink.
901 901  
902 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
903 903  
904 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
897 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
905 905  
899 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
900 +
906 906  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
907 907  
908 908  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -909,16 +909,15 @@
909 909  
910 910  
911 911  
912 -==== 3.4.2.4 Enable Trigger Mode ====
907 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
913 913  
909 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
914 914  
915 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
916 -
917 917  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
918 918  
919 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
913 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
920 920  
921 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
915 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
922 922  
923 923  
924 924  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -929,9 +929,8 @@
929 929  
930 930  ==== 3.4.2.5 Poll trigger settings ====
931 931  
926 +Polls the trigger settings.
932 932  
933 -Poll trigger settings
934 -
935 935  * (% style="color:#037691" %)**AT Command:**
936 936  
937 937  There is no AT Command for this feature.
... ... @@ -938,18 +938,17 @@
938 938  
939 939  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
940 940  
941 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
934 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
942 942  
943 943  
944 944  
945 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
938 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
946 946  
940 +Enable or disable DI1/DI2/DI2 as a trigger.
947 947  
948 -Enable Disable DI1/DI2/DI2 as trigger,
949 -
950 950  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
951 951  
952 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
944 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
953 953  
954 954  
955 955  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -958,11 +958,10 @@
958 958  
959 959  
960 960  
961 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
953 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
962 962  
955 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
963 963  
964 -Set DI1 or DI3(for LT-33222-L) trigger.
965 -
966 966  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
967 967  
968 968  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
... ... @@ -977,19 +977,17 @@
977 977  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
978 978  
979 979  
971 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
980 980  
981 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
973 +Sets DI2 as a trigger.
982 982  
983 -
984 -Set DI2 trigger.
985 -
986 986  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
987 987  
988 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
977 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
989 989  
990 990  (% style="color:red" %)**b :** (%%)delay timing.
991 991  
992 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
981 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
993 993  
994 994  
995 995  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -997,12 +997,10 @@
997 997  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
998 998  
999 999  
989 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1000 1000  
1001 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
991 +Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1002 1002  
1003 -
1004 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1005 -
1006 1006  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1007 1007  
1008 1008  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
... ... @@ -1013,9 +1013,8 @@
1013 1013  
1014 1014  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1015 1015  
1003 +Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1016 1016  
1017 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1018 -
1019 1019  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1020 1020  
1021 1021  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
... ... @@ -1023,12 +1023,10 @@
1023 1023  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1024 1024  
1025 1025  
1026 -
1027 1027  ==== 3.4.2.11 Trigger – Set minimum interval ====
1028 1028  
1014 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1029 1029  
1030 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1031 -
1032 1032  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1033 1033  
1034 1034  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
... ... @@ -1043,6 +1043,7 @@
1043 1043  
1044 1044  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1045 1045  
1030 +Controls the digital outputs DO1, DO2, and DO3
1046 1046  
1047 1047  * (% style="color:#037691" %)**AT Command**
1048 1048  
... ... @@ -1061,7 +1061,7 @@
1061 1061  01: Low,  00: High ,  11: No action
1062 1062  
1063 1063  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1064 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1049 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1065 1065  |02  01  00  11|Low|High|No Action
1066 1066  |02  00  11  01|High|No Action|Low
1067 1067  |02  11  01  00|No Action|Low|High
... ... @@ -1104,7 +1104,7 @@
1104 1104  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1105 1105  
1106 1106  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1107 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1092 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1108 1108  |0x01|DO1 set to low
1109 1109  |0x00|DO1 set to high
1110 1110  |0x11|DO1 NO Action
... ... @@ -1112,7 +1112,7 @@
1112 1112  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1113 1113  
1114 1114  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1115 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1100 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1116 1116  |0x01|DO2 set to low
1117 1117  |0x00|DO2 set to high
1118 1118  |0x11|DO2 NO Action
... ... @@ -1120,7 +1120,7 @@
1120 1120  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1121 1121  
