Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Saxer Lin on 2025/04/15 17:24
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -15,36 +15,30 @@ 15 15 16 16 = 1.Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,163 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 186 * Remote configure parameters via LoRa Downlink 187 - 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 - 208 208 == 1.5 Hardware Variants == 209 209 210 210 211 211 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 212 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 213 213 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 214 214 (% style="text-align:center" %) 215 215 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -222,41 +222,75 @@ 222 222 * 1 x Counting Port 223 223 ))) 224 224 225 -= 2. PowerONDevice =131 += 2. Assembling the Device = 226 226 133 +== 2.1 What is included in the package? == 227 227 228 -((( 229 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 230 -))) 135 +The package includes the following items: 231 231 232 -((( 233 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 234 234 235 - 236 -))) 142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise. 237 237 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %) 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %) 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %) 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %) 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %) 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %) 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %) 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %) 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %) 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %) 171 + 172 +== 2.3 Powering == 173 + 174 +(% style="line-height:1.38" %) 175 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The LT-22222-L I/O Controller can be powered by a 7–24V DC power source.(%%) Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. (% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The power indicator (PWR) LED will turn on when the device is properly powered. 176 + 177 + 238 238 [[image:1653297104069-180.png]] 239 239 240 240 241 241 = 3. Operation Mode = 242 242 243 -== 3.1 How it work s? ==183 +== 3.1 How does it work? == 244 244 245 - 246 246 ((( 247 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 186 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 187 + 188 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 248 248 ))) 249 249 250 250 ((( 251 -In case u sercan't set theOTAAkeys in the network server andhasouse theexisting keysfrom server.Usercan[[usesetthekeys in the devices.192 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 252 252 ))) 253 253 254 254 255 -== 3.2 Example tojoin LoRaWAN network ==196 +== 3.2 Joining the LoRaWAN network server == 256 256 257 - 258 258 ((( 259 -Th ischaptershowsanexample forhowtojointhe TTNLoRaWANNetwork. Below is thenetwork structure, we useourLG308asLoRaWANgateway here.199 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 260 260 261 261 262 262 ))) ... ... @@ -293,7 +293,6 @@ 293 293 [[image:1653298023685-319.png]] 294 294 295 295 296 - 297 297 ((( 298 298 (% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 299 299 ... ... @@ -327,7 +327,7 @@ 327 327 The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %) 328 328 329 329 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 330 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**269 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 331 331 |Value|((( 332 332 AVI1 voltage 333 333 )))|((( ... ... @@ -349,7 +349,7 @@ 349 349 |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 350 350 ))) 351 351 352 -* RO is for relay. ROx=1 : close ,ROx=0 always open.291 +* RO is for relay. ROx=1 : close, ROx=0 always open. 353 353 * DI is for digital input. DIx=1: high or float, DIx=0: low. 354 354 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 355 355 ... ... @@ -360,7 +360,7 @@ 360 360 361 361 **The value for the interface is: ** 362 362 363 -AVI1 channel voltage is 0x04AB/1000=1195 (DEC)/1000=1.195V302 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 364 364 365 365 AVI2 channel voltage is 0x04AC/1000=1.196V 366 366 ... ... @@ -388,7 +388,6 @@ 388 388 ** DO1 is high in case there is load between DO1 and V+. 