Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.14
edited by Xiaoling
on 2023/06/19 16:08
Change comment: There is no comment for this version
To version 165.1
edited by Dilisi S
on 2024/11/06 22:47
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,163 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 208  == 1.5 Hardware Variants ==
209 209  
210 210  
211 211  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
212 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
213 213  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
214 214  (% style="text-align:center" %)
215 215  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -222,93 +222,140 @@
222 222  * 1 x Counting Port
223 223  )))
224 224  
225 -= 2. Power ON Device =
131 += 2. Assembling the Device =
226 226  
133 +== 2.1 What is included in the package? ==
227 227  
228 -(((
229 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
230 -)))
135 +The package includes the following items:
231 231  
232 -(((
233 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
234 234  
235 -
236 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
237 237  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
238 238  [[image:1653297104069-180.png]]
239 239  
240 240  
241 241  = 3. Operation Mode =
242 242  
243 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
244 244  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
245 245  
246 -(((
247 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
248 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
249 249  
250 -(((
251 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
252 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
253 253  
190 +== 3.2 Registering with a LoRaWAN network server ==
254 254  
255 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
256 256  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
257 257  
258 -(((
259 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
260 260  
261 -
262 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
263 263  
264 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
265 265  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
266 266  
267 -(((
268 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
269 269  
270 -
271 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
272 272  
273 -(((
274 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
275 -)))
210 +==== Using the LoRaWAN Device Repository: ====
276 276  
277 -(((
278 -Each LT is shipped with a sticker with the default device EUI as below:
279 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
280 280  
281 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
282 282  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
283 283  
284 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
285 285  
286 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
287 287  
288 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
289 289  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
290 290  
291 -**Add APP KEY and DEV EUI**
292 292  
293 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
294 294  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
295 295  
296 296  
297 -(((
298 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
299 299  
300 -
301 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
302 302  
303 303  [[image:1653298044601-602.png||height="405" width="709"]]
304 304  
305 305  
306 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
307 307  
308 308  
309 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
310 310  
311 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
312 312  
313 313  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
314 314  
... ... @@ -324,10 +324,10 @@
324 324  
325 325  
326 326  (((
327 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
331 331  |Value|(((
332 332  AVI1 voltage
333 333  )))|(((
... ... @@ -342,25 +342,25 @@
342 342  )))
343 343  
344 344  (((
345 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
346 346  
347 347  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
348 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
349 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
350 350  )))
351 351  
352 -* RO is for relay. ROx=1 : closeROx=0 always open.
353 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
354 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
355 355  
356 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
357 357  
358 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
359 359  
360 360  
361 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
362 362  
363 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 365  AVI2 channel voltage is 0x04AC/1000=1.196V
366 366  
... ... @@ -368,39 +368,35 @@
368 368  
369 369  ACI2 channel current is 0x1300/1000=4.864mA
370 370  
371 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
372 372  
373 -* [1] RO1 relay channel is close and the RO1 LED is ON.
374 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
375 375  
376 -**LT22222-L:**
377 -
378 -* [1] DI2 channel is high input and DI2 LED is ON;
379 -* [0] DI1 channel is low input;
380 -
381 -* [0] DO3 channel output state
382 -** DO3 is float in case no load between DO3 and V+.;
383 -** DO3 is high in case there is load between DO3 and V+.
384 -** DO3 LED is off in both case
385 -* [1] DO2 channel output is low and DO2 LED is ON.
386 -* [0] DO1 channel output state
387 -** DO1 is float in case no load between DO1 and V+.;
388 -** DO1 is high in case there is load between DO1 and V+.
389 -** DO1 LED is off in both case
390 -
391 -
392 392  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
393 393  
394 394  
395 395  (((
396 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
397 397  )))
398 398  
399 399  (((
400 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
401 401  
402 402  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
404 404  |Value|COUNT1|COUNT2 |DIDORO*|(((
405 405  Reserve
406 406  )))|MOD
... ... @@ -407,27 +407,28 @@
407 407  )))
408 408  
409 409  (((
410 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
411 411  
412 412  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
413 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
414 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
415 415  
416 -RO is for relay. ROx=1 : closeROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
417 417  )))
418 418  
419 -* FIRST: Indicate this is the first packet after join network.