1122 1122  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1123 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1108 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1124 1124  |0x01|DO3 set to low
1125 1125  |0x00|DO3 set to high
1126 1126  |0x11|DO3 NO Action
... ... @@ -1157,7 +1157,7 @@
1157 1157  
1158 1158  
1159 1159  
1160 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1145 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1161 1161  
1162 1162  
1163 1163  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1175,10 +1175,10 @@
1175 1175  )))
1176 1176  
1177 1177  (((
1178 -01: Close ,  00: Open , 11: No action
1163 +00: Closed ,  01: Open , 11: No action
1179 1179  
1180 1180  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1181 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1166 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1182 1182  |03  00  11|Open|No Action
1183 1183  |03  01  11|Close|No Action
1184 1184  |03  11  00|No Action|Open
... ... @@ -1297,7 +1297,7 @@
1297 1297  
1298 1298  
1299 1299  
1300 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1285 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1301 1301  
1302 1302  
1303 1303  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1418,75 +1418,145 @@
1418 1418  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1419 1419  
1420 1420  
1421 -== 3.5 Integrate with Mydevice ==
1406 +== 3.5 Integrating with ThingsEye.io ==
1422 1422  
1408 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1423 1423  
1424 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1410 +=== 3.5.1 Configuring The Things Stack ===
1425 1425  
1426 -(((
1427 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1428 -)))
1412 +We use The Things Stack Sandbox in this example:
1429 1429  
1430 -(((
1431 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1414 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1415 +* Select **MQTT** under **Integrations** in the left menu.
1416 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1417 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1432 1432  
1433 -
1434 -)))
1419 +{{info}}
1420 +The username and  password (API key) you created here are required in the next section.
1421 +{{/info}}
1435 1435  
1436 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1423 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1437 1437  
1425 +=== 3.5.2 Configuring ThingsEye.io ===
1438 1438  
1427 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1428 +* Under the **Integrations center**, click **Integrations**.
1429 +* Click the **Add integration** button (the button with the **+** symbol).
1439 1439  
1440 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1431 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1441 1441  
1442 1442  
1443 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1434 +On the **Add integration** window, configure the following:
1444 1444  
1445 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1436 +**Basic settings:**
1446 1446  
1447 -Search under The things network
1438 +* Select **The Things Stack Community** from the **Integration type** list.
1439 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1440 +* Ensure the following options are turned on.
1441 +** Enable integration
1442 +** Debug mode
1443 +** Allow create devices or assets
1444 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1448 1448  
1449 -[[image:1653356838789-523.png||height="337" width="740"]]
1446 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1450 1450  
1451 1451  
1449 +**Uplink data converter:**
1452 1452  
1453 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1451 +* Click the **Create new** button if it is not selected by default.
1452 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1453 +* Click the **JavaScript** button.
1454 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1455 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1454 1454  
1455 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1457 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1456 1456  
1457 1457  
1458 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1460 +**Downlink data converter (this is an optional step):**
1459 1459  
1462 +* Click the **Create new** button if it is not selected by default.
1463 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1464 +* Click the **JavaScript** button.
1465 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1466 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1460 1460  
1461 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1468 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1462 1462  
1463 1463  
1464 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1471 +**Connection:**
1465 1465  
1473 +* Choose **Region** from the **Host type**.
1474 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1475 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1476 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1466 1466  
1467 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1478 +[[image:message-1.png]]
1468 1468  
1469 1469  
1470 -== 3.6 Interface Detail ==
1481 +* Click the **Add** button.
1471 1471  
1483 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1484 +
1485 +
1486 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1487 +
1488 +
1489 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1490 +
1491 +
1492 +**Viewing integration details**:
1493 +
1494 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1495 +
1496 +[[image:integration-details.png||height="686" width="1000"]]
1497 +
1498 +
1499 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1500 +
1501 +{{info}}
1502 +See also ThingsEye documentation.
1503 +{{/info}}
1504 +
1505 +**Viewing events:**
1506 +
1507 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1508 +
1509 +* Select **Debug **from the **Event type** dropdown.
1510 +* Select the** time frame** from the **time window**.
1511 +
1512 +[[image:thingseye-events.png||height="686" width="1000"]]
1513 +
1514 +
1515 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1516 +
1517 +[[image:thingseye-json.png||width="1000"]]
1518 +
1519 +
1520 +**Deleting the integration**:
1521 +
1522 +If you want to delete this integration, click the **Delete integratio**n button.