389 389 ** DO1 LED is off in both case 390 390 391 - 392 392 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 393 393 394 394 ... ... @@ -400,7 +400,7 @@ 400 400 Total : 11 bytes payload 401 401 402 402 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 403 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**341 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 404 404 |Value|COUNT1|COUNT2 |DIDORO*|((( 405 405 Reserve 406 406 )))|MOD ... ... @@ -413,7 +413,7 @@ 413 413 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 414 414 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 415 415 416 -RO is for relay. ROx=1 : close ,ROx=0 always open.354 +RO is for relay. ROx=1 : close , ROx=0 always open. 417 417 ))) 418 418 419 419 * FIRST: Indicate this is the first packet after join network. ... ... @@ -421,6 +421,8 @@ 421 421 422 422 ((( 423 423 (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 362 + 363 + 424 424 ))) 425 425 426 426 ((( ... ... @@ -427,7 +427,6 @@ 427 427 **To use counting mode, please run:** 428 428 ))) 429 429 430 - 431 431 ((( 432 432 (% class="box infomessage" %) 433 433 ((( ... ... @@ -466,7 +466,7 @@ 466 466 **LT22222-L**: This mode the DI1 is used as a counting pin. 467 467 468 468 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 469 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**408 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 470 470 |Value|COUNT1|((( 471 471 ACI1 Current 472 472 )))|((( ... ... @@ -481,7 +481,7 @@ 481 481 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 482 482 ))) 483 483 484 -* RO is for relay. ROx=1 : close ,ROx=0 always open.423 +* RO is for relay. ROx=1 : close, ROx=0 always open. 485 485 * FIRST: Indicate this is the first packet after join network. 486 486 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 487 487 ... ... @@ -519,7 +519,7 @@ 519 519 The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour. 520 520 521 521 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 522 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**461 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 523 523 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 524 524 Reserve 525 525 )))|MOD ... ... @@ -533,7 +533,7 @@ 533 533 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 534 534 ))) 535 535 536 -* RO is for relay. ROx=1 : close ,ROx=0 always open.475 +* RO is for relay. ROx=1 : close, ROx=0 always open. 537 537 * FIRST: Indicate this is the first packet after join network. 538 538 * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 539 539 ... ... @@ -579,7 +579,7 @@ 579 579 **LT22222-L**: This mode the DI1 is used as a counting pin. 580 580 581 581 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 582 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**521 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 583 583 |Value|((( 584 584 AVI1 voltage 585 585 )))|((( ... ... @@ -598,7 +598,7 @@ 598 598 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 599 599 ))) 600 600 601 -* RO is for relay. ROx=1 : close ,ROx=0 always open.540 +* RO is for relay. ROx=1 : close, ROx=0 always open. 602 602 * FIRST: Indicate this is the first packet after join network. 603 603 * ((( 604 604 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. ... ... @@ -641,7 +641,6 @@ 641 641 1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type 642 642 1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.** 643 643 644 - 645 645 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 646 646 647 647 ... ... @@ -716,7 +716,7 @@ 716 716 MOD6 Payload : total 11 bytes payload 717 717 718 718 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 719 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**657 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 720 720 |Value|((( 721 721 TRI_A FLAG 722 722 )))|((( ... ... @@ -1044,7 +1044,7 @@ 1044 1044 01: Low, 00: High , 11: No action 1045 1045 1046 1046 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1047 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**985 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1048 1048 |02 01 00 11|Low|High|No Action 1049 1049 |02 00 11 01|High|No Action|Low 1050 1050 |02 11 01 00|No Action|Low|High ... ... @@ -1087,7 +1087,7 @@ 1087 1087 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1088 1088 1089 1089 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1090 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1028 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1091 1091 |0x01|DO1 set to low 1092 1092 |0x00|DO1 set to high 1093 1093 |0x11|DO1 NO Action ... ... @@ -1095,7 +1095,7 @@ 1095 1095 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1096 1096 1097 1097 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1098 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1036 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1099 1099 |0x01|DO2 set to low 1100 1100 |0x00|DO2 set to high 1101 1101 |0x11|DO2 NO Action ... ... @@ -1103,7 +1103,7 @@ 1103 1103 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1104 1104 1105 1105 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1106 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1107 1107 |0x01|DO3 set to low 1108 1108 |0x00|DO3 set to high 1109 1109 |0x11|DO3 NO Action ... ... @@ -1140,7 +1140,7 @@ 1140 1140 1141 1141 1142 1142 1143 -==== 3.4.2. 