420 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
421 421  
422 422  (((
423 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
373 +
374 +
424 424  )))
425 425  
426 426  (((
427 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
428 428  )))
429 429  
430 -
431 431  (((
432 432  (% class="box infomessage" %)
433 433  (((
... ... @@ -446,17 +446,17 @@
446 446  (((
447 447  **For LT22222-L:**
448 448  
449 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
460 460  )))
461 461  
462 462  
... ... @@ -463,10 +463,10 @@
463 463  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
464 464  
465 465  
466 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
467 467  
468 468  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
469 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
470 470  |Value|COUNT1|(((
471 471  ACI1 Current
472 472  )))|(((
... ... @@ -474,24 +474,24 @@
474 474  )))|DIDORO*|Reserve|MOD
475 475  
476 476  (((
477 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
478 478  
479 479  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
480 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
481 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
482 482  )))
483 483  
484 -* RO is for relay. ROx=1 : closeROx=0 always open.
485 -* FIRST: Indicate this is the first packet after join network.
486 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
487 487  
488 488  (((
489 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
490 490  )))
491 491  
492 492  
493 493  (((
494 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
495 495  )))
496 496  
497 497  (((
... ... @@ -504,7 +504,9 @@
504 504  )))
505 505  
506 506  (((
507 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
508 508  )))
509 509  
510 510  
... ... @@ -512,14 +512,14 @@
512 512  
513 513  
514 514  (((
515 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
516 516  )))
517 517  
518 518  (((
519 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
520 520  
521 521  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
523 523  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
524 524  Reserve
525 525  )))|MOD
... ... @@ -526,25 +526,25 @@
526 526  )))
527 527  
528 528  (((
529 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
530 530  
531 531  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
532 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
533 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
534 534  )))
535 535  
536 -* RO is for relay. ROx=1 : closeROx=0 always open.
537 -* FIRST: Indicate this is the first packet after join network.
538 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
539 539  
540 540  (((
541 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
542 542  
543 543  
544 544  )))
545 545  
546 546  (((
547 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
548 548  )))
549 549  
550 550  (((
... ... @@ -557,19 +557,19 @@
557 557  )))
558 558  
559 559  (((
560 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
561 561  )))
562 562  
563 563  (((
564 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
565 565  
566 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
567 567  
568 568  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
569 569  
570 570  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
571 571  
572 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
573 573  )))
574 574  
575 575  
... ... @@ -576,10 +576,10 @@
576 576  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
577 577  
578 578  
579 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
580 580  
581 581  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
582 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
583 583  |Value|(((
584 584  AVI1 voltage
585 585  )))|(((
... ... @@ -591,27 +591,25 @@
591 591  )))|MOD
592 592  
593 593  (((
594 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
595 595  
596 596  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
597 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
598 598  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
599 599  )))
600 600  
601 -* RO is for relay. ROx=1 : closeROx=0 always open.
602 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
603 603  * (((
604 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
605 605  )))
606 606  
607 607  (((
608 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
609 609  )))
610 610  
611 611  (((
612 -
613 -
614 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
615 615  )))
616 616  
617 617  (((
... ... @@ -624,7 +624,7 @@
624 624  )))
625 625  
626 626  (((
627 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
628 628  )))
629 629  
630 630  
... ... @@ -631,50 +631,46 @@
631 631  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
632 632  
633 633  
634 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
635 635  
636 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
637 637  
638 638  * **AT+MOD=1 ** **~-~->**  The normal working mode
639 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
640 640  
641 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
642 642  
643 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
644 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
645 645  
646 -
647 647  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
648 648  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
649 649  
650 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
651 -
652 652  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
653 653  
654 654  
655 655  **Example:**
656 656  
657 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
658 658  
659 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
660 660  
661 661  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
662 662  
663 -(% style="color:#4f81bd" %)**Trigger base on current**:
664 -
665 665  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
666 666  
667 667  
668 668  **Example:**
669 669  
670 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
671 671  
672 672  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
673 673  
674 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
675 675  
676 -DI status trigger Flag.
