Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20240219115718-1.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -15,36 +15,30 @@ 15 15 16 16 = 1.Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,163 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 186 * Remote configure parameters via LoRa Downlink 187 - 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 - 208 208 == 1.5 Hardware Variants == 209 209 210 210 211 211 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 212 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 213 213 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 214 214 (% style="text-align:center" %) 215 215 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -222,93 +222,140 @@ 222 222 * 1 x Counting Port 223 223 ))) 224 224 225 -= 2. PowerONDevice =131 += 2. Assembling the Device = 226 226 133 +== 2.1 What is included in the package? == 227 227 228 -((( 229 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 230 -))) 135 +The package includes the following items: 231 231 232 -((( 233 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 234 234 235 - 236 -))) 142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise. 237 237 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 238 238 [[image:1653297104069-180.png]] 239 239 240 240 241 241 = 3. Operation Mode = 242 242 243 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 244 244 184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 245 245 246 -((( 247 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 248 -))) 186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 249 249 250 -((( 251 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 252 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 253 253 190 +== 3.2 Registering with a LoRaWAN network server == 254 254 255 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 256 256 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 257 257 258 -((( 259 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 260 260 261 - 262 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 263 263 264 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 265 265 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 266 266 267 -((( 268 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 269 269 270 - 271 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options available: 272 272 273 -((( 274 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 275 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 276 276 277 -((( 278 -Each LT is shipped with a sticker with the default device EUI as below: 279 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches with your device. 280 280 281 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 282 282 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 283 283 284 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 285 285 286 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 287 287 288 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches with your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 289 289 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 290 290 291 -**Add APP KEY and DEV EUI** 292 292 293 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 294 294 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 295 295 296 296 297 -((( 298 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 252 +==== Joining ==== 299 299 300 - 301 -))) 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 302 302 303 303 [[image:1653298044601-602.png||height="405" width="709"]] 304 304 305 305 306 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 307 307 308 308 309 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 310 310 311 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 312 312 313 313 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 314 314 ... ... @@ -324,10 +324,10 @@ 324 324 325 325 326 326 ((( 327 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %) 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 330 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 331 331 |Value|((( 332 332 AVI1 voltage 333 333 )))|((( ... ... @@ -342,25 +342,25 @@ 342 342 ))) 343 343 344 344 ((( 345 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1 .Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 346 346 347 347 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 348 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 349 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 350 350 ))) 351 351 352 -* RO is for relay. ROx=1 : close ,ROx=0 always open.353 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 354 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 355 355 356 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 357 357 358 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 359 359 360 360 361 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 362 362 363 -AVI1 channel voltage is 0x04AB/1000=1195 (DEC)/1000=1.195V316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 364 364 365 365 AVI2 channel voltage is 0x04AC/1000=1.196V 366 366 ... ... @@ -368,39 +368,38 @@ 368 368 369 369 ACI2 channel current is 0x1300/1000=4.864mA 370 370 371 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= 10101010(b) means, 372 372 373 -* [1] RO1 relay channel is close and the RO1 LED is ON. 374 -* [0] RO2 relay channel is open and RO2 LED is OFF ;375 - 376 -* *LT22222-L:**377 - 378 -* [1]DI2channelishigh inputand DI2LEDis ON;379 -* [0]DI1channelis lowinput;380 - 381 -* [0] DO3 channel output state 382 -** DO3 is float in case no load between DO3 and V+. ;326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON. 327 +* [0] RO2 relay channel is open, and RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is low, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is floating when there is no load between DI1 and V+. 