Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.13
edited by Xiaoling
on 2023/06/19 16:05
Change comment: There is no comment for this version
To version 178.1
edited by Dilisi S
on 2024/11/09 02:59
Change comment: Nov 8 edits - part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
103 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,94 +223,171 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
226 -= 2. Power ON Device =
129 += 2. Assembling the Device =
227 227  
131 +== 2.1 What is included in the package? ==
228 228  
229 -(((
230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
231 -)))
133 +The package includes the following items:
232 232  
233 -(((
234 -PWR will on when device is properly powered.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
235 235  
236 -
237 -)))
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
238 238  
142 +== 2.2 Terminals ==
143 +
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
239 239  [[image:1653297104069-180.png]]
240 240  
241 241  
242 242  = 3. Operation Mode =
243 243  
244 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
245 245  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
246 246  
247 -(((
248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
249 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
250 250  
251 -(((
252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
253 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
254 254  
188 +== 3.2 Registering with a LoRaWAN network server ==
255 255  
256 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
257 257  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
258 258  
259 -(((
260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
261 261  
262 -
263 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
264 264  
265 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
266 266  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
267 267  
268 -(((
269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
270 270  
271 -
272 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
273 273  
274 -(((
275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
276 -)))
208 +(% class="wikigeneratedid" %)
209 +==== ====
277 277  
278 -(((
279 -Each LT is shipped with a sticker with the default device EUI as below:
280 -)))
211 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
281 281  
282 -[[image:image-20230425173427-2.png||height="246" width="530"]]
213 +* Go to your application and click on the **Register end device** button.
214 +* On the **Register end device** page:
215 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
216 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
217 +** Select the **Frequency plan** that matches your device.
283 283  
219 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
284 284  
285 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
286 286  
287 -**Add APP EUI in the application.**
222 +* Page continued...
223 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
224 +** Enter the **DevEUI** in the **DevEUI** field.
225 +** Enter the **AppKey** in the **AppKey** field.
226 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
227 +** Under **After registration**, select the **View registered end device** option.
288 288  
289 -[[image:1653297955910-247.png||height="321" width="716"]]
229 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
290 290  
231 +(% class="wikigeneratedid" %)
232 +==== ====
291 291  
292 -**Add APP KEY and DEV EUI**
234 +==== 3.2.2.2 Entering device information manually ====
293 293  
294 -[[image:1653298023685-319.png]]
236 +* On the **Register end device** page:
237 +** Select the **Enter end device specifies manually** option as the input method.
238 +** Select the **Frequency plan** that matches your device.
239 +** Select the **LoRaWAN version**.
240 +** Select the **Regional Parameters version**.
241 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
242 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
243 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
295 295  
245 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
296 296  
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
248 +* Page continued...
249 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
250 +** Enter **DevEUI** in the **DevEUI** field.
251 +** Enter **AppKey** in the **AppKey** field.
252 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
253 +** Under **After registration**, select the **View registered end device** option.
254 +** Click the **Register end device** button.
300 300  
301 -
302 -)))
256 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
303 303  
304 -[[image:1653298044601-602.png||height="405" width="709"]]
305 305  
259 +You will be navigated to the **Device overview** page.
306 306  
307 -== 3.3 Uplink Payload ==
308 308  
262 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
265 +==== 3.2.2.3 Joining ====
313 313  
267 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
268 +
269 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
270 +
271 +
272 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
273 +
274 +
275 +By default, you will receive an uplink data message every 10 minutes.
276 +
277 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
278 +
279 +[[image:lt-22222-ul-payload-decoded.png]]
280 +
281 +
282 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
283 +
284 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
285 +
286 +
287 +== 3.3 Work Modes and their Uplink Payload formats ==
288 +
289 +
290 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
291 +
292 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
293 +
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
316 316  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -321,14 +321,18 @@
321 321  
322 322  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
323 323  
324 -=== 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
325 325  
305 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
326 326  
307 +=== 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
308 +
327 327  (((
328 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
310 +This is the default mode.
