<
From version < 126.14 >
edited by Xiaoling
on 2023/06/19 16:08
To version < 152.1 >
edited by Dilisi S
on 2024/10/31 23:13
>
Change comment: Oct 31 changes - part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -15,36 +15,30 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,163 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 186  * Remote configure parameters via LoRa Downlink
187 -
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 208  == 1.5 Hardware Variants ==
209 209  
210 210  
211 211  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
212 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
213 213  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
214 214  (% style="text-align:center" %)
215 215  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -222,84 +222,124 @@
222 222  * 1 x Counting Port
223 223  )))
224 224  
225 -= 2. Power ON Device =
131 += 2. Assembling the Device =
226 226  
133 +== 2.1 What is included in the package? ==
227 227  
228 -(((
229 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
230 -)))
135 +The package includes the following items:
231 231  
232 -(((
233 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
234 234  
235 -
236 -)))
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
237 237  
238 -[[image:1653297104069-180.png]]
144 +== 2.2 Terminals ==
239 239  
146 +Upper screw terminal block (from left to right):
240 240  
241 -= 3. Operation Mode =
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
242 242  
243 -== 3.1 How it works? ==
157 +Lower screw terminal block (from left to right):
244 244  
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
245 245  
246 -(((
247 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
248 -)))
172 +== 2.3 Powering ==
249 249  
250 -(((
251 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
252 -)))
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
253 253  
254 254  
255 -== 3.2 Example to join LoRaWAN network ==
177 +[[image:1653297104069-180.png]]
256 256  
257 257  
258 -(((
259 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
180 += 3. Operation Mode =
260 260  
261 -
262 -)))
182 +== 3.1 How does it work? ==
263 263  
264 -[[image:image-20220523172350-1.png||height="266" width="864"]]
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
265 265  
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
266 266  
267 -(((
268 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
269 269  
270 -
271 -)))
190 +== 3.2 Registering with a LoRaWAN network server ==
272 272  
273 -(((
274 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
275 -)))
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
276 276  
277 -(((
278 -Each LT is shipped with a sticker with the default device EUI as below:
279 -)))
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
280 280  
196 +=== 3.2.1 Prerequisites ===
197 +
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
199 +
281 281  [[image:image-20230425173427-2.png||height="246" width="530"]]
282 282  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
283 283  
284 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
285 285  
286 -**Add APP EUI in the application.**
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
287 287  
288 -[[image:1653297955910-247.png||height="321" width="716"]]
210 +==== Using the LoRaWAN Device Repository: ====
289 289  
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
290 290  
291 -**Add APP KEY and DEV EUI**
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
292 292  
293 -[[image:1653298023685-319.png]]
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
294 294  
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
295 295  
229 +==== Entering device information manually: ====
296 296  
297 -(((
298 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specified manually** option.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** option.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
239 +** Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
240 +** Enter **DevEUI** in the **DevEUI** field.
241 +** Enter **AppKey** in the **AppKey** field.
242 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
243 +** Under **After registration**, select the **View registered end device** option.
299 299  
300 -
301 -)))
245 +==== Joining ====
302 302  
247 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
248 +
303 303  [[image:1653298044601-602.png||height="405" width="709"]]
304 304  
305 305  
... ... @@ -327,7 +327,7 @@
327 327  The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
328 328  
329 329  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
276 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
331 331  |Value|(((
332 332  AVI1 voltage
333 333  )))|(((
... ... @@ -349,7 +349,7 @@
349 349  |RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
350 350  )))
351 351  
352 -* RO is for relay. ROx=1 : closeROx=0 always open.
298 +* RO is for relay. ROx=1 : close, ROx=0 always open.
353 353  * DI is for digital input. DIx=1: high or float, DIx=0: low.
354 354  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
355 355  
... ... @@ -360,7 +360,7 @@
360 360  
361 361  **The value for the interface is:  **
362 362  
363 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
309 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 365  AVI2 channel voltage is 0x04AC/1000=1.196V
366 366  
... ... @@ -388,7 +388,6 @@
388 388  ** DO1 is high in case there is load between DO1 and V+.