1523 +
1524 +
1525 +== 3.6 Interface Details ==
1526 +
1472 1472  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1473 1473  
1474 1474  
1475 -Support NPN Type sensor
1530 +Support NPN-type sensor
1476 1476  
1477 1477  [[image:1653356991268-289.png]]
1478 1478  
1479 1479  
1480 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1535 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1481 1481  
1482 1482  
1483 1483  (((
1484 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1539 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1485 1485  )))
1486 1486  
1487 1487  (((
1488 1488  (((
1489 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1544 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1490 1490  
1491 1491  
1492 1492  )))
... ... @@ -1496,7 +1496,7 @@
1496 1496  
1497 1497  (((
1498 1498  (((
1499 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1554 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1500 1500  )))
1501 1501  )))
1502 1502  
... ... @@ -1505,22 +1505,22 @@
1505 1505  )))
1506 1506  
1507 1507  (((
1508 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1563 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1509 1509  )))
1510 1510  
1511 1511  (((
1512 -This type of sensor will output a low signal GND when active.
1567 +This type of sensor outputs a low (GND) signal when active.
1513 1513  )))
1514 1514  
1515 1515  * (((
1516 -Connect sensor's output to DI1-
1571 +Connect the sensor's output to DI1-
1517 1517  )))
1518 1518  * (((
1519 -Connect sensor's VCC to DI1+.
1574 +Connect the sensor's VCC to DI1+.
1520 1520  )))
1521 1521  
1522 1522  (((
1523 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1578 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1524 1524  )))
1525 1525  
1526 1526  (((
... ... @@ -1528,7 +1528,7 @@
1528 1528  )))
1529 1529  
1530 1530  (((
1531 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1586 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1532 1532  )))
1533 1533  
1534 1534  (((
... ... @@ -1536,22 +1536,22 @@
1536 1536  )))
1537 1537  
1538 1538  (((
1539 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1594 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1540 1540  )))
1541 1541  
1542 1542  (((
1543 -This type of sensor will output a high signal (example 24v) when active.
1598 +This type of sensor outputs a high signal (e.g., 24V) when active.
1544 1544  )))
1545 1545  
1546 1546  * (((
1547 -Connect sensor's output to DI1+
1602 +Connect the sensor's output to DI1+
1548 1548  )))
1549 1549  * (((
1550 -Connect sensor's GND DI1-.
1605 +Connect the sensor's GND DI1-.
1551 1551  )))
1552 1552  
1553 1553  (((
1554 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1609 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1555 1555  )))
1556 1556  
1557 1557  (((
... ... @@ -1559,7 +1559,7 @@
1559 1559  )))
1560 1560  
1561 1561  (((
1562 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1617 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1563 1563  )))
1564 1564  
1565 1565  (((
... ... @@ -1567,22 +1567,22 @@
1567 1567  )))
1568 1568  
1569 1569  (((
1570 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1625 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1571 1571  )))
1572 1572  
1573 1573  (((
1574 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1629 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1575 1575  )))
1576 1576  
1577 1577  * (((
1578 -Connect sensor's output to DI1+ with a serial 50K resistor
1633 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1579 1579  )))
1580 1580  * (((
1581 -Connect sensor's GND DI1-.
1636 +Connect the sensor's GND DI1-.