329 329  
312 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
313 +
330 330  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
331 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
315 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
332 332  |Value|(((
333 333  AVI1 voltage
334 334  )))|(((
... ... @@ -337,31 +337,31 @@
337 337  ACI1 Current
338 338  )))|(((
339 339  ACI2 Current
340 -)))|DIDORO*|(((
324 +)))|**DIDORO***|(((
341 341  Reserve
342 342  )))|MOD
343 343  )))
344 344  
345 345  (((
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
330 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
347 347  
348 348  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
333 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
334 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
353 -* RO is for relay. ROx=1 : close,ROx=0 always open.
354 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
337 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
338 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
339 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
356 356  
357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
341 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
358 358  
359 -For example if payload is: [[image:image-20220523175847-2.png]]
343 +For example, if the payload is: [[image:image-20220523175847-2.png]]
360 360  
361 361  
362 -**The value for the interface is:  **
346 +**The interface values can be calculated as follows:  **
363 363  
364 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
348 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
365 365  
366 366  AVI2 channel voltage is 0x04AC/1000=1.196V
367 367  
... ... @@ -369,40 +369,35 @@
369 369  
370 370  ACI2 channel current is 0x1300/1000=4.864mA
371 371  
372 -The last byte 0xAA= 10101010(B) means
356 +The last byte 0xAA= **10101010**(b) means,
373 373  
374 -* [1] RO1 relay channel is close and the RO1 LED is ON.
375 -* [0] RO2 relay channel is open and RO2 LED is OFF;
358 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
359 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
360 +* **[1] DI3 - not used for LT-22222-L.**
361 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
362 +* [1] DI1 channel input state:
363 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
364 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
365 +** DI1 LED is ON in both cases.
366 +* **[0] DO3 - not used for LT-22222-L.**
367 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
368 +* [0] DO1 channel output state:
369 +** DO1 is FLOATING when there is no load between DO1 and V+.
370 +** DO1 is HIGH when there is a load between DO1 and V+.
371 +** DO1 LED is OFF in both cases.
376 376  
377 -**LT22222-L:**
378 -
379 -* [1] DI2 channel is high input and DI2 LED is ON;
380 -* [0] DI1 channel is low input;
381 -
382 -* [0] DO3 channel output state
383 -** DO3 is float in case no load between DO3 and V+.;
384 -** DO3 is high in case there is load between DO3 and V+.
385 -** DO3 LED is off in both case
386 -* [1] DO2 channel output is low and DO2 LED is ON.
387 -* [0] DO1 channel output state
388 -** DO1 is float in case no load between DO1 and V+.;
389 -** DO1 is high in case there is load between DO1 and V+.
390 -** DO1 LED is off in both case
391 -
392 -
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
377 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
381 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
384 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,27 +409,28 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
391 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
394 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
395 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : close,ROx=0 always open.
397 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
400 +* FIRST: Indicates that this is the first packet after joining the network.
401 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
404 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
405 +
406 +
426 426  )))
427 427  
428 428  (((
429 -**To use counting mode, please run:**
410 +**To activate this mode, run the following AT commands:**
430 430  )))
431 431  
432 -
433 433  (((
434 434  (% class="box infomessage" %)
435 435  (((
... ... @@ -448,17 +448,17 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
431 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
433 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
435 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
437 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
439 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
441 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
... ... @@ -465,10 +465,10 @@
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
448 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
451 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 472  |Value|COUNT1|(((
473 473  ACI1 Current
474 474  )))|(((
... ... @@ -476,24 +476,24 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
459 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
462 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
463 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : closeROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
466 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
467 +* FIRST: Indicates that this is the first packet after joining the network.
468 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
471 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 492  )))
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
476 +**To activate this mode, run the following AT commands:**
497 497  )))
498 498  
499 499  (((
... ... @@ -505,9 +505,10 @@
505 505  )))
506 506  )))
507 507  
508 -
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
489 +AT Commands for counting:
490 +
491 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
499 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
503 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
506 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,23 +529,25 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
513 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
516 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
517 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : closeROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
520 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
521 +* FIRST: Indicates that this is the first packet after joining the network.