389 389  ** DO1 LED is off in both case
390 390  
391 -
392 392  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
393 393  
394 394  
... ... @@ -400,7 +400,7 @@
400 400  Total : 11 bytes payload
401 401  
402 402  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
403 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
348 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
404 404  |Value|COUNT1|COUNT2 |DIDORO*|(((
405 405  Reserve
406 406  )))|MOD
... ... @@ -413,7 +413,7 @@
413 413  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
414 414  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
415 415  
416 -RO is for relay. ROx=1 : closeROx=0 always open.
361 +RO is for relay. ROx=1 : close , ROx=0 always open.
417 417  )))
418 418  
419 419  * FIRST: Indicate this is the first packet after join network.
... ... @@ -421,6 +421,8 @@
421 421  
422 422  (((
423 423  (% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
369 +
370 +
424 424  )))
425 425  
426 426  (((
... ... @@ -427,7 +427,6 @@
427 427  **To use counting mode, please run:**
428 428  )))
429 429  
430 -
431 431  (((
432 432  (% class="box infomessage" %)
433 433  (((
... ... @@ -466,7 +466,7 @@
466 466  **LT22222-L**: This mode the DI1 is used as a counting pin.
467 467  
468 468  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
469 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
415 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
470 470  |Value|COUNT1|(((
471 471  ACI1 Current
472 472  )))|(((
... ... @@ -481,7 +481,7 @@
481 481  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
482 482  )))
483 483  
484 -* RO is for relay. ROx=1 : closeROx=0 always open.
430 +* RO is for relay. ROx=1 : close, ROx=0 always open.
485 485  * FIRST: Indicate this is the first packet after join network.
486 486  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
487 487  
... ... @@ -519,7 +519,7 @@
519 519  The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
520 520  
521 521  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
522 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
468 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
523 523  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
524 524  Reserve
525 525  )))|MOD
... ... @@ -533,7 +533,7 @@
533 533  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
534 534  )))
535 535  
536 -* RO is for relay. ROx=1 : closeROx=0 always open.
482 +* RO is for relay. ROx=1 : close, ROx=0 always open.
537 537  * FIRST: Indicate this is the first packet after join network.
538 538  * DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
539 539  
... ... @@ -579,7 +579,7 @@
579 579  **LT22222-L**: This mode the DI1 is used as a counting pin.
580 580  
581 581  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
582 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
528 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
583 583  |Value|(((
584 584  AVI1 voltage
585 585  )))|(((
... ... @@ -598,7 +598,7 @@
598 598  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
599 599  )))
600 600  
601 -* RO is for relay. ROx=1 : closeROx=0 always open.
547 +* RO is for relay. ROx=1 : close, ROx=0 always open.
602 602  * FIRST: Indicate this is the first packet after join network.
