Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20240219115718-1.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -13,38 +13,32 @@ 13 13 14 14 15 15 16 -= 1.Introduction = 20 += 1. Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,162 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high-efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 -* Remote configure parameters via LoRa Downlink 187 - 101 +* Remotely configure parameters via LoRaWAN Downlink 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 207 == 1.5 Hardware Variants == 208 208 209 209 210 -(% border="1" style="background-color:#f2f2f2; width:500px" %) 211 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 212 212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 213 213 (% style="text-align:center" %) 214 214 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -221,93 +221,140 @@ 221 221 * 1 x Counting Port 222 222 ))) 223 223 224 -= 2. PowerONDevice =131 += 2. Assembling the Device = 225 225 133 +== 2.1 What is included in the package? == 226 226 227 -((( 228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 229 -))) 135 +The package includes the following items: 230 230 231 -((( 232 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 233 233 234 - 235 -))) 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 236 236 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 237 237 [[image:1653297104069-180.png]] 238 238 239 239 240 240 = 3. Operation Mode = 241 241 242 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 243 243 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 244 244 245 -((( 246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 247 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 248 248 249 -((( 250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 251 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 252 252 190 +== 3.2 Registering with a LoRaWAN network server == 253 253 254 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 255 255 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 256 256 257 -((( 258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 259 259 260 - 261 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 262 262 263 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 264 264 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 265 265 266 -((( 267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 268 268 269 - 270 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 271 271 272 -((( 273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 274 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 275 275 276 -((( 277 -Each LT is shipped with a sticker with the default device EUI as below: 278 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 279 279 280 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 281 281 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 282 282 283 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 284 284 285 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 286 286 287 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 288 288 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 289 289 290 -**Add APP KEY and DEV EUI** 291 291 292 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 293 293 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 294 294 295 295 296 -((( 297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 252 +==== Joining ==== 298 298 299 - 300 -))) 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 301 301 302 302 [[image:1653298044601-602.png||height="405" width="709"]] 303 303 304 304 305 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 306 306 307 307 308 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 309 309 310 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 311 311 312 312 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 313 313 ... ... @@ -323,10 +323,10 @@ 323 323 324 324 325 325 ((( 326 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 327 327 328 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)329 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 330 330 |Value|((( 331 331 AVI1 voltage 332 332 )))|((( ... ... @@ -341,25 +341,25 @@ 341 341 ))) 342 342 343 343 ((( 344 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 345 345 346 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)347 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 348 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 349 349 ))) 350 350 351 -* RO is for relay. ROx=1 ,ROx=0 always open.352 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 353 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 354 354 355 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 356 356 357 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 358 358 359 359 360 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 361 361 362 -AVI1 channel voltage is 0x04AB/1000=1195 (DEC)/1000=1.195V316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 363 363 364 364 AVI2 channel voltage is 0x04AC/1000=1.196V 365 365 ... ... @@ -367,38 +367,35 @@ 367 367 368 368 ACI2 channel current is 0x1300/1000=4.864mA 369 369 370 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= **10101010**(b) means, 371 371 372 -* [1] RO1 relay channel is close and the RO1 LED is ON. 373 -* [0] RO2 relay channel is open and RO2 LED is OFF; 326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 - not used for LT-22222-L. 335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 336 +* [0] DO1 channel output state: 337 +** DO1 is FLOATING when there is no load between DO1 and V+. 