522 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
525 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
526 +
527 +
545 545  )))
546 546  
547 547  (((
548 -**To use this mode, please run:**
531 +**To activate this mode, run the following AT commands:**
549 549  )))
550 550  
551 551  (((
... ... @@ -557,21 +557,20 @@
557 557  )))
558 558  )))
559 559  
560 -
561 561  (((
562 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
544 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
563 563  )))
564 564  
565 565  (((
566 -**Plus below command for AVI1 Counting:**
548 +**In addition to that, below are the commands for AVI1 Counting:**
567 567  
568 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
550 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
569 569  
570 570  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
571 571  
572 572  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
573 573  
574 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
556 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
575 575  )))
576 576  
577 577  
... ... @@ -578,10 +578,10 @@
578 578  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
579 579  
580 580  
581 -**LT22222-L**: This mode the DI1 is used as a counting pin.
563 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
582 582  
583 583  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
584 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
566 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
585 585  |Value|(((
586 586  AVI1 voltage
587 587  )))|(((
... ... @@ -593,30 +593,27 @@
593 593  )))|MOD
594 594  
595 595  (((
596 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
578 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
597 597  
598 598  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
599 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
581 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
600 600  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
601 601  )))
602 602  
603 -* RO is for relay. ROx=1 : closeROx=0 always open.
604 -* FIRST: Indicate this is the first packet after join network.
585 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
586 +* FIRST: Indicates that this is the first packet after joining the network.
605 605  * (((
606 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
588 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
607 607  )))
608 608  
609 609  (((
610 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
592 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
611 611  )))
612 612  
613 613  (((
614 -
615 -
616 -**To use this mode, please run:**
596 +**To activate this mode, run the following AT commands:**
617 617  )))
618 618  
619 -
620 620  (((
621 621  (% class="box infomessage" %)
622 622  (((
... ... @@ -626,9 +626,8 @@
626 626  )))
627 627  )))
628 628  
629 -
630 630  (((
631 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
609 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
632 632  )))
633 633  
634 634  
... ... @@ -635,49 +635,46 @@
635 635  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
636 636  
637 637  
638 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
616 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
639 639  
640 -For example, if user has configured below commands:
618 +For example, if you configured the following commands:
641 641  
642 642  * **AT+MOD=1 ** **~-~->**  The normal working mode
643 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
621 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
644 644  
645 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
623 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
646 646  
647 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
648 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
625 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
626 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
649 649  
650 650  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
651 651  
630 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
652 652  
653 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
654 -
655 655  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
656 656  
657 657  
658 658  **Example:**
659 659  
660 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
637 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
661 661  
662 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
639 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
663 663  
664 664  
642 +(% style="color:#4f81bd" %)**Trigger based on current**:
665 665  
666 -(% style="color:#4f81bd" %)**Trigger base on current**:
667 -
668 668  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
669 669  
670 670  
671 671  **Example:**
672 672  
673 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
649 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
674 674  
675 675  
652 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
676 676  
677 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
654 +DI status triggers Flag.
678 678  
679 -DI status trigger Flag.
680 -
681 681  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
682 682  
683 683  
... ... @@ -686,42 +686,41 @@
686 686  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
687 687  
688 688  
689 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
664 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
690 690  
691 691  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
692 692  
693 693  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
694 694  
695 - AA: Code for this downlink Command:
670 + AA: Type Code for this downlink Command:
696 696  
697 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
672 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
698 698  
699 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
674 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
700 700  
701 - yy2 yy2: AC1 or AV1 high limit.
676 + yy2 yy2: AC1 or AV1 HIGH limit.
702 702  
703 - yy3 yy3: AC2 or AV2 low limit.
678 + yy3 yy3: AC2 or AV2 LOW limit.
704 704  
705 - Yy4 yy4: AC2 or AV2 high limit.
680 + Yy4 yy4: AC2 or AV2 HIGH limit.
706 706  
707 707  
708 -**Example1**: AA 00 13 88 00 00 00 00 00 00
683 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
709 709  
710 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
685 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
711 711  
712 712  
713 -**Example2**: AA 02 01 00
688 +**Example 2**: AA 02 01 00
714 714  
715 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
690 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
716 716  
717 717  
718 -
719 719  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
720 720  
721 -MOD6 Payload : total 11 bytes payload
695 +MOD6 Payload: total of 11 bytes
722 722  
723 723  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
724 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
698 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
725 725  |Value|(((
726 726  TRI_A FLAG
727 727  )))|(((
... ... @@ -732,10 +732,10 @@
732 732  MOD(6)
733 733  )))
734 734  
735 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
709 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
736 736  
737 737  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
712 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
739 739  |(((
740 740  AV1_LOW
741 741  )))|(((
... ... @@ -754,17 +754,17 @@
754 754  AC2_HIGH
755 755  )))
756 756  
757 -* Each bits shows if the corresponding trigger has been configured.