677 -
678 678  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
679 679  
680 680  
... ... @@ -683,42 +683,41 @@
683 683  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
684 684  
685 685  
686 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
687 687  
688 688  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
689 689  
690 690  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
691 691  
692 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
693 693  
694 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
695 695  
696 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
697 697  
698 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
699 699  
700 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
701 701  
702 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
703 703  
704 704  
705 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
706 706  
707 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
708 708  
709 709  
710 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
711 711  
712 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
713 713  
714 714  
715 -
716 716  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
717 717  
718 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
719 719  
720 720  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
721 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
666 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
722 722  |Value|(((
723 723  TRI_A FLAG
724 724  )))|(((
... ... @@ -729,10 +729,10 @@
729 729  MOD(6)
730 730  )))
731 731  
732 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
733 733  
734 734  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
735 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
736 736  |(((
737 737  AV1_LOW
738 738  )))|(((
... ... @@ -751,17 +751,17 @@
751 751  AC2_HIGH
752 752  )))
753 753  
754 -* Each bits shows if the corresponding trigger has been configured.
699 +* Each bit shows if the corresponding trigger has been configured.
755 755  
756 756  **Example:**
757 757  
758 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
759 759  
760 760  
761 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
762 762  
763 763  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
764 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
765 765  |(((
766 766  AV1_LOW
767 767  )))|(((
... ... @@ -780,11 +780,11 @@
780 780  AC2_HIGH
781 781  )))
782 782  
783 -* Each bits shows which status has been trigger on this uplink.
728 +* Each bit shows which status has been triggered on this uplink.
784 784  
785 785  **Example:**
786 786  
787 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
788 788  
789 789  
790 790  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -793,7 +793,7 @@
793 793  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
794 794  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
795 795  
796 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
797 797  
798 798  **Example:**
799 799  
... ... @@ -850,33 +850,37 @@
850 850  ==== 3.4.2.1 Set Transmit Interval ====
851 851  
852 852  
853 -Set device uplink interval.
798 +Sets the uplink interval of the device.
854 854  
855 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
856 856  
857 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
858 858  
804 +where N is the time in milliseconds.
859 859  
860 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
861 861  
862 862  
863 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
864 864  
865 865  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
866 866  
867 867  
868 868  
869 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
870 870  
871 871  
872 -Set work mode.
818 +Sets the work mode.
873 873  
874 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
875 875  
876 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
822 +Where N is the work mode.
877 877  
878 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
879 879  
826 +
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
828 +
880 880  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
881 881  
882 882  
... ... @@ -884,10 +884,12 @@
884 884  ==== 3.4.2.3 Poll an uplink ====
885 885  
886 886  
887 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
836 +Asks the device to send an uplink.
888 888  
889 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
890 890  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
841 +
891 891  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
892 892  
893 893  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -894,16 +894,16 @@
894 894  
895 895  
896 896  
897 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
898 898  
899 899  
900 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
901 901  
902 902  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
903 903  
904 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
905 905  
906 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
907 907  
908 908  
909 909  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -915,7 +915,7 @@
915 915  ==== 3.4.2.5 Poll trigger settings ====
916 916  
917 917  
918 -Poll trigger settings
869 +Polls the trigger settings
919 919  
920 920  * (% style="color:#037691" %)**AT Command:**
921 921  
... ... @@ -923,7 +923,7 @@
923 923  
924 924  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
925 925  
926 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
927 927  
928 928  
929 929  
... ... @@ -930,11 +930,11 @@
930 930  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
931 931  
932 932  
933 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
934 934  
935 935  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
936 936  
937 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
938 938  
939 939  
940 940  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -966,15 +966,15 @@
966 966  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
967 967  
968 968  
969 -Set DI2 trigger.