338 +** DO1 is HIGH when there is a load between DO1 and V+. 339 +** DO1 LED is OFF in both cases. 374 374 375 -**LT22222-L:** 376 - 377 -* [1] DI2 channel is high input and DI2 LED is ON; 378 -* [0] DI1 channel is low input; 379 - 380 -* [0] DO3 channel output state 381 -** DO3 is float in case no load between DO3 and V+.; 382 -** DO3 is high in case there is load between DO3 and V+. 383 -** DO3 LED is off in both case 384 -* [1] DO2 channel output is low and DO2 LED is ON. 385 -* [0] DO1 channel output state 386 -** DO1 is float in case no load between DO1 and V+.; 387 -** DO1 is high in case there is load between DO1 and V+. 388 -** DO1 LED is off in both case 389 - 390 390 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 391 391 392 392 393 393 ((( 394 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 395 395 ))) 396 396 397 397 ((( 398 -T otal:11 bytespayload349 +The uplink payload is 11 bytes long. 399 399 400 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)401 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 402 402 |Value|COUNT1|COUNT2 |DIDORO*|((( 403 403 Reserve 404 404 )))|MOD ... ... @@ -405,40 +405,36 @@ 405 405 ))) 406 406 407 407 ((( 408 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 409 409 410 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)411 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 412 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 361 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 413 413 414 -RO is for relay. ROx=1 ,ROx=0 always open.365 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 415 415 ))) 416 416 417 -* FIRST: Indicate this is the first packet after join network. 418 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 368 +* FIRST: Indicates that this is the first packet after joining the network. 369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 419 419 420 420 ((( 421 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 422 -))) 372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 423 423 424 -((( 425 425 375 +))) 426 426 427 -**To use counting mode, please run:** 377 +((( 378 +**To activate this mode, run the following AT commands:** 428 428 ))) 429 429 381 +((( 430 430 (% class="box infomessage" %) 431 431 ((( 432 -((( 433 -((( 434 434 **AT+MOD=2** 435 -))) 436 436 437 -((( 438 438 **ATZ** 439 439 ))) 440 440 ))) 441 -))) 442 442 443 443 ((( 444 444 ... ... @@ -449,17 +449,17 @@ 449 449 ((( 450 450 **For LT22222-L:** 451 451 452 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 453 453 454 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 455 455 456 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 457 457 458 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 459 459 460 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 461 461 462 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 463 463 ))) 464 464 465 465 ... ... @@ -466,10 +466,10 @@ 466 466 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 467 467 468 468 469 -**LT22222-L**: This mode the DI1 is used as a counting pin.416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 470 470 471 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)472 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 473 473 |Value|COUNT1|((( 474 474 ACI1 Current 475 475 )))|((( ... ... @@ -477,41 +477,39 @@ 477 477 )))|DIDORO*|Reserve|MOD 478 478 479 479 ((( 480 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 481 481 482 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)483 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 484 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 429 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 485 485 ))) 486 486 487 -* RO is for relay. ROx=1 ,ROx=0 always open.488 -* FIRST: Indicate this is the first packet after join network. 489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 434 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 435 +* FIRST: Indicates that this is the first packet after joining the network. 436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 490 490 491 491 ((( 492 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 493 493 ))) 494 494 495 495 496 496 ((( 497 -**To usecountingmode,pleaserun:**444 +**To activate this mode, run the following AT commands:** 498 498 ))) 499 499 447 +((( 500 500 (% class="box infomessage" %) 501 501 ((( 502 -((( 503 -((( 504 504 **AT+MOD=3** 505 -))) 506 506 507 -((( 508 508 **ATZ** 509 509 ))) 510 510 ))) 511 -))) 512 512 513 513 ((( 514 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 457 +AT Commands for counting: 458 + 459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 515 515 ))) 516 516 517 517 ... ... @@ -519,14 +519,14 @@ 519 519 520 520 521 521 ((( 522 -**LT22222-L**: This mode the DI1 is used as a counting pin.467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 523 523 ))) 524 524 525 525 ((( 526 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 527 527 528 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)529 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**473 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 530 530 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 531 531 Reserve 532 532 )))|MOD ... ... @@ -533,55 +533,50 @@ 533 533 ))) 534 534 535 535 ((( 536 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 537 537 538 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)539 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 540 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 483 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 541 541 ))) 542 542 543 -* RO is for relay. ROx=1 ,ROx=0 always open.544 -* FIRST: Indicate this is the first packet after join network. 