332 +** DI1 is high when there is load between DI1 and V+. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 channel output state: 335 +** DO3 is float in case no load between DO3 and V+. 383 383 ** DO3 is high in case there is load between DO3 and V+. 384 -** DO3 LED is offin both case385 -* [1] DO2 channel output is low and DO2 LED is ON. 386 -* [0] DO1 channel output state 387 -** DO1 is float case no load between DO1 and V+.;388 -** DO1 is high incasethere is load between DO1 and V+.389 -** DO1 LED is offin both case337 +** DO3 LED is OFF in both case 338 +* [1] DO2 channel output is low, and the DO2 LED is ON. 339 +* [0] DO1 channel output state: 340 +** DO1 is floating when there is no load between DO1 and V+. 341 +** DO1 is high when there is load between DO1 and V+. 342 +** DO1 LED is OFF in both case. 390 390 391 - 392 392 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 393 393 394 394 395 395 ((( 396 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 397 397 ))) 398 398 399 399 ((( 400 -T otal:11 bytespayload352 +The uplink payload is 11 bytes long. 401 401 402 402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 403 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**355 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 404 404 |Value|COUNT1|COUNT2 |DIDORO*|((( 405 405 Reserve 406 406 )))|MOD ... ... @@ -407,27 +407,28 @@ 407 407 ))) 408 408 409 409 ((( 410 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1 .Totally1bytesas below362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 411 411 412 412 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 413 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 414 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 415 415 416 -RO is for relay. ROx=1 : close ,ROx=0 always open.368 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 417 417 ))) 418 418 419 -* FIRST: Indicate this is the first packet after join network. 420 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 371 +* FIRST: Indicates that this is the first packet after joining the network. 372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 421 421 422 422 ((( 423 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 376 + 377 + 424 424 ))) 425 425 426 426 ((( 427 -**To usecountingmode, please run:**381 +**To activate this mode, please run the following AT command:** 428 428 ))) 429 429 430 - 431 431 ((( 432 432 (% class="box infomessage" %) 433 433 ((( ... ... @@ -446,17 +446,17 @@ 446 446 ((( 447 447 **For LT22222-L:** 448 448 449 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (set DI1 port to trigger on low level, valid signal is 100ms) ** 402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) ** 450 450 451 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (set DI1 port to trigger on high level, valid signal is 100ms 404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) ** 452 452 453 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (set DI2 port to trigger on low level, valid signal is 100ms) ** 406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) ** 454 454 455 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (set DI2 port to trigger on high level, valid signal is 100ms 408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) ** 456 456 457 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (Set COUNT1 value to 60)** 410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (Set the COUNT1 value to 60)** 458 458 459 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** (Set COUNT2 value to 60)** 412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** (Set the COUNT2 value to 60)** 460 460 ))) 461 461 462 462 ... ... @@ -463,10 +463,10 @@ 463 463 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 464 464 465 465 466 -**LT22222-L**: This mode the DI1 is used as a counting pin.419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 467 467 468 468 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 469 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**422 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 470 470 |Value|COUNT1|((( 471 471 ACI1 Current 472 472 )))|((( ... ... @@ -474,16 +474,16 @@ 474 474 )))|DIDORO*|Reserve|MOD 475 475 476 476 ((( 477 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1 .Totally1bytesas below430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 478 478 479 479 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 480 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 481 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 482 482 ))) 483 483 484 -* RO is for relay. ROx=1 : close ,ROx=0 always open.485 -* FIRST: Indicate this is the first packet after join network. 