1582 1582  )))
1583 1583  
1584 1584  (((
1585 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1640 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1586 1586  )))
1587 1587  
1588 1588  (((
... ... @@ -1590,34 +1590,37 @@
1590 1590  )))
1591 1591  
1592 1592  (((
1593 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1648 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1594 1594  )))
1595 1595  
1596 1596  
1597 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1652 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1598 1598  
1599 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1654 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1600 1600  
1601 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1656 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1602 1602  
1603 1603  [[image:image-20230616235145-1.png]]
1604 1604  
1660 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1605 1605  
1662 +[[image:image-20240219115718-1.png]]
1606 1606  
1607 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1608 1608  
1665 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1609 1609  
1610 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1611 1611  
1612 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1668 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1613 1613  
1670 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1671 +
1614 1614  [[image:1653357531600-905.png]]
1615 1615  
1616 1616  
1617 -=== 3.6.4 Analog Input Interface ===
1675 +=== 3.6.4 Analog Input Interfaces ===
1618 1618  
1619 1619  
1620 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1678 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1621 1621  
1622 1622  
1623 1623  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1624,14 +1624,14 @@
1624 1624  
1625 1625  [[image:1653357592296-182.png]]
1626 1626  
1627 -Example to connect a 4~~20mA sensor
1685 +Example: Connecting a 4~~20mA sensor
1628 1628  
1629 -We take the wind speed sensor as an example for reference only.
1687 +We will use the wind speed sensor as an example for reference only.
1630 1630  
1631 1631  
1632 1632  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1633 1633  
1634 -(% style="color:red" %)**Red:  12~~24v**
1692 +(% style="color:red" %)**Red:  12~~24V**
1635 1635  
1636 1636  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1637 1637  
... ... @@ -1644,7 +1644,7 @@
1644 1644  [[image:1653357648330-671.png||height="155" width="733"]]
1645 1645  
1646 1646  
1647 -Example connected to a regulated power supply to measure voltage
1705 +Example: Connecting to a regulated power supply to measure voltage
1648 1648  
1649 1649  [[image:image-20230608101532-1.png||height="606" width="447"]]
1650 1650  
... ... @@ -1653,7 +1653,7 @@
1653 1653  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1654 1654  
1655 1655  
1656 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1714 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1657 1657  
1658 1658  (% style="color:red" %)**Red:  12~~24v**
1659 1659  
... ... @@ -1664,9 +1664,9 @@
1664 1664  
1665 1665  
1666 1666  (((
1667 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1725 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1668 1668  
1669 -**Note**: RO pins go to Open(NO) when device is power off.
1727 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1670 1670  )))
1671 1671  
1672 1672  [[image:image-20220524100215-9.png]]
... ... @@ -1677,13 +1677,11 @@
1677 1677  
1678 1678  == 3.7 LEDs Indicators ==
1679 1679  
1738 +The table below lists the behavior of LED indicators for each port function.
1680 1680  
1681 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1682 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1683 -|**PWR**|Always on if there is power
1684 -|**SYS**|(((
1685 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1686 -)))
1740 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1741 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1742 +|**PWR**|Always on when there is power
1687 1687  |**TX**|(((
1688 1688  (((
1689 1689  Device boot: TX blinks 5 times.
... ... @@ -1690,7 +1690,7 @@
1690 1690  )))
1691 1691  
1692 1692  (((
1693 -Successful join network: TX ON for 5 seconds.
1749 +Successful network join: TX remains ON for 5 seconds.
1694 1694  )))
1695 1695  
1696 1696  (((
... ... @@ -1697,40 +1697,33 @@
1697 1697  Transmit a LoRa packet: TX blinks once
1698 1698  )))
1699 1699  )))
1700 -|**RX**|RX blinks once when receive a packet.
1701 -|**DO1**|
1702 -|**DO2**|
1703 -|**DO3**|
1704 -|**DI2**|(((
1705 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1756 +|**RX**|RX blinks once when a packet is received.
1757 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1758 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1759 +|**DI1**|(((
1760 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1706 1706  )))
1707 1707  |**DI2**|(((
1708 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1763 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1709 1709  )))
1710 -|**DI2**|(((
1711 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1712 -)))
1713 -|**RO1**|
1714 -|**RO2**|
1765 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1766 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1715 1715  
1716 -= 4. Use AT Command =
1768 += 4. Using AT Commands =
1717 1717  
1718 -== 4.1 Access AT Command ==
1770 +The LT-22222-L supports programming using AT Commands.