545 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 488 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 489 +* FIRST: Indicates that this is the first packet after joining the network. 490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 546 546 547 547 ((( 548 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 549 -))) 493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 550 550 551 -((( 552 552 496 +))) 553 553 554 -**To use this mode, please run:** 498 +((( 499 +**To activate this mode, run the following AT commands:** 555 555 ))) 556 556 502 +((( 557 557 (% class="box infomessage" %) 558 558 ((( 559 -((( 560 -((( 561 561 **AT+MOD=4** 562 -))) 563 563 564 -((( 565 565 **ATZ** 566 566 ))) 567 567 ))) 568 -))) 569 569 570 - 571 571 ((( 572 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 573 573 ))) 574 574 575 575 ((( 576 -** Plusbelow command for AVI1 Counting:**516 +**In addition to that, below are the commands for AVI1 Counting:** 577 577 578 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 579 579 580 580 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 581 581 582 582 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 583 583 584 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 585 585 ))) 586 586 587 587 ... ... @@ -588,10 +588,10 @@ 588 588 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 589 589 590 590 591 -**LT22222-L**: This mode the DI1 is used as a counting pin.531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 592 592 593 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)594 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**533 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 595 595 |Value|((( 596 596 AVI1 voltage 597 597 )))|((( ... ... @@ -603,44 +603,38 @@ 603 603 )))|MOD 604 604 605 605 ((( 606 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 607 607 608 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)609 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 610 610 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 611 611 ))) 612 612 613 -* RO is for relay. ROx=1 ,ROx=0 always open.614 -* FIRST: Indicate this is the first packet after join network. 553 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 554 +* FIRST: Indicates that this is the first packet after joining the network. 615 615 * ((( 616 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 617 617 ))) 618 618 619 619 ((( 620 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 621 621 ))) 622 622 623 623 ((( 624 - 625 - 626 -**To use this mode, please run:** 564 +**To activate this mode, run the following AT commands:** 627 627 ))) 628 628 567 +((( 629 629 (% class="box infomessage" %) 630 630 ((( 631 -((( 632 -((( 633 633 **AT+MOD=5** 634 -))) 635 635 636 -((( 637 637 **ATZ** 638 638 ))) 639 639 ))) 640 -))) 641 641 642 642 ((( 643 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 644 644 ))) 645 645 646 646 ... ... @@ -647,23 +647,22 @@ 647 647 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 648 648 649 649 650 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 651 651 652 -For example, if u serhasconfiguredbelow commands:586 +For example, if you configured the following commands: 653 653 654 654 * **AT+MOD=1 ** **~-~->** The normal working mode 655 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 589 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 656 656 657 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 658 658 659 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type660 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 661 661 662 662 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 663 663 598 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 664 664 665 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 666 - 667 667 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 668 668 669 669 ... ... @@ -674,9 +674,8 @@ 674 674 AT+AVLIM=5000,0,0,0 (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore) 675 675 676 676 610 +(% style="color:#4f81bd" %)**Trigger based on current**: 677 677 678 -(% style="color:#4f81bd" %)**Trigger base on current**: 679 - 680 680 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 681 681 682 682 ... ... @@ -685,11 +685,10 @@ 685 685 AT+ACLIM=10000,15000,0,0 (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink) 686 686 687 687 620 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 688 688 689 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:622 +DI status triggers Flag. 690 690 691 -DI status trigger Flag. 692 - 693 693 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 694 694 695 695 ... ... @@ -730,10 +730,10 @@ 730 730 731 731 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 732 732 733 -MOD6 Payload 664 +MOD6 Payload: total 11 bytes payload 734 734 735 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)736 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**666 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 667 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 737 737 |Value|((( 738 738 TRI_A FLAG 739 739 )))|((( ... ... @@ -744,9 +744,9 @@ 744 744 MOD(6) 745 745 ))) 746 746 747 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 678 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1byte as below 748 748 749 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)680 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 750 750 