486 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 437 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 438 +* FIRST: Indicates that this is the first packet after joining the network. 439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 487 487 488 488 ((( 489 489 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** ... ... @@ -491,7 +491,7 @@ 491 491 492 492 493 493 ((( 494 -**To usecountingmode, please run:**447 +**To activate this mode, please run the following AT command:** 495 495 ))) 496 496 497 497 ((( ... ... @@ -504,7 +504,9 @@ 504 504 ))) 505 505 506 506 ((( 507 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 460 +AT Commands for counting: 461 + 462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'. 508 508 ))) 509 509 510 510 ... ... @@ -512,14 +512,14 @@ 512 512 513 513 514 514 ((( 515 -**LT22222-L**: This mode the DI1 is used as a counting pin.470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 516 516 ))) 517 517 518 518 ((( 519 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 520 520 521 521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 522 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**477 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 523 523 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 524 524 Reserve 525 525 )))|MOD ... ... @@ -526,16 +526,16 @@ 526 526 ))) 527 527 528 528 ((( 529 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1 .Totally1bytesas below484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 530 530 531 531 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 532 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 533 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 534 534 ))) 535 535 536 -* RO is for relay. ROx=1 : close ,ROx=0 always open.537 -* FIRST: Indicate this is the first packet after join network. 538 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 491 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 492 +* FIRST: Indicates that this is the first packet after joining the network. 493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 539 539 540 540 ((( 541 541 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** ... ... @@ -544,7 +544,7 @@ 544 544 ))) 545 545 546 546 ((( 547 -**To use this mode, please run:**502 +**To activate this mode, please run the following AT command:** 548 548 ))) 549 549 550 550 ((( ... ... @@ -561,9 +561,9 @@ 561 561 ))) 562 562 563 563 ((( 564 -** Plusbelow command for AVI1 Counting:**519 +**In addition to that, below are the commands for AVI1 Counting:** 565 565 566 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** 521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (set AVI Count to 60)** 567 567 568 568 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 569 569 ... ... @@ -579,7 +579,7 @@ 579 579 **LT22222-L**: This mode the DI1 is used as a counting pin. 580 580 581 581 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 582 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**537 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 583 583 |Value|((( 584 584 AVI1 voltage 585 585 )))|((( ... ... @@ -598,7 +598,7 @@ 598 598 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 599 599 ))) 600 600 601 -* RO is for relay. ROx=1 : close ,ROx=0 always open.556 +* RO is for relay. ROx=1 : close, ROx=0 always open. 602 602 * FIRST: Indicate this is the first packet after join network. 603 603 * ((( 604 604 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. ... ... @@ -641,7 +641,6 @@ 641 641 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type 642 642 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.** 643 643 644 - 645 645 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 646 646 647 647 ... ... @@ -716,7 +716,7 @@ 716 716 MOD6 Payload : total 11 bytes payload 717 717 718 718 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 719 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**673 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 720 720 |Value|((( 721 721 TRI_A FLAG 722 722 )))|((( ... ... @@ -1044,7 +1044,7 @@ 1044 1044 01: Low, 00: High , 11: No action 1045 1045 1046 1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1047 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**1001 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1048 1048 |02 01 00 11|Low|High|No Action 1049 1049 |02 00 11 01|High|No Action|Low 1050 1050 |02 11 01 00|No Action|Low|High ... ... @@ -1087,7 +1087,7 @@ 1087 1087 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1088 1088 1089 1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1090 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1091 1091 |0x01|DO1 set to low 1092 1092 |0x00|DO1 set to high 1093 1093 |0x11|DO1 NO Action ... ... @@ -1095,7 +1095,7 @@ 