1719 1719  
1772 +== 4.1 Connecting the LT-22222-L to a PC ==
1720 1720  
1721 1721  (((
1722 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1775 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1723 1723  )))
1724 1724  
1725 -(((
1726 -
1727 -)))
1728 -
1729 1729  [[image:1653358238933-385.png]]
1730 1730  
1731 1731  
1732 1732  (((
1733 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1782 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1734 1734  )))
1735 1735  
1736 1736  [[image:1653358355238-883.png]]
... ... @@ -1737,194 +1737,63 @@
1737 1737  
1738 1738  
1739 1739  (((
1740 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1741 -)))
1789 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1742 1742  
1743 -(((
1744 -AT+<CMD>?        : Help on <CMD>
1791 +== 4.2 LT-22222-L related AT commands ==
1745 1745  )))
1746 1746  
1747 1747  (((
1748 -AT+<CMD>         : Run <CMD>
1749 -)))
1795 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1750 1750  
1751 -(((
1752 -AT+<CMD>=<value> : Set the value
1797 +* AT+<CMD>? : Help on <CMD>
1798 +* AT+<CMD> : Run <CMD>
1799 +* AT+<CMD>=<value> : Set the value
1800 +* AT+<CMD>=? : Get the value
1801 +* ATZ: Trigger a reset of the MCU
1802 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1803 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1804 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1805 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1806 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1807 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1808 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1809 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1810 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1811 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1812 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1813 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1814 +* AT+RX2FQ: Get or set the Rx2 window frequency
1815 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1816 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1817 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1818 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1819 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1820 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1821 +* AT+NWKID: Get or set the Network ID
1822 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1823 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1824 +* AT+CLASS: Get or set the Device Class
1825 +* AT+JOIN: Join network
1826 +* AT+NJS: Get OTAA Join Status
1827 +* AT+SENDB: Send hexadecimal data along with the application port
1828 +* AT+SEND: Send text data along with the application port
1829 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1830 +* AT+RECV: Print last received data in raw format
1831 +* AT+VER: Get current image version and Frequency Band
1832 +* AT+CFM: Get or Set the confirmation mode (0-1)
1833 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1834 +* AT+SNR: Get the SNR of the last received packet
1835 +* AT+RSSI: Get the RSSI of the last received packet
1836 +* AT+TDC: Get or set the application data transmission interval in ms
1837 +* AT+PORT: Get or set the application port
1838 +* AT+DISAT: Disable AT commands
1839 +* AT+PWORD: Set password, max 9 digits
1840 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1841 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1842 +* AT+CFG: Print all settings
1753 1753  )))
1754 1754  
1755 -(((
1756 -AT+<CMD>=?       :  Get the value
1757 -)))
1758 1758  
1759 -(((
1760 -ATZ: Trig a reset of the MCU
1761 -)))
1762 -
1763 -(((
1764 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1765 -)))
1766 -
1767 -(((
1768 -AT+DEUI: Get or Set the Device EUI
1769 -)))
1770 -
1771 -(((
1772 -AT+DADDR: Get or Set the Device Address
1773 -)))
1774 -
1775 -(((
1776 -AT+APPKEY: Get or Set the Application Key
1777 -)))
1778 -
1779 -(((
1780 -AT+NWKSKEY: Get or Set the Network Session Key
1781 -)))
1782 -
1783 -(((
1784 -AT+APPSKEY:  Get or Set the Application Session Key
1785 -)))
1786 -
1787 -(((
1788 -AT+APPEUI:  Get or Set the Application EUI
1789 -)))
1790 -
1791 -(((
1792 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1793 -)))
1794 -
1795 -(((
1796 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1797 -)))
1798 -
1799 -(((
1800 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1801 -)))
1802 -
1803 -(((
1804 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1805 -)))
1806 -
1807 -(((
1808 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1809 -)))
1810 -
1811 -(((
1812 -AT+RX2FQ: Get or Set the Rx2 window frequency
1813 -)))
1814 -
1815 -(((
1816 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1817 -)))
1818 -
1819 -(((
1820 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1821 -)))
1822 -
1823 -(((
1824 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1825 -)))
1826 -
1827 -(((
1828 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1829 -)))
1830 -