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 751 751 |((( 752 752 AV1_LOW ... ... @@ -775,7 +775,7 @@ 775 775 776 776 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 777 777 778 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)709 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 779 779 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 780 780 |((( 781 781 AV1_LOW ... ... @@ -804,7 +804,7 @@ 804 804 805 805 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below 806 806 807 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)738 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 808 808 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 809 809 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 810 810 ... ... @@ -1061,7 +1061,7 @@ 1061 1061 01: Low, 00: High , 11: No action 1062 1062 1063 1063 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1064 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**995 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1065 1065 |02 01 00 11|Low|High|No Action 1066 1066 |02 00 11 01|High|No Action|Low 1067 1067 |02 11 01 00|No Action|Low|High ... ... @@ -1104,7 +1104,7 @@ 1104 1104 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1105 1105 1106 1106 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1107 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1038 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1108 1108 |0x01|DO1 set to low 1109 1109 |0x00|DO1 set to high 1110 1110 |0x11|DO1 NO Action ... ... @@ -1112,7 +1112,7 @@ 1112 1112 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1113 1113 1114 1114 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1115 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1046 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1116 1116 |0x01|DO2 set to low 1117 1117 |0x00|DO2 set to high 1118 1118 |0x11|DO2 NO Action ... ... @@ -1120,7 +1120,7 @@ 1120 1120 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1121 1121 1122 1122 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1123 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1054 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1124 1124 |0x01|DO3 set to low 1125 1125 |0x00|DO3 set to high 1126 1126 |0x11|DO3 NO Action ... ... @@ -1157,7 +1157,7 @@ 1157 1157 1158 1158 1159 1159 1160 -==== 3.4.2. 1091 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1161 1161 1162 1162 1163 1163 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1175,10 +1175,10 @@ 1175 1175 ))) 1176 1176 1177 1177 ((( 1178 -0 1: Close , 00: Open , 11: No action1109 +00: Closed , 01: Open , 11: No action 1179 1179 1180 1180 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1181 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1112 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1182 1182 |03 00 11|Open|No Action 1183 1183 |03 01 11|Close|No Action 1184 1184 |03 11 00|No Action|Open ... ... @@ -1297,7 +1297,7 @@ 1297 1297 1298 1298 1299 1299 1300 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1231 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1301 1301 1302 1302 1303 1303 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1418,75 +1418,91 @@ 1418 1418 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1419 1419 1420 1420 1421 -== 3.5 Integrat ewithMydevice==1352 +== 3.5 Integrating with ThingsEye.io == 1422 1422 1354 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1423 1423 1424 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1356 +=== 3.5.1 Configuring The Things Stack Sandbox === 1425 1425 1426 - (((1427 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1428 - )))1358 +* Go to your Application and select MQTT under Integrations. 1359 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1360 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1429 1429 1430 -((( 1431 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1362 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1432 1432 1433 - 1434 -))) 1364 +=== 3.5.2 Configuring ThingsEye.io === 1435 1435 1436 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1366 +* Login to your thingsEye.io account. 1367 +* Under the Integrations center, click Integrations. 1368 +* Click the Add integration button (the button with the + symbol). 1437 1437 1370 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1438 1438 1439 1439 1440 - [[image:image-20220719110247-2.png||height="388"width="683"]]1373 +On the Add integration page configure the following: 1441 1441 1375 +Basic settings: 1442 1442 1443 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1377 +* Select The Things Stack Community from the Integration type list. 1378 +* Enter a suitable name for your integration in the Name box or keep the default name. 1379 +* Click the Next button. 1444 1444 1445 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1381 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1446 1446 1447 - Search underThethingsnetwork1383 +Uplink Data converter: 1448 1448 1449 -[[image:1653356838789-523.png||height="337" width="740"]] 1385 +* Click the Create New button if it is not selected by default. 1386 +* Click the JavaScript button. 1387 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1388 +* Click the Next button. 1450 1450 1390 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1451 1451 1392 +Downlink Data converter (this is an optional step): 1452 1452 1453 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1394 +* Click the Create new button if it is not selected by default. 1395 +* Click the JavaScript button. 