1095 1095 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1096 1096 1097 1097 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1098 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1052 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1099 1099 |0x01|DO2 set to low 1100 1100 |0x00|DO2 set to high 1101 1101 |0x11|DO2 NO Action ... ... @@ -1103,7 +1103,7 @@ 1103 1103 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1104 1104 1105 1105 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1106 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1060 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1107 1107 |0x01|DO3 set to low 1108 1108 |0x00|DO3 set to high 1109 1109 |0x11|DO3 NO Action ... ... @@ -1140,7 +1140,7 @@ 1140 1140 1141 1141 1142 1142 1143 -==== 3.4.2. 1097 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1144 1144 1145 1145 1146 1146 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1158,10 +1158,10 @@ 1158 1158 ))) 1159 1159 1160 1160 ((( 1161 -0 1: Close , 00: Open , 11: No action1115 +00: Close , 01: Open , 11: No action 1162 1162 1163 1163 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1164 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1118 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1165 1165 |03 00 11|Open|No Action 1166 1166 |03 01 11|Close|No Action 1167 1167 |03 11 00|No Action|Open ... ... @@ -1401,57 +1401,73 @@ 1401 1401 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1402 1402 1403 1403 1404 -== 3.5 Integrat ewithMydevice==1358 +== 3.5 Integrating with ThingsEye.io == 1405 1405 1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1406 1406 1407 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1362 +=== 3.5.1 Configuring The Things Stack Sandbox === 1408 1408 1409 - (((1410 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1411 - )))1364 +* Go to your Application and select MQTT under Integrations. 1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1412 1412 1413 -((( 1414 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1415 1415 1416 - 1417 -))) 1370 +=== 3.5.2 Configuring ThingsEye.io === 1418 1418 1419 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1372 +* Login to your thingsEye.io account. 1373 +* Under the Integrations center, click Integrations. 1374 +* Click the Add integration button (the button with the + symbol). 1420 1420 1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1421 1421 1422 1422 1423 - [[image:image-20220719110247-2.png||height="388"width="683"]]1379 +On the Add integration page configure the following: 1424 1424 1381 +Basic settings: 1425 1425 1426 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1383 +* Select The Things Stack Community from the Integration type list. 1384 +* Enter a suitable name for your integration in the Name box or keep the default name. 1385 +* Click the Next button. 1427 1427 1428 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1429 1429 1430 - Search underThethingsnetwork1389 +Uplink Data converter: 1431 1431 1432 -[[image:1653356838789-523.png||height="337" width="740"]] 1391 +* Click the Create New button if it is not selected by default. 1392 +* Click the JavaScript button. 1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1394 +* Click the Next button. 1433 1433 1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1434 1434 1398 +Downlink Data converter (this is an optional step): 1435 1435 1436 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1400 +* Click the Create new button if it is not selected by default. 1401 +* Click the JavaScript button. 1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1403 +* Click the Next button. 1437 1437 1438 -[[image:i mage-20220524094909-1.png||height="335" width="729"]]1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1439 1439 1407 +Connection: 1440 1440 1441 -[[image:image-20220524094909-2.png||height="337" width="729"]] 1409 +* Choose Region from the Host type. 1410 +* Enter the cluster of your The Things Stack in the Region textbox. 1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1413 +* Click the Add button. 1442 1442 1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1443 1443 1444 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1445 1445 1418 +Your integration is added to the integrations list and it will display on the Integrations page. 1446 1446 1447 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1448 1448 1449 1449 1450 - [[image:image-20220524094909-5.png||height="341" width="734"]]1423 +== 3.6 Interface Details == 1451 1451 1452 - 1453 -== 3.6 Interface Detail == 1454 - 1455 1455 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1456 1456 1457 1457 ... ... @@ -1460,16 +1460,16 @@ 1460 1460 [[image:1653356991268-289.png]] 1461 1461 1462 1462 1463 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1433 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1464 1464 1465 1465 1466 1466 ((( 1467 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1468 1468 ))) 1469 1469 1470 1470 ((( 1471 1471 ((( 1472 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes. 1473 1473 1474 1474 1475 1475 ))) ... ... @@ -1479,7 +1479,7 @@ 1479 1479 1480 1480 ((( 1481 1481 ((( 1482 - When use need1452 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1483 1483 ))) 1484 1484 ))) 1485 1485 ... ... @@ -1488,22 +1488,22 @@ 1488 1488 ))) 1489 1489 1490 1490 ((( 1491 -(% style="color:blue" %)**Example1**(%%): Connect to a Low1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor. 1492 1492 ))) 1493 1493 1494 1494 ((( 1495 -This type of sensor willoutput a low signalGNDwhen active.1465 +This type of sensors outputs a low (GND) signal when active. 