603 603  * (((
604 604  DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
... ... @@ -609,8 +609,6 @@
609 609  )))
610 610  
611 611  (((
612 -
613 -
614 614  **To use this mode, please run:**
615 615  )))
616 616  
... ... @@ -643,7 +643,6 @@
643 643  1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
644 644  1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
645 645  
646 -
647 647  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
648 648  
649 649  
... ... @@ -718,7 +718,7 @@
718 718  MOD6 Payload : total 11 bytes payload
719 719  
720 720  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
721 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
664 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
722 722  |Value|(((
723 723  TRI_A FLAG
724 724  )))|(((
... ... @@ -1046,7 +1046,7 @@
1046 1046  01: Low,  00: High ,  11: No action
1047 1047  
1048 1048  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1049 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
992 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1050 1050  |02  01  00  11|Low|High|No Action
1051 1051  |02  00  11  01|High|No Action|Low
1052 1052  |02  11  01  00|No Action|Low|High
... ... @@ -1089,7 +1089,7 @@
1089 1089  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1090 1090  
1091 1091  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1092 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1035 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1093 1093  |0x01|DO1 set to low
1094 1094  |0x00|DO1 set to high
1095 1095  |0x11|DO1 NO Action
... ... @@ -1097,7 +1097,7 @@
1097 1097  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1098 1098  
1099 1099  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1100 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1101 1101  |0x01|DO2 set to low
1102 1102  |0x00|DO2 set to high
1103 1103  |0x11|DO2 NO Action
... ... @@ -1105,7 +1105,7 @@
1105 1105  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1106 1106  
1107 1107  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1108 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1109 1109  |0x01|DO3 set to low
1110 1110  |0x00|DO3 set to high
1111 1111  |0x11|DO3 NO Action
... ... @@ -1142,7 +1142,7 @@
1142 1142  
1143 1143  
1144 1144  
1145 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1088 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1146 1146  
1147 1147  
1148 1148  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1160,10 +1160,10 @@
1160 1160  )))
1161 1161  
1162 1162  (((
1163 -01: Close ,  00: Open , 11: No action
1106 +00: Close ,  01: Open , 11: No action
1164 1164  
1165 1165  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1166 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1109 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1167 1167  |03  00  11|Open|No Action
1168 1168  |03  01  11|Close|No Action
1169 1169  |03  11  00|No Action|Open
... ... @@ -1403,55 +1403,71 @@
1403 1403  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1404 1404  
1405 1405  
1406 -== 3.5 Integrate with Mydevice ==
1349 +== 3.5 Integrating with ThingsEye.io ==
1407 1407  
1351 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1408 1408  
1409 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1353 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1410 1410  
1411 -(((
1412 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1413 -)))
1355 +* Go to your Application and select MQTT under Integrations.
1356 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1357 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1414 1414  
1415 -(((
1416 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1359 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1417 1417  
1418 -
1419 -)))
1361 +=== 3.5.2 Configuring ThingsEye.io ===
1420 1420  
1421 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1363 +* Login to your thingsEye.io account.
1364 +* Under the Integrations center, click Integrations.
1365 +* Click the Add integration button (the button with the + symbol).
1422 1422  
1367 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1423 1423  
1424 1424  
1425 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1370 +On the Add integration page configure the following:
1426 1426  
1372 +Basic settings:
1427 1427  
1428 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1374 +* Select The Things Stack Community from the Integration type list.
1375 +* Enter a suitable name for your integration in the Name box or keep the default name.
1376 +* Click the Next button.
1429 1429  
1430 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1378 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1431 1431  
1432 -Search under The things network
1380 +Uplink Data converter:
1433 1433  
1434 -[[image:1653356838789-523.png||height="337" width="740"]]
1382 +* Click the Create New button if it is not selected by default.
1383 +* Click the JavaScript button.
1384 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1385 +* Click the Next button.
1435 1435  
1387 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1436 1436  
1389 +Downlink Data converter (this is an optional step):
1437 1437  
1438 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1391 +* Click the Create new button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1439 1439  
1440 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1396 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1441 1441  
1398 +Connection:
1442 1442  
1443 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1400 +* Choose Region from the Host type.
1401 +* Enter the cluster of your The Things Stack in the Region textbox.
1402 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1403 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1404 +* Click the Add button.
1444 1444  
1406 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1445 1445  
1446 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1447 1447  
1409 +Your integration is added to the integrations list and it will display on the Integrations page.
1448 1448  
1449 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1411 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1450 1450  
1451 1451  
1452 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1453 -
1454 -
1455 1455  == 3.6 Interface Detail ==
1456 1456  
1457 1457  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
... ... @@ -1587,8 +1587,11 @@
1587 1587  
1588 1588  [[image:image-20230616235145-1.png]]
1589 1589  
1549 +(% style="color:blue" %)**Example5**(%%): Connect to Open Colleactor
1590 1590  
1551 +[[image:image-20240219115718-1.png]]
1591 1591  
1553 +
1592 1592  === 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1593 1593  
1594 1594  
... ... @@ -1663,12 +1663,9 @@
1663 1663  == 3.7 LEDs Indicators ==
1664 1664  
1665 1665  
1666 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1667 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1628 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1629 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1668 1668  |**PWR**|Always on if there is power
1669 -|**SYS**|(((
1670 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1671 -)))
1672 1672  |**TX**|(((
1673 1673  (((
1674 1674  Device boot: TX blinks 5 times.