1396 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1397 +* Click the Next button. 1454 1454 1455 -[[image:i mage-20220524094909-1.png||height="335" width="729"]]1399 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1456 1456 1401 +Connection: 1457 1457 1458 -[[image:image-20220524094909-2.png||height="337" width="729"]] 1403 +* Choose Region from the Host type. 1404 +* Enter the cluster of your The Things Stack in the Region textbox. 1405 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1406 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1407 +* Click the Add button. 1459 1459 1409 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1460 1460 1461 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1462 1462 1412 +Your integration is added to the integrations list and it will display on the Integrations page. 1463 1463 1464 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1414 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1465 1465 1466 1466 1467 - [[image:image-20220524094909-5.png||height="341" width="734"]]1417 +== 3.6 Interface Details == 1468 1468 1469 - 1470 -== 3.6 Interface Detail == 1471 - 1472 1472 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1473 1473 1474 1474 1475 -Support NPN Type sensor1422 +Support NPN-type sensor 1476 1476 1477 1477 [[image:1653356991268-289.png]] 1478 1478 1479 1479 1480 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1427 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1481 1481 1482 1482 1483 1483 ((( 1484 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1431 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1485 1485 ))) 1486 1486 1487 1487 ((( 1488 1488 ((( 1489 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1436 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1490 1490 1491 1491 1492 1492 ))) ... ... @@ -1496,7 +1496,7 @@ 1496 1496 1497 1497 ((( 1498 1498 ((( 1499 - When use need1446 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1500 1500 ))) 1501 1501 ))) 1502 1502 ... ... @@ -1505,22 +1505,22 @@ 1505 1505 ))) 1506 1506 1507 1507 ((( 1508 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1455 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1509 1509 ))) 1510 1510 1511 1511 ((( 1512 -This type of sensor willoutput a low signalGNDwhen active.1459 +This type of sensor outputs a low (GND) signal when active. 1513 1513 ))) 1514 1514 1515 1515 * ((( 1516 -Connect sensor's output to DI1- 1463 +Connect the sensor's output to DI1- 1517 1517 ))) 1518 1518 * ((( 1519 -Connect sensor's VCC to DI1+. 1466 +Connect the sensor's VCC to DI1+. 1520 1520 ))) 1521 1521 1522 1522 ((( 1523 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1470 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1524 1524 ))) 1525 1525 1526 1526 ((( ... ... @@ -1528,7 +1528,7 @@ 1528 1528 ))) 1529 1529 1530 1530 ((( 1531 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1478 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1532 1532 ))) 1533 1533 1534 1534 ((( ... ... @@ -1536,22 +1536,22 @@ 1536 1536 ))) 1537 1537 1538 1538 ((( 1539 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1486 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1540 1540 ))) 1541 1541 1542 1542 ((( 1543 -This type of sensor willoutput a high signal (example24v) when active.1490 +This type of sensor outputs a high signal (e.g., 24V) when active. 1544 1544 ))) 1545 1545 1546 1546 * ((( 1547 -Connect sensor's output to DI1+ 1494 +Connect the sensor's output to DI1+ 1548 1548 ))) 1549 1549 * ((( 1550 -Connect sensor's GND DI1-. 1497 +Connect the sensor's GND DI1-. 1551 1551 ))) 1552 1552 1553 1553 ((( 1554 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1501 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1555 1555 ))) 1556 1556 1557 1557 ((( ... ... @@ -1559,7 +1559,7 @@ 1559 1559 ))) 1560 1560 1561 1561 ((( 1562 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1509 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1563 1563 ))) 1564 1564 1565 1565 ((( ... ... @@ -1567,22 +1567,22 @@ 1567 1567 ))) 1568 1568 1569 1569 ((( 1570 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1517 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1571 1571 ))) 1572 1572 1573 1573 ((( 1574 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1521 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1575 1575 ))) 1576 1576 1577 1577 * ((( 1578 -Connect sensor's output to DI1+ with a serial50K resistor1525 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1579 1579 ))) 1580 1580 * ((( 1581 -Connect sensor's GND DI1-. 1528 +Connect the sensor's GND DI1-. 1582 1582 ))) 1583 1583 1584 1584 ((( 1585 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1532 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1586 1586 ))) 1587 1587 1588 1588 ((( ... ... @@ -1590,34 +1590,37 @@ 1590 1590 ))) 1591 1591 1592 1592 ((( 1593 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1540 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1594 1594 ))) 1595 1595 1596 1596 1597 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1544 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1598 1598 1599 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1546 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1600 1600 1601 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1548 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1602 1602 1603 1603 [[image:image-20230616235145-1.png]] 1604 1604 1552 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1605 1605 1554 +[[image:image-20240219115718-1.png]] 1606 1606 1607 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1608 1608 1557 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1609 1609 1610 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v. 1611 1611 1612 -(% style="color: red" %)**Note: DOpins goto floatwhendevice ispoweroff.