1496 1496 ))) 1497 1497 1498 1498 * ((( 1499 -Connect sensor's output to DI1- 1469 +Connect the sensor's output to DI1- 1500 1500 ))) 1501 1501 * ((( 1502 -Connect sensor's VCC to DI1+. 1472 +Connect the sensor's VCC to DI1+. 1503 1503 ))) 1504 1504 1505 1505 ((( 1506 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1507 1507 ))) 1508 1508 1509 1509 ((( ... ... @@ -1511,7 +1511,7 @@ 1511 1511 ))) 1512 1512 1513 1513 ((( 1514 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1515 1515 ))) 1516 1516 1517 1517 ((( ... ... @@ -1519,22 +1519,22 @@ 1519 1519 ))) 1520 1520 1521 1521 ((( 1522 -(% style="color:blue" %)**Example2**(%%): Connect to a High1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor. 1523 1523 ))) 1524 1524 1525 1525 ((( 1526 -This type of sensor willoutput a high signal (example24v) when active.1496 +This type of sensors outputs a high signal (e.g., 24V) when active. 1527 1527 ))) 1528 1528 1529 1529 * ((( 1530 -Connect sensor's output to DI1+ 1500 +Connect the sensor's output to DI1+ 1531 1531 ))) 1532 1532 * ((( 1533 -Connect sensor's GND DI1-. 1503 +Connect the sensor's GND DI1-. 1534 1534 ))) 1535 1535 1536 1536 ((( 1537 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1538 1538 ))) 1539 1539 1540 1540 ((( ... ... @@ -1542,7 +1542,7 @@ 1542 1542 ))) 1543 1543 1544 1544 ((( 1545 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA ,So the LT-22222-L willbe able todetect this high1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal. 1546 1546 ))) 1547 1547 1548 1548 ((( ... ... @@ -1550,22 +1550,22 @@ 1550 1550 ))) 1551 1551 1552 1552 ((( 1553 -(% style="color:blue" %)**Example3**(%%): Connect to a 220 vhigh1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor. 1554 1554 ))) 1555 1555 1556 1556 ((( 1557 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1558 1558 ))) 1559 1559 1560 1560 * ((( 1561 -Connect sensor's output to DI1+ with a serial50K resistor1531 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1562 1562 ))) 1563 1563 * ((( 1564 -Connect sensor's GND DI1-. 1534 +Connect the sensor's GND DI1-. 1565 1565 ))) 1566 1566 1567 1567 ((( 1568 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1569 1569 ))) 1570 1570 1571 1571 ((( ... ... @@ -1573,34 +1573,37 @@ 1573 1573 ))) 1574 1574 1575 1575 ((( 1576 -If sensor output is 220 v, theSothe LT-22222-L will be able to detect this highsafely.1546 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K. = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1577 1577 ))) 1578 1578 1579 1579 1580 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1581 1581 1582 -From aboveDI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1583 1583 1584 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1585 1585 1586 1586 [[image:image-20230616235145-1.png]] 1587 1587 1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1588 1588 1560 +[[image:image-20240219115718-1.png]] 1589 1589 1590 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1591 1591 1563 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1592 1592 1593 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v. 1594 1594 1595 -(% style="color: red" %)**Note: DOpins goto floatwhendevice ispoweroff.**1566 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1596 1596 1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.** 1569 + 1597 1597 [[image:1653357531600-905.png]] 1598 1598 1599 1599 1600 -=== 3.6.4 Analog Input Interface === 1573 +=== 3.6.4 Analog Input Interfaces === 1601 1601 1602 1602 1603 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1576 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1604 1604 1605 1605 1606 1606 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1607,14 +1607,14 @@ 1607 1607 1608 1608 [[image:1653357592296-182.png]] 1609 1609 1610 -Example toconnect a 4~~20mA sensor1583 +Example: Connecting a 4~~20mA sensor 1611 1611 1612 -We take the wind speed sensor as an example for reference only.1585 +We will use the wind speed sensor as an example for reference only. 1613 1613 1614 1614 1615 1615 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1616 1616 1617 -(% style="color:red" %)**Red: 12~~24 v**1590 +(% style="color:red" %)**Red: 12~~24V** 1618 1618 1619 1619 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1620 1620 ... ... @@ -1627,7 +1627,7 @@ 1627 1627 [[image:1653357648330-671.png||height="155" width="733"]] 1628 1628 1629 1629 1630 -Example connectedto a regulated power supply to measure voltage1603 +Example: Connecting to a regulated power supply to measure voltage 1631 1631 1632 1632 [[image:image-20230608101532-1.png||height="606" width="447"]] 1633 1633 ... ... @@ -1636,7 +1636,7 @@ 1636 1636 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1637 1637 1638 1638 1639 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1640 1640 1641 1641 (% style="color:red" %)**Red: 12~~24v** 1642 1642 ... ... @@ -1647,9 +1647,9 @@ 1647 1647 1648 1648 1649 1649 ((( 1650 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1623 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1651 1651 1652 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1625 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1653 1653 ))) 1654 1654 1655 1655 [[image:image-20220524100215-9.png]] ... ... @@ -1661,12 +1661,9 @@ 1661 1661 == 3.7 LEDs Indicators == 1662 1662 1663 1663 1664 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1665 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1666 1666 |**PWR**|Always on if there is power 1667 -|**SYS**|((( 1668 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1669 -))) 1670 1670 |**TX**|((( 1671 1671 ((( 1672 1672 Device boot: TX blinks 5 times. ... ... @@ -1681,39 +1681,31 @@ 1681 1681 ))) 1682 1682 ))) 1683 1683 |**RX**|RX blinks once when receive a packet. 1684 -|**DO1**| 1685 -|**DO2**| 1686 -|**DO3**| 1687 -|**DI2**|((( 1688 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high 1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high 1656 +|**DI1**|((( 1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low 1689 1689 ))) 1690 1690 |**DI2**|((( 1691 -For LT-22222-L: ON when DI2 is high, LOW 1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1692 1692 ))) 1693 -|**DI2**|((( 1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1695 -))) 1696 -|**RO1**| 1697 -|**RO2**| 1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open 1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open 1698 1698 1699 -= 4. Us eAT Command =1665 += 4. Using AT Command = 1700 1700 1701 -== 4.1 AccessATCommand==1667 +== 4.1 Connecting the LT-22222-L to a computer == 1702 1702 1703 1703 1704 1704 ((( 1705 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1671 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1706 1706 ))) 1707 1707 1708 -((( 1709 - 1710 -))) 1711 - 1712 1712 [[image:1653358238933-385.png]] 1713 1713 1714 1714 1715 1715 ((( 1716 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1717 1717 ))) 1718 1718 1719 1719 [[image:1653358355238-883.png]] ... ... @@ -1720,10 +1720,12 @@ 1720 1720 1721 1721 1722 1722 ((( 1723 - More detailAT Commandmanual can be found at1685 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1724 1724 ))) 1725 1725 1726 1726 ((( 1689 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1690 + 1727 1727 AT+<CMD>? : Help on <CMD> 1728 1728 ))) 1729 1729 ... ... @@ -2027,7 +2027,6 @@ 2027 2027 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2028 2028 2029 2029 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 2030 - 2031 2031 ))) 2032 2032 2033 2033 ((( ... ... @@ -2096,7 +2096,6 @@ 2096 2096 2097 2097 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is: 2098 2098 2099 - 2100 2100 [[image:1653360054704-518.png||height="186" width="745"]] 2101 2101 2102 2102 ... ... @@ -2160,13 +2160,21 @@ 2160 2160 2161 2161 ((( 2162 2162 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2125 + 2163 2163 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2127 + 2164 2164 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2129 + 2165 2165 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2131 + 2166 2166 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2133 + 2167 2167 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2135 + 2168 2168 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2137 + 2169 2169 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2139 + 2170 2170 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2171 2171 ))) 2172 2172 ... ... @@ -2178,7 +2178,7 @@ 2178 2178 [[image:1653360498588-932.png||height="485" width="726"]] 2179 2179 2180 2180 2181 -== 6.4 How to change the uplink interval ?==2151 +== 6.4 How to change the uplink interval? == 2182 2182 2183 2183 2184 2184 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] ... ... @@ -2227,6 +2227,12 @@ 2227 2227 Firmware version needs to be no less than 1.6.0. 2228 2228 2229 2229 2200 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2201 + 2202 + 2203 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2204 + 2205 + 2230 2230 = 7. Trouble Shooting = 2231 2231 ))) 2232 2232 ... ... @@ -2267,6 +2267,13 @@ 2267 2267 ))) 2268 2268 2269 2269 2246 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2247 + 2248 + 2249 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2250 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2251 + 2252 + 2270 2270 = 8. Order Info = 2271 2271 2272 2272 ... ... @@ -2320,5 +2320,3 @@ 2320 2320 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2321 2321 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2322 2322 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2323 - 2324 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content