731 +* Each bit shows if the corresponding trigger has been configured.
758 758  
759 759  **Example:**
760 760  
761 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
735 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
762 762  
763 763  
764 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
738 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
765 765  
766 766  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
741 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
768 768  |(((
769 769  AV1_LOW
770 770  )))|(((
... ... @@ -783,11 +783,11 @@
783 783  AC2_HIGH
784 784  )))
785 785  
786 -* Each bits shows which status has been trigger on this uplink.
760 +* Each bit shows which status has been triggered on this uplink.
787 787  
788 788  **Example:**
789 789  
790 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
764 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
791 791  
792 792  
793 793  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -796,7 +796,7 @@
796 796  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
797 797  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
798 798  
799 -* Each bits shows which status has been trigger on this uplink.
773 +* Each bits shows which status has been triggered on this uplink.
800 800  
801 801  **Example:**
802 802  
... ... @@ -823,11 +823,11 @@
823 823  )))
824 824  
825 825  
826 -== 3.4 ​Configure LT via AT or Downlink ==
800 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
827 827  
828 828  
829 829  (((
830 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
804 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
831 831  )))
832 832  
833 833  (((
... ... @@ -842,9 +842,8 @@
842 842  
843 843  === 3.4.1 Common Commands ===
844 844  
845 -
846 846  (((
847 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
820 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
848 848  )))
849 849  
850 850  
... ... @@ -852,34 +852,37 @@
852 852  
853 853  ==== 3.4.2.1 Set Transmit Interval ====
854 854  
828 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
855 855  
856 -Set device uplink interval.
830 +* (% style="color:#037691" %)**AT command:**
857 857  
858 -* (% style="color:#037691" %)**AT Command:**
832 +(% style="color:blue" %)**AT+TDC=N**
859 859  
860 -(% style="color:blue" %)**AT+TDC=N **
834 +where N is the time in milliseconds.
861 861  
836 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
862 862  
863 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
864 864  
839 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
865 865  
866 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
867 -
868 868  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
869 869  
870 870  
871 871  
872 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
845 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
873 873  
874 874  
875 -Set work mode.
848 +Sets the work mode.
876 876  
877 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
850 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
878 878  
879 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
852 +Where N is the work mode.
880 880  
881 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
854 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
882 882  
856 +
857 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
858 +
883 883  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
884 884  
885 885  
... ... @@ -887,10 +887,12 @@
887 887  ==== 3.4.2.3 Poll an uplink ====
888 888  
889 889  
890 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
866 +Asks the device to send an uplink.
891 891  
892 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
868 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
893 893  
870 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
871 +
894 894  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
895 895  
896 896  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -897,16 +897,16 @@
897 897  
898 898  
899 899  
900 -==== 3.4.2.4 Enable Trigger Mode ====
878 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
901 901  
902 902  
903 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
881 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
904 904  
905 905  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
906 906  
907 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
885 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
908 908  
909 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
887 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
910 910  
911 911  
912 912  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -918,7 +918,7 @@
918 918  ==== 3.4.2.5 Poll trigger settings ====
919 919  
920 920  
921 -Poll trigger settings
899 +Polls the trigger settings
922 922  
923 923  * (% style="color:#037691" %)**AT Command:**
924 924  
... ... @@ -926,7 +926,7 @@
926 926  
927 927  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
928 928  
929 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
907 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
930 930  
931 931  
932 932  
... ... @@ -933,11 +933,11 @@
933 933  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
934 934  
935 935  
936 -Enable Disable DI1/DI2/DI2 as trigger,
914 +Enable or Disable DI1/DI2/DI2 as trigger,
937 937  
938 938  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
939 939  
940 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
918 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
941 941  
942 942  
943 943  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -969,15 +969,15 @@
969 969  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
970 970  
971 971  
972 -Set DI2 trigger.
950 +Sets DI2 trigger.