920 +Sets DI2 trigger.
970 970  
971 971  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
972 972  
973 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
974 974  
975 975  (% style="color:red" %)**b :** (%%)delay timing.
976 976  
977 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
978 978  
979 979  
980 980  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1012,7 +1012,7 @@
1012 1012  ==== 3.4.2.11 Trigger – Set minimum interval ====
1013 1013  
1014 1014  
1015 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1016 1016  
1017 1017  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1018 1018  
... ... @@ -1046,7 +1046,7 @@
1046 1046  01: Low,  00: High ,  11: No action
1047 1047  
1048 1048  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1049 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1000 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1050 1050  |02  01  00  11|Low|High|No Action
1051 1051  |02  00  11  01|High|No Action|Low
1052 1052  |02  11  01  00|No Action|Low|High
... ... @@ -1089,7 +1089,7 @@
1089 1089  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1090 1090  
1091 1091  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1092 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1093 1093  |0x01|DO1 set to low
1094 1094  |0x00|DO1 set to high
1095 1095  |0x11|DO1 NO Action
... ... @@ -1097,7 +1097,7 @@
1097 1097  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1098 1098  
1099 1099  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1100 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1101 1101  |0x01|DO2 set to low
1102 1102  |0x00|DO2 set to high
1103 1103  |0x11|DO2 NO Action
... ... @@ -1105,7 +1105,7 @@
1105 1105  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1106 1106  
1107 1107  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1108 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1059 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1109 1109  |0x01|DO3 set to low
1110 1110  |0x00|DO3 set to high
1111 1111  |0x11|DO3 NO Action
... ... @@ -1142,7 +1142,7 @@
1142 1142  
1143 1143  
1144 1144  
1145 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1096 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1146 1146  
1147 1147  
1148 1148  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1160,10 +1160,10 @@
1160 1160  )))
1161 1161  
1162 1162  (((
1163 -01: Close ,  00: Open , 11: No action
1114 +00: Closed ,  01: Open , 11: No action
1164 1164  
1165 1165  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1166 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1117 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1167 1167  |03  00  11|Open|No Action
1168 1168  |03  01  11|Close|No Action
1169 1169  |03  11  00|No Action|Open
... ... @@ -1282,7 +1282,7 @@
1282 1282  
1283 1283  
1284 1284  
1285 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1286 1286  
1287 1287  
1288 1288  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1403,75 +1403,91 @@
1403 1403  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1404 1404  
1405 1405  
1406 -== 3.5 Integrate with Mydevice ==
1357 +== 3.5 Integrating with ThingsEye.io ==
1407 1407  
1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1408 1408  
1409 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1361 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1410 1410  
1411 -(((
1412 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1413 -)))
1363 +* Go to your Application and select MQTT under Integrations.
1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1414 1414  
1415 -(((
1416 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1417 1417  
1418 -
1419 -)))
1369 +=== 3.5.2 Configuring ThingsEye.io ===
1420 1420  
1421 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1371 +* Login to your thingsEye.io account.
1372 +* Under the Integrations center, click Integrations.
1373 +* Click the Add integration button (the button with the + symbol).
1422 1422  
1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1423 1423  
1424 1424  
1425 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1378 +On the Add integration page configure the following:
1426 1426  
1380 +Basic settings:
1427 1427  
1428 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1382 +* Select The Things Stack Community from the Integration type list.
1383 +* Enter a suitable name for your integration in the Name box or keep the default name.
1384 +* Click the Next button.
1429 1429  
1430 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1431 1431  
1432 -Search under The things network
1388 +Uplink Data converter:
1433 1433  
1434 -[[image:1653356838789-523.png||height="337" width="740"]]
1390 +* Click the Create New button if it is not selected by default.
1391 +* Click the JavaScript button.
1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1393 +* Click the Next button.