**1560 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1613 1613 1562 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1563 + 1614 1614 [[image:1653357531600-905.png]] 1615 1615 1616 1616 1617 -=== 3.6.4 Analog Input Interface === 1567 +=== 3.6.4 Analog Input Interfaces === 1618 1618 1619 1619 1620 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1570 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1621 1621 1622 1622 1623 1623 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1624,14 +1624,14 @@ 1624 1624 1625 1625 [[image:1653357592296-182.png]] 1626 1626 1627 -Example toconnect a 4~~20mA sensor1577 +Example: Connecting a 4~~20mA sensor 1628 1628 1629 -We take the wind speed sensor as an example for reference only.1579 +We will use the wind speed sensor as an example for reference only. 1630 1630 1631 1631 1632 1632 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1633 1633 1634 -(% style="color:red" %)**Red: 12~~24 v**1584 +(% style="color:red" %)**Red: 12~~24V** 1635 1635 1636 1636 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1637 1637 ... ... @@ -1644,7 +1644,7 @@ 1644 1644 [[image:1653357648330-671.png||height="155" width="733"]] 1645 1645 1646 1646 1647 -Example connectedto a regulated power supply to measure voltage1597 +Example: Connecting to a regulated power supply to measure voltage 1648 1648 1649 1649 [[image:image-20230608101532-1.png||height="606" width="447"]] 1650 1650 ... ... @@ -1653,7 +1653,7 @@ 1653 1653 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1654 1654 1655 1655 1656 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1606 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1657 1657 1658 1658 (% style="color:red" %)**Red: 12~~24v** 1659 1659 ... ... @@ -1664,9 +1664,9 @@ 1664 1664 1665 1665 1666 1666 ((( 1667 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1617 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1668 1668 1669 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1619 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1670 1670 ))) 1671 1671 1672 1672 [[image:image-20220524100215-9.png]] ... ... @@ -1678,12 +1678,9 @@ 1678 1678 == 3.7 LEDs Indicators == 1679 1679 1680 1680 1681 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1682 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1631 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1632 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1683 1683 |**PWR**|Always on if there is power 1684 -|**SYS**|((( 1685 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1686 -))) 1687 1687 |**TX**|((( 1688 1688 ((( 1689 1689 Device boot: TX blinks 5 times. ... ... @@ -1697,40 +1697,32 @@ 1697 1697 Transmit a LoRa packet: TX blinks once 1698 1698 ))) 1699 1699 ))) 1700 -|**RX**|RX blinks once when receive a packet. 1701 -|**DO1**| 1702 -|**DO2**| 1703 -|**DO3**| 1704 -|**DI2**|((( 1705 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1647 +|**RX**|RX blinks once when receiving a packet. 1648 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1649 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1650 +|**DI1**|((( 1651 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1706 1706 ))) 1707 1707 |**DI2**|((( 1708 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1654 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1709 1709 ))) 1710 -|**DI2**|((( 1711 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1712 -))) 1713 -|**RO1**| 1714 -|**RO2**| 1656 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1657 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1715 1715 1716 -= 4. Us eAT Command =1659 += 4. Using AT Command = 1717 1717 1718 -== 4.1 AccessATCommand==1661 +== 4.1 Connecting the LT-22222-L to a computer == 1719 1719 1720 1720 1721 1721 ((( 1722 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1665 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1723 1723 ))) 1724 1724 1725 -((( 1726 - 1727 -))) 1728 - 1729 1729 [[image:1653358238933-385.png]] 1730 1730 1731 1731 1732 1732 ((( 1733 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1672 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1734 1734 ))) 1735 1735 1736 1736 [[image:1653358355238-883.png]] ... ... @@ -1737,10 +1737,12 @@ 1737 1737 1738 1738 1739 1739 ((( 1740 - More detailAT Commandmanual can be found at1679 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1741 1741 ))) 1742 1742 1743 1743 ((( 1683 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1684 + 1744 1744 AT+<CMD>? : Help on <CMD> 1745 1745 ))) 1746 1746 ... ... @@ -2044,8 +2044,6 @@ 2044 2044 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2045 2045 2046 2046 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 2047 - 2048 - 2049 2049 ))) 2050 2050 2051 2051 ((( ... ... @@ -2052,9 +2052,6 @@ 2052 2052 [[image:1653359097980-169.png||height="188" width="729"]] 2053 2053 ))) 2054 2054 2055 -((( 2056 - 2057 -))) 2058 2058 2059 2059 === 4.2.3 Change to Class A === 2060 2060 ... ... @@ -2062,17 +2062,18 @@ 2062 2062 ((( 2063 2063 (% style="color:blue" %)**If sensor JOINED:** 2064 2064 2065 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A 2066 -ATZ** 2001 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A** 2002 + 2003 +(% style="background-color:#dcdcdc" %)**ATZ** 2067 2067 ))) 2068 2068 2069 2069 2070 2070 = 5. Case Study = 2071 2071 2072 -== 5.1 Counting how many objects pass inFlow Line ==2009 +== 5.1 Counting how many objects pass through the flow Line == 2073 2073 2074 2074 2075 -Reference Link: [[How to set up to count objects pass 2012 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2076 2076 2077 2077 2078 2078 = 6. FAQ = ... ... @@ -2080,26 +2080,26 @@ 2080 2080 == 6.1 How to upgrade the image? == 2081 2081 2082 2082 2083 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2020 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 2084 2084 2085 -* Support new features 2086 -* F orbugfix2022 +* Support new features. 