... ... @@ -1683,20 +1683,16 @@
1683 1683  )))
1684 1684  )))
1685 1685  |**RX**|RX blinks once when receive a packet.
1686 -|**DO1**|
1687 -|**DO2**|
1688 -|**DO3**|
1689 -|**DI2**|(((
1690 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1645 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1646 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1647 +|**DI1**|(((
1648 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1691 1691  )))
1692 1692  |**DI2**|(((
1693 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1651 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1694 1694  )))
1695 -|**DI2**|(((
1696 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1697 -)))
1698 -|**RO1**|
1699 -|**RO2**|
1653 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1654 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1700 1700  
1701 1701  = 4. Use AT Command =
1702 1702  
... ... @@ -1707,10 +1707,6 @@
1707 1707  LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1708 1708  )))
1709 1709  
1710 -(((
1711 -
1712 -)))
1713 -
1714 1714  [[image:1653358238933-385.png]]
1715 1715  
1716 1716  
... ... @@ -2029,8 +2029,6 @@
2029 2029  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2030 2030  
2031 2031  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2032 -
2033 -
2034 2034  )))
2035 2035  
2036 2036  (((
... ... @@ -2037,9 +2037,6 @@
2037 2037  [[image:1653359097980-169.png||height="188" width="729"]]
2038 2038  )))
2039 2039  
2040 -(((
2041 -
2042 -)))
2043 2043  
2044 2044  === 4.2.3 Change to Class A ===
2045 2045  
... ... @@ -2047,8 +2047,9 @@
2047 2047  (((
2048 2048  (% style="color:blue" %)**If sensor JOINED:**
2049 2049  
2050 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2051 -ATZ**
1996 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1997 +
1998 +(% style="background-color:#dcdcdc" %)**ATZ**
2052 2052  )))
2053 2053  
2054 2054  
... ... @@ -2101,7 +2101,6 @@
2101 2101  
2102 2102  (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2103 2103  
2104 -
2105 2105  [[image:1653360054704-518.png||height="186" width="745"]]
2106 2106  
2107 2107  
... ... @@ -2165,13 +2165,21 @@
2165 2165  
2166 2166  (((
2167 2167  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2114 +
2168 2168  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2116 +
2169 2169  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2118 +
2170 2170  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2120 +
2171 2171  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2122 +
2172 2172  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2124 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2126 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2128 +
2175 2175  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2176 2176  )))
2177 2177  
... ... @@ -2183,7 +2183,7 @@
2183 2183  [[image:1653360498588-932.png||height="485" width="726"]]
2184 2184  
2185 2185  
2186 -== 6.4 How to change the uplink interval ==
2140 +== 6.4 How to change the uplink interval? ==
2187 2187  
2188 2188  
2189 2189  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
... ... @@ -2232,6 +2232,12 @@
2232 2232  Firmware version needs to be no less than 1.6.0.
2233 2233  
2234 2234  
2189 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2190 +
2191 +
2192 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2193 +
2194 +
2235 2235  = 7. Trouble Shooting =
2236 2236  )))
2237 2237  
... ... @@ -2272,6 +2272,13 @@
2272 2272  )))
2273 2273  
2274 2274  
2235 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2236 +
2237 +
2238 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2239 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2240 +
2241 +
2275 2275  = 8. Order Info =
2276 2276  
2277 2277  
... ... @@ -2325,5 +2325,3 @@
2325 2325  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2326 2326  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2327 2327  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2328 -
2329 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0