1831 -(((
1832 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1833 -)))
1834 -
1835 -(((
1836 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1837 -)))
1838 -
1839 -(((
1840 -AT+NWKID: Get or Set the Network ID
1841 -)))
1842 -
1843 -(((
1844 -AT+FCU: Get or Set the Frame Counter Uplink
1845 -)))
1846 -
1847 -(((
1848 -AT+FCD: Get or Set the Frame Counter Downlink
1849 -)))
1850 -
1851 -(((
1852 -AT+CLASS: Get or Set the Device Class
1853 -)))
1854 -
1855 -(((
1856 -AT+JOIN: Join network
1857 -)))
1858 -
1859 -(((
1860 -AT+NJS: Get OTAA Join Status
1861 -)))
1862 -
1863 -(((
1864 -AT+SENDB: Send hexadecimal data along with the application port
1865 -)))
1866 -
1867 -(((
1868 -AT+SEND: Send text data along with the application port
1869 -)))
1870 -
1871 -(((
1872 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1873 -)))
1874 -
1875 -(((
1876 -AT+RECV: Print last received data in raw format
1877 -)))
1878 -
1879 -(((
1880 -AT+VER:  Get current image version and Frequency Band
1881 -)))
1882 -
1883 -(((
1884 -AT+CFM: Get or Set the confirmation mode (0-1)
1885 -)))
1886 -
1887 -(((
1888 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1889 -)))
1890 -
1891 -(((
1892 -AT+SNR: Get the SNR of the last received packet
1893 -)))
1894 -
1895 -(((
1896 -AT+RSSI: Get the RSSI of the last received packet
1897 -)))
1898 -
1899 -(((
1900 -AT+TDC: Get or set the application data transmission interval in ms
1901 -)))
1902 -
1903 -(((
1904 -AT+PORT: Get or set the application port
1905 -)))
1906 -
1907 -(((
1908 -AT+DISAT: Disable AT commands
1909 -)))
1910 -
1911 -(((
1912 -AT+PWORD: Set password, max 9 digits
1913 -)))
1914 -
1915 -(((
1916 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1917 -)))
1918 -
1919 -(((
1920 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1921 -)))
1922 -
1923 -(((
1924 -AT+CFG: Print all settings
1925 -)))
1926 -
1927 -
1928 1928  == 4.2 Common AT Command Sequence ==
1929 1929  
1930 1930  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1933,41 +1933,41 @@
1933 1933  
1934 1934  
1935 1935  (((
1936 -(% style="color:blue" %)**If device has not joined network yet:**
1854 +(% style="color:blue" %)**If the device has not joined the network yet:**
1937 1937  )))
1938 1938  )))
1939 1939  
1940 1940  (((
1941 -(% style="background-color:#dcdcdc" %)**123456**
1859 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1942 1942  )))
1943 1943  
1944 1944  (((
1945 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1863 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1946 1946  )))
1947 1947  
1948 1948  (((
1949 -(% style="background-color:#dcdcdc" %)**123456**
1867 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1950 1950  )))
1951 1951  
1952 1952  (((
1953 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1871 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1954 1954  )))
1955 1955  
1956 1956  (((
1957 -(% style="background-color:#dcdcdc" %)**ATZ**
1875 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1958 1958  )))
1959 1959  
1960 1960  
1961 1961  (((
1962 -(% style="color:blue" %)**If device already joined network:**
1880 +(% style="color:blue" %)**If the device has already joined the network:**
1963 1963  )))
1964 1964  
1965 1965  (((
1966 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1884 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1967 1967  )))
1968 1968  
1969 1969  (((
1970 -(% style="background-color:#dcdcdc" %)**ATZ**
1888 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1971 1971  )))
1972 1972  
1973 1973  
... ... @@ -2044,8 +2044,6 @@
2044 2044  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2045 2045  
2046 2046  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2047 -
2048 -
2049 2049  )))
2050 2050  
2051 2051  (((
... ... @@ -2052,9 +2052,6 @@
2052 2052  [[image:1653359097980-169.png||height="188" width="729"]]
2053 2053  )))
2054 2054  
2055 -(((
2056 -
2057 -)))
2058 2058  
2059 2059  === 4.2.3 Change to Class A ===
2060 2060  
... ... @@ -2062,44 +2062,58 @@
2062 2062  (((
2063 2063  (% style="color:blue" %)**If sensor JOINED:**
2064 2064  
2065 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2066 -ATZ**
1978 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1979 +
1980 +(% style="background-color:#dcdcdc" %)**ATZ**
2067 2067  )))
2068 2068  
2069 2069  
2070 2070  = 5. Case Study =
2071 2071  
2072 -== 5.1 Counting how many objects pass in Flow Line ==
1986 +== 5.1 Counting how many objects pass through the flow Line ==
2073 2073  
1988 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2074 2074  
2075 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2076 2076  
2077 -
2078 2078  = 6. FAQ =
2079 2079  
2080 -== 6.1 How to upgrade the image? ==
1993 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2081 2081  
2082 2082  
2083 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1996 +== 6.1 How to update the firmware? ==
2084 2084  
1998 +Dragino frequently releases firmware updates for the LT-22222-L.