1081 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1144 1144 1145 1145 1146 1146 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1158,10 +1158,10 @@ 1158 1158 ))) 1159 1159 1160 1160 ((( 1161 -0 1: Close , 00: Open , 11: No action1099 +00: Close , 01: Open , 11: No action 1162 1162 1163 1163 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1164 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1102 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1165 1165 |03 00 11|Open|No Action 1166 1166 |03 01 11|Close|No Action 1167 1167 |03 11 00|No Action|Open ... ... @@ -1432,7 +1432,6 @@ 1432 1432 [[image:1653356838789-523.png||height="337" width="740"]] 1433 1433 1434 1434 1435 - 1436 1436 After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1437 1437 1438 1438 [[image:image-20220524094909-1.png||height="335" width="729"]] ... ... @@ -1585,8 +1585,11 @@ 1585 1585 1586 1586 [[image:image-20230616235145-1.png]] 1587 1587 1525 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor 1588 1588 1527 +[[image:image-20240219115718-1.png]] 1589 1589 1529 + 1590 1590 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1591 1591 1592 1592 ... ... @@ -1661,12 +1661,9 @@ 1661 1661 == 3.7 LEDs Indicators == 1662 1662 1663 1663 1664 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1665 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1604 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1605 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1666 1666 |**PWR**|Always on if there is power 1667 -|**SYS**|((( 1668 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1669 -))) 1670 1670 |**TX**|((( 1671 1671 ((( 1672 1672 Device boot: TX blinks 5 times. ... ... @@ -1681,20 +1681,16 @@ 1681 1681 ))) 1682 1682 ))) 1683 1683 |**RX**|RX blinks once when receive a packet. 1684 -|**DO1**| 1685 -|**DO2**| 1686 -|**DO3**| 1687 -|**DI2**|((( 1688 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1621 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high 1622 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high 1623 +|**DI1**|((( 1624 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low 1689 1689 ))) 1690 1690 |**DI2**|((( 1691 -For LT-22222-L: ON when DI2 is high, LOW 1627 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1692 1692 ))) 1693 -|**DI2**|((( 1694 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1695 -))) 1696 -|**RO1**| 1697 -|**RO2**| 1629 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open 1630 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open 1698 1698 1699 1699 = 4. Use AT Command = 1700 1700 ... ... @@ -1705,10 +1705,6 @@ 1705 1705 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below. 1706 1706 ))) 1707 1707 1708 -((( 1709 - 1710 -))) 1711 - 1712 1712 [[image:1653358238933-385.png]] 1713 1713 1714 1714 ... ... @@ -2027,7 +2027,6 @@ 2027 2027 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2028 2028 2029 2029 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 2030 - 2031 2031 ))) 2032 2032 2033 2033 ((( ... ... @@ -2040,13 +2040,11 @@ 2040 2040 2041 2041 ((( 2042 2042 (% style="color:blue" %)**If sensor JOINED:** 2043 -((( 2044 -(% class="box infomessage" %) 2045 -**AT+CLASS=A** 2046 2046 2047 -**ATZ** 1972 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A** 1973 + 1974 +(% style="background-color:#dcdcdc" %)**ATZ** 2048 2048 ))) 2049 -))) 2050 2050 2051 2051 2052 2052 = 5. Case Study = ... ... @@ -2098,7 +2098,6 @@ 2098 2098 2099 2099 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is: 2100 2100 2101 - 2102 2102 [[image:1653360054704-518.png||height="186" width="745"]] 2103 2103 2104 2104 ... ... @@ -2162,13 +2162,21 @@ 2162 2162 2163 2163 ((( 2164 2164 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2090 + 2165 2165 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2092 + 2166 2166 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2094 + 2167 2167 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2096 + 2168 2168 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2098 + 2169 2169 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2100 + 2170 2170 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2102 + 2171 2171 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2104 + 2172 2172 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2173 2173 ))) 2174 2174 ... ... @@ -2180,7 +2180,7 @@ 2180 2180 [[image:1653360498588-932.png||height="485" width="726"]] 2181 2181 2182 2182 2183 -== 6.4 How to change the uplink interval ?==2116 +== 6.4 How to change the uplink interval? == 2184 2184 2185 2185 2186 2186 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] ... ... @@ -2229,6 +2229,12 @@ 2229 2229 Firmware version needs to be no less than 1.6.0. 2230 2230 2231 2231 2165 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2166 + 2167 + 2168 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2169 + 2170 + 2232 2232 = 7. Trouble Shooting = 2233 2233 ))) 2234 2234 ... ... @@ -2269,6 +2269,13 @@ 2269 2269 ))) 2270 2270 2271 2271 2211 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2212 + 2213 + 2214 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2215 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2216 + 2217 + 2272 2272 = 8. Order Info = 2273 2273 2274 2274 ... ... @@ -2322,5 +2322,3 @@ 2322 2322 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2323 2323 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2324 2324 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2325 - 2326 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content