1435 1435  
1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436 1436  
1397 +Downlink Data converter (this is an optional step):
1437 1437  
1438 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +* Click the Create new button if it is not selected by default.
1400 +* Click the JavaScript button.
1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1402 +* Click the Next button.
1439 1439  
1440 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1441 1441  
1406 +Connection:
1442 1442  
1443 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1408 +* Choose Region from the Host type.
1409 +* Enter the cluster of your The Things Stack in the Region textbox.
1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1412 +* Click the Add button.
1444 1444  
1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1445 1445  
1446 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1447 1447  
1417 +Your integration is added to the integrations list and it will display on the Integrations page.
1448 1448  
1449 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1450 1450  
1451 1451  
1452 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1422 +== 3.6 Interface Details ==
1453 1453  
1454 -
1455 -== 3.6 Interface Detail ==
1456 -
1457 1457  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1458 1458  
1459 1459  
1460 -Support NPN Type sensor
1427 +Support NPN-type sensor
1461 1461  
1462 1462  [[image:1653356991268-289.png]]
1463 1463  
1464 1464  
1465 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1466 1466  
1467 1467  
1468 1468  (((
1469 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1470 1470  )))
1471 1471  
1472 1472  (((
1473 1473  (((
1474 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1475 1475  
1476 1476  
1477 1477  )))
... ... @@ -1481,7 +1481,7 @@
1481 1481  
1482 1482  (((
1483 1483  (((
1484 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1485 1485  )))
1486 1486  )))
1487 1487  
... ... @@ -1490,22 +1490,22 @@
1490 1490  )))
1491 1491  
1492 1492  (((
1493 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1498 1498  )))
1499 1499  
1500 1500  * (((
1501 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1502 1502  )))
1503 1503  * (((
1504 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1505 1505  )))
1506 1506  
1507 1507  (((
1508 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1509 1509  )))
1510 1510  
1511 1511  (((
... ... @@ -1513,7 +1513,7 @@
1513 1513  )))
1514 1514  
1515 1515  (((
1516 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1517 1517  )))
1518 1518  
1519 1519  (((
... ... @@ -1521,22 +1521,22 @@
1521 1521  )))
1522 1522  
1523 1523  (((
1524 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1529 1529  )))
1530 1530  
1531 1531  * (((
1532 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1533 1533  )))
1534 1534  * (((
1535 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1536 1536  )))
1537 1537  
1538 1538  (((
1539 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1540 1540  )))
1541 1541  
1542 1542  (((
... ... @@ -1544,7 +1544,7 @@
1544 1544  )))
1545 1545  
1546 1546  (((
1547 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1548 1548  )))
1549 1549  
1550 1550  (((
... ... @@ -1552,22 +1552,22 @@
1552 1552  )))
1553 1553  
1554 1554  (((
1555 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1556 1556  )))
1557 1557  
1558 1558  (((
1559 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1560 1560  )))
1561 1561  
1562 1562  * (((
1563 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1564 1564  )))
1565 1565  * (((
1566 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1567 1567  )))
1568 1568  
1569 1569  (((
1570 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1571 1571  )))
1572 1572  
1573 1573  (((
... ... @@ -1575,34 +1575,37 @@
1575 1575  )))
1576 1576  
1577 1577  (((
1578 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1579 1579  )))
1580 1580  
1581 1581  
1582 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1583 1583  
1584 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1585 1585  
1586 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1587 1587  
1588 1588  [[image:image-20230616235145-1.png]]
1589 1589  
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1590 1590  
1559 +[[image:image-20240219115718-1.png]]
1591 1591  
1592 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1593 1593  
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1594 1594  
1595 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1596 1596  
1597 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1598 1598  
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1568 +
1599 1599  [[image:1653357531600-905.png]]
1600 1600  
1601 1601  
1602 -=== 3.6.4 Analog Input Interface ===
1572 +=== 3.6.4 Analog Input Interfaces ===
1603 1603  
1604 1604  
1605 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1606 1606  
1607 1607  
1608 1608  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1609,14 +1609,14 @@
1609 1609  
1610 1610  [[image:1653357592296-182.png]]
1611 1611  
1612 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1613 1613  
1614 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1615 1615  
1616 1616  
1617 1617  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1618 1618  
1619 -(% style="color:red" %)**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1620 1620  
1621 1621  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1622 1622  
... ... @@ -1629,7 +1629,7 @@
1629 1629  [[image:1653357648330-671.png||height="155" width="733"]]
1630 1630  
1631 1631  
1632 -Example connected to a regulated power supply to measure voltage
1602 +Example: Connecting to a regulated power supply to measure voltage
1633 1633  
1634 1634  [[image:image-20230608101532-1.png||height="606" width="447"]]
1635 1635  
... ... @@ -1638,7 +1638,7 @@
1638 1638  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1639 1639  
1640 1640  
1641 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1642 1642  
1643 1643  (% style="color:red" %)**Red:  12~~24v**
1644 1644  
... ... @@ -1649,9 +1649,9 @@
1649 1649  
1650 1650  
1651 1651  (((
1652 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1653 1653  
1654 -**Note**: RO pins go to Open(NO) when device is power off.