2023 +* Fix bugs. 2087 2087 * Change LoRaWAN bands. 2088 2088 2089 -Below s howsthe hardware connection forhow toupload an image to the LT:2026 +Below is the hardware connection setup for uploading an image to the LT: 2090 2090 2091 2091 [[image:1653359603330-121.png]] 2092 2092 2093 2093 2094 2094 ((( 2095 -(% style="color: blue" %)**Step1**(%%)**:** Download [[flashloader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].2096 -(% style="color: blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].2097 -(% style="color: blue" %)**Step3**(%%)**:** Openflashloader;choose the correct COM port to update.2032 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2033 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2034 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 2098 2098 2099 2099 2100 2100 ((( 2101 2101 (% style="color:blue" %)**For LT-22222-L**(%%): 2102 -Hold down the PRO button andthen momentarily press the RST reset buttonand the (% style="color:red" %)**DO1led**(%%)on, itmeans the device is in download mode.2039 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode. 2103 2103 ))) 2104 2104 2105 2105 ... ... @@ -2114,9 +2114,8 @@ 2114 2114 [[image:image-20220524104033-15.png]] 2115 2115 2116 2116 2117 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2054 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 2118 2118 2119 - 2120 2120 [[image:1653360054704-518.png||height="186" width="745"]] 2121 2121 2122 2122 ... ... @@ -2129,13 +2129,13 @@ 2129 2129 ))) 2130 2130 2131 2131 ((( 2132 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2068 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2133 2133 ))) 2134 2134 2135 2135 ((( 2136 2136 2137 2137 2138 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2074 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2139 2139 2140 2140 2141 2141 ))) ... ... @@ -2142,13 +2142,13 @@ 2142 2142 2143 2143 ((( 2144 2144 ((( 2145 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2081 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2146 2146 ))) 2147 2147 ))) 2148 2148 2149 2149 ((( 2150 2150 ((( 2151 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2087 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2152 2152 2153 2153 2154 2154 ))) ... ... @@ -2155,7 +2155,7 @@ 2155 2155 ))) 2156 2156 2157 2157 ((( 2158 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2094 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2159 2159 2160 2160 2161 2161 ))) ... ... @@ -2180,13 +2180,21 @@ 2180 2180 2181 2181 ((( 2182 2182 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2119 + 2183 2183 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2121 + 2184 2184 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2123 + 2185 2185 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2125 + 2186 2186 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2127 + 2187 2187 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2129 + 2188 2188 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2131 + 2189 2189 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2133 + 2190 2190 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2191 2191 ))) 2192 2192 ... ... @@ -2198,13 +2198,13 @@ 2198 2198 [[image:1653360498588-932.png||height="485" width="726"]] 2199 2199 2200 2200 2201 -== 6.4 How to change the uplink interval ?==2145 +== 6.4 How to change the uplink interval? == 2202 2202 2203 2203 2204 2204 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2205 2205 2206 2206 2207 -== 6.5 Can I see counting event in Serial? == 2151 +== 6.5 Can I see the counting event in Serial? == 2208 2208 2209 2209 2210 2210 ((( ... ... @@ -2211,10 +2211,10 @@ 2211 2211 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2212 2212 2213 2213 2214 -== 6.6 Can iuse pointforLT-22222-L? ==2158 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2215 2215 2216 2216 2217 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2161 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2218 2218 2219 2219 2220 2220 ))) ... ... @@ -2247,6 +2247,12 @@ 2247 2247 Firmware version needs to be no less than 1.6.0. 2248 2248 2249 2249 2194 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2195 + 2196 + 2197 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2198 + 2199 + 2250 2250 = 7. Trouble Shooting = 2251 2251 ))) 2252 2252 ... ... @@ -2287,6 +2287,13 @@ 2287 2287 ))) 2288 2288 2289 2289 2240 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2241 + 2242 + 2243 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2244 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2245 + 2246 + 2290 2290 = 8. Order Info = 2291 2291 2292 2292 ... ... @@ -2340,5 +2340,3 @@ 2340 2340 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2341 2341 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2342 2342 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2343 - 2344 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content