1999 +
2000 +Updating your LT-22222-L with the latest firmware version helps to:
2001 +
2085 2085  * Support new features
2086 -* For bug fix
2087 -* Change LoRaWAN bands.
2003 +* Fix bugs
2004 +* Change LoRaWAN frequency bands
2088 2088  
2089 -Below shows the hardware connection for how to upload an image to the LT:
2006 +You will need the following things before proceeding:
2090 2090  
2008 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2009 +* USB to TTL adapter
2010 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2011 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2012 +
2013 +{{info}}
2014 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2015 +{{/info}}
2016 +
2017 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2018 +
2019 +
2091 2091  [[image:1653359603330-121.png]]
2092 2092  
2093 2093  
2094 -(((
2095 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2096 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2097 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2098 -
2023 +Start the STM32 Flash Loader and choose the correct COM port to update.
2099 2099  
2100 2100  (((
2026 +(((
2101 2101  (% style="color:blue" %)**For LT-22222-L**(%%):
2102 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2028 +
2029 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2103 2103  )))
2104 2104  
2105 2105  
... ... @@ -2114,41 +2114,36 @@
2114 2114  [[image:image-20220524104033-15.png]]
2115 2115  
2116 2116  
2117 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2044 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2118 2118  
2119 -
2120 2120  [[image:1653360054704-518.png||height="186" width="745"]]
2121 2121  
2122 2122  
2123 2123  (((
2124 2124  (((
2125 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2126 -
2127 -
2051 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2128 2128  )))
2129 2129  )))
2130 2130  
2131 2131  (((
2132 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2056 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2133 2133  )))
2134 2134  
2135 2135  (((
2136 2136  
2137 2137  
2138 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2139 -
2140 -
2062 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2141 2141  )))
2142 2142  
2143 2143  (((
2144 2144  (((
2145 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2067 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2146 2146  )))
2147 2147  )))
2148 2148  
2149 2149  (((
2150 2150  (((
2151 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2073 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2152 2152  
2153 2153  
2154 2154  )))
... ... @@ -2155,7 +2155,7 @@
2155 2155  )))
2156 2156  
2157 2157  (((
2158 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2080 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2159 2159  
2160 2160  
2161 2161  )))
... ... @@ -2180,13 +2180,21 @@
2180 2180  
2181 2181  (((
2182 2182  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2105 +
2183 2183  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2107 +
2184 2184  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2109 +
2185 2185  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2111 +
2186 2186  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2113 +
2187 2187  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2115 +
2188 2188  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2117 +
2189 2189  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2119 +
2190 2190  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2191 2191  )))
2192 2192  
... ... @@ -2198,147 +2198,142 @@
2198 2198  [[image:1653360498588-932.png||height="485" width="726"]]
2199 2199  
2200 2200  
2201 -== 6.4 How to change the uplink interval ==
2131 +== 6.4 How to change the uplink interval? ==
2202 2202  
2203 -
2204 2204  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2205 2205  
2206 2206  
2207 -== 6.5 Can I see counting event in Serial? ==
2136 +== 6.5 Can I see the counting event in the serial output? ==
2208 2208  
2209 -
2210 2210  (((
2211 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2139 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2212 2212  
2213 2213  
2214 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2142 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2215 2215  
2144 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2216 2216  
2217 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2218 -
2219 2219  
2220 2220  )))
2221 2221  
2222 2222  (((
2223 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2150 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2224 2224  
2152 +* If the device is not properly shut down and is directly powered off.