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1655 1655  )))
1656 1656  
1657 1657  [[image:image-20220524100215-9.png]]
... ... @@ -1663,12 +1663,9 @@
1663 1663  == 3.7 LEDs Indicators ==
1664 1664  
1665 1665  
1666 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1667 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1668 1668  |**PWR**|Always on if there is power
1669 -|**SYS**|(((
1670 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1671 -)))
1672 1672  |**TX**|(((
1673 1673  (((
1674 1674  Device boot: TX blinks 5 times.
... ... @@ -1682,40 +1682,32 @@
1682 1682  Transmit a LoRa packet: TX blinks once
1683 1683  )))
1684 1684  )))
1685 -|**RX**|RX blinks once when receive a packet.
1686 -|**DO1**|
1687 -|**DO2**|
1688 -|**DO3**|
1689 -|**DI2**|(((
1690 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1655 +|**DI1**|(((
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1691 1691  )))
1692 1692  |**DI2**|(((
1693 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1694 1694  )))
1695 -|**DI2**|(((
1696 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1697 -)))
1698 -|**RO1**|
1699 -|**RO2**|
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1700 1700  
1701 -= 4. Use AT Command =
1664 += 4. Using AT Command =
1702 1702  
1703 -== 4.1 Access AT Command ==
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1704 1704  
1705 1705  
1706 1706  (((
1707 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1708 1708  )))
1709 1709  
1710 -(((
1711 -
1712 -)))
1713 -
1714 1714  [[image:1653358238933-385.png]]
1715 1715  
1716 1716  
1717 1717  (((
1718 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1719 1719  )))
1720 1720  
1721 1721  [[image:1653358355238-883.png]]
... ... @@ -1722,10 +1722,12 @@
1722 1722  
1723 1723  
1724 1724  (((
1725 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1726 1726  )))
1727 1727  
1728 1728  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1729 1729  AT+<CMD>?        : Help on <CMD>
1730 1730  )))
1731 1731  
... ... @@ -2029,8 +2029,6 @@
2029 2029  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2030 2030  
2031 2031  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2032 -
2033 -
2034 2034  )))
2035 2035  
2036 2036  (((
... ... @@ -2037,9 +2037,6 @@
2037 2037  [[image:1653359097980-169.png||height="188" width="729"]]
2038 2038  )))
2039 2039  
2040 -(((
2041 -
2042 -)))
2043 2043  
2044 2044  === 4.2.3 Change to Class A ===
2045 2045  
... ... @@ -2047,17 +2047,18 @@
2047 2047  (((
2048 2048  (% style="color:blue" %)**If sensor JOINED:**
2049 2049  
2050 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2051 -ATZ**
2006 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2007 +
2008 +(% style="background-color:#dcdcdc" %)**ATZ**
2052 2052  )))
2053 2053  
2054 2054  
2055 2055  = 5. Case Study =
2056 2056  
2057 -== 5.1 Counting how many objects pass in Flow Line ==
2014 +== 5.1 Counting how many objects pass through the flow Line ==
2058 2058  
2059 2059  
2060 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2061 2061  
2062 2062  
2063 2063  = 6. FAQ =
... ... @@ -2065,26 +2065,26 @@
2065 2065  == 6.1 How to upgrade the image? ==
2066 2066  
2067 2067  
2068 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2069 2069  
2070 -* Support new features
2071 -* For bug fix
2027 +* Support new features.