2153 +* It will default to a power-off state.
2154 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2155 +* After a restart, the status before the power failure will be read from flash.
2225 2225  
2226 -If the device is not shut down, but directly powered off.
2227 2227  
2228 -It will default that this is a power-off state.
2158 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2229 2229  
2230 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2160 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2231 2231  
2232 -After restart, the status before power failure will be read from flash.
2233 2233  
2163 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2234 2234  
2235 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2236 2236  
2166 +== 6.9 Can the LT-22222-L save the RO state? ==
2237 2237  
2238 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2168 +The firmware version must be at least 1.6.0.
2239 2239  
2240 2240  
2241 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2171 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2242 2242  
2173 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2243 2243  
2244 -== 6.9 Can LT22222-L save RO state? ==
2245 2245  
2176 += 7. Troubleshooting =
2246 2246  
2247 -Firmware version needs to be no less than 1.6.0.
2178 +This section provides some known troubleshooting tips.
2248 2248  
2249 -
2250 -= 7. Trouble Shooting =
2180 +
2251 2251  )))
2252 2252  
2253 2253  (((
2254 2254  (((
2255 -== 7.1 Downlink doesn't work, how to solve it? ==
2256 -
2257 -
2185 +== 7.1 Downlink isn't working. How can I solve this? ==
2258 2258  )))
2259 2259  )))
2260 2260  
2261 2261  (((
2262 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2190 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2263 2263  )))
2264 2264  
2265 2265  (((
2266 2266  
2267 2267  
2268 -== 7.2 Have trouble to upload image. ==
2269 -
2270 -
2196 +== 7.2 Having trouble uploading an image? ==
2271 2271  )))
2272 2272  
2273 2273  (((
2274 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2200 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2275 2275  )))
2276 2276  
2277 2277  (((
2278 2278  
2279 2279  
2280 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2281 -
2282 -
2206 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2283 2283  )))
2284 2284  
2285 2285  (((
2286 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2210 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2287 2287  )))
2288 2288  
2289 2289  
2290 -= 8. Order Info =
2214 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2291 2291  
2216 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2217 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2292 2292  
2219 +
2220 += 8. Ordering information =
2221 +
2293 2293  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2294 2294  
2295 2295  (% style="color:#4f81bd" %)**XXX:**
2296 2296  
2297 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2298 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2299 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2300 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2301 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2302 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2303 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2304 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2305 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2226 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2227 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2228 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2229 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2230 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2231 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2232 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2233 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2234 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2306 2306  
2307 -= 9. Packing Info =
2308 2308  
2237 += 9. Packing information =
2309 2309  
2310 -**Package Includes**:
2239 +**Package includes**:
2311 2311  
2312 -* LT-22222-L I/O Controller x 1
2313 -* Stick Antenna for LoRa RF part x 1
2314 -* Bracket for controller x1
2315 -* Program cable x 1
2241 +* 1 x LT-22222-L I/O Controller
2242 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2243 +* 1 x bracket for DIN rail mounting
2244 +* 1 x 3.5mm programming cable
2316 2316  
2317 2317  **Dimension and weight**:
2318 2318  
2319 2319  * Device Size: 13.5 x 7 x 3 cm
2320 -* Device Weight: 105g
2249 +* Device Weight: 105 g
2321 2321  * Package Size / pcs : 14.5 x 8 x 5 cm
2322 -* Weight / pcs : 170g
2251 +* Weight / pcs : 170 g
2323 2323  
2253 +
2324 2324  = 10. Support =
2325 2325  
2326 -
2327 2327  * (((
2328 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2257 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2329 2329  )))
2330 2330  * (((
2331 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2260 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2332 2332  
2333 -
2334 2334  
2335 2335  )))
2336 2336  
2337 2337  = 11. Reference​​​​​ =
2338 2338  
2339 -
2340 2340  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2341 2341  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2342 2342  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2343 -
2344 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content