2028 +* Fix bugs.
2072 2072  * Change LoRaWAN bands.
2073 2073  
2074 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
2075 2075  
2076 2076  [[image:1653359603330-121.png]]
2077 2077  
2078 2078  
2079 2079  (((
2080 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2081 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2082 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2083 2083  
2084 2084  
2085 2085  (((
2086 2086  (% style="color:blue" %)**For LT-22222-L**(%%):
2087 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2088 2088  )))
2089 2089  
2090 2090  
... ... @@ -2099,9 +2099,8 @@
2099 2099  [[image:image-20220524104033-15.png]]
2100 2100  
2101 2101  
2102 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2103 2103  
2104 -
2105 2105  [[image:1653360054704-518.png||height="186" width="745"]]
2106 2106  
2107 2107  
... ... @@ -2114,13 +2114,13 @@
2114 2114  )))
2115 2115  
2116 2116  (((
2117 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2118 2118  )))
2119 2119  
2120 2120  (((
2121 2121  
2122 2122  
2123 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2124 2124  
2125 2125  
2126 2126  )))
... ... @@ -2127,13 +2127,13 @@
2127 2127  
2128 2128  (((
2129 2129  (((
2130 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2131 2131  )))
2132 2132  )))
2133 2133  
2134 2134  (((
2135 2135  (((
2136 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2137 2137  
2138 2138  
2139 2139  )))
... ... @@ -2140,7 +2140,7 @@
2140 2140  )))
2141 2141  
2142 2142  (((
2143 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2144 2144  
2145 2145  
2146 2146  )))
... ... @@ -2165,13 +2165,21 @@
2165 2165  
2166 2166  (((
2167 2167  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124 +
2168 2168  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126 +
2169 2169  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128 +
2170 2170  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130 +
2171 2171  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132 +
2172 2172  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138 +
2175 2175  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2176 2176  )))
2177 2177  
... ... @@ -2183,13 +2183,13 @@
2183 2183  [[image:1653360498588-932.png||height="485" width="726"]]
2184 2184  
2185 2185  
2186 -== 6.4 How to change the uplink interval ==
2150 +== 6.4 How to change the uplink interval? ==
2187 2187  
2188 2188  
2189 2189  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2190 2190  
2191 2191  
2192 -== 6.5 Can I see counting event in Serial? ==
2156 +== 6.5 Can I see the counting event in Serial? ==
2193 2193  
2194 2194  
2195 2195  (((
... ... @@ -2196,10 +2196,10 @@
2196 2196  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2197 2197  
2198 2198  
2199 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2200 2200  
2201 2201  
2202 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2203 2203  
2204 2204  
2205 2205  )))
... ... @@ -2232,6 +2232,12 @@
2232 2232  Firmware version needs to be no less than 1.6.0.
2233 2233  
2234 2234  
2199 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2200 +
2201 +
2202 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2203 +
2204 +
2235 2235  = 7. Trouble Shooting =
2236 2236  )))
2237 2237  
... ... @@ -2272,6 +2272,13 @@
2272 2272  )))
2273 2273  
2274 2274  
2245 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2246 +
2247 +
2248 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2249 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2250 +
2251 +
2275 2275  = 8. Order Info =
2276 2276  
2277 2277  
... ... @@ -2325,5 +2325,3 @@
2325 2325  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2326 2326  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2327 2327  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2328 -
2329 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content