973 973  
974 974  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
975 975  
976 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
954 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
977 977  
978 978  (% style="color:red" %)**b :** (%%)delay timing.
979 979  
980 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
958 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
981 981  
982 982  
983 983  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1015,7 +1015,7 @@
1015 1015  ==== 3.4.2.11 Trigger – Set minimum interval ====
1016 1016  
1017 1017  
1018 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
996 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1019 1019  
1020 1020  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1021 1021  
... ... @@ -1049,7 +1049,7 @@
1049 1049  01: Low,  00: High ,  11: No action
1050 1050  
1051 1051  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1052 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1030 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1053 1053  |02  01  00  11|Low|High|No Action
1054 1054  |02  00  11  01|High|No Action|Low
1055 1055  |02  11  01  00|No Action|Low|High
... ... @@ -1092,7 +1092,7 @@
1092 1092  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1093 1093  
1094 1094  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1095 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1073 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1096 1096  |0x01|DO1 set to low
1097 1097  |0x00|DO1 set to high
1098 1098  |0x11|DO1 NO Action
... ... @@ -1100,7 +1100,7 @@
1100 1100  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1101 1101  
1102 1102  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1103 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1081 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1104 1104  |0x01|DO2 set to low
1105 1105  |0x00|DO2 set to high
1106 1106  |0x11|DO2 NO Action
... ... @@ -1108,7 +1108,7 @@
1108 1108  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1109 1109  
1110 1110  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1111 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1089 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1112 1112  |0x01|DO3 set to low
1113 1113  |0x00|DO3 set to high
1114 1114  |0x11|DO3 NO Action
... ... @@ -1145,7 +1145,7 @@
1145 1145  
1146 1146  
1147 1147  
1148 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1126 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1149 1149  
1150 1150  
1151 1151  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1163,10 +1163,10 @@
1163 1163  )))
1164 1164  
1165 1165  (((
1166 -01: Close ,  00: Open , 11: No action
1144 +00: Closed ,  01: Open , 11: No action
1167 1167  
1168 1168  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1169 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1147 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1170 1170  |03  00  11|Open|No Action
1171 1171  |03  01  11|Close|No Action
1172 1172  |03  11  00|No Action|Open
... ... @@ -1285,7 +1285,7 @@
1285 1285  
1286 1286  
1287 1287  
1288 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1266 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1289 1289  
1290 1290  
1291 1291  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1406,75 +1406,144 @@
1406 1406  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1407 1407  
1408 1408  
1409 -== 3.5 Integrate with Mydevice ==
1387 +== 3.5 Integrating with ThingsEye.io ==
1410 1410  
1389 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1411 1411  
1412 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1391 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1413 1413  
1414 -(((
1415 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1416 -)))
1393 +We use The Things Stack Sandbox for demonstating the configuration but  other
1417 1417  
1418 -(((
1419 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1395 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1396 +* Select **MQTT** under **Integrations**.
1397 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1398 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1420 1420  
1421 -
1422 -)))
1400 +NOTE. The username and  password (API key) you created here are required in the next section.
1423 1423  
1424 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1402 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1425 1425  
1404 +=== 3.5.2 Configuring ThingsEye.io ===
1426 1426  
1406 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1427 1427  
1428 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1408 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1409 +* Under the **Integrations center**, click **Integrations**.
1410 +* Click the **Add integration** button (the button with the **+** symbol).
1429 1429  
1412 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1430 1430  
1431 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1432 1432  
1433 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1415 +On the **Add integration** window, configure the following:
1434 1434  
1435 -Search under The things network
1417 +**Basic settings:**
1436 1436  
1437 -[[image:1653356838789-523.png||height="337" width="740"]]
1419 +* Select **The Things Stack Community** from the **Integration type** list.
1420 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1421 +* Ensure the following options are turned on.
1422 +** Enable integration
1423 +** Debug mode
1424 +** Allow create devices or assets
1425 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1438 1438  
1427 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1439 1439  
1440 1440  
1441 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1430 +**Uplink data converter:**
1442 1442  
1443 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1432 +* Click the **Create new** button if it is not selected by default.
1433 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1434 +* Click the **JavaScript** button.
1435 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1436 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1444 1444  
1438 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1445 1445  
1446 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1447 1447  
1441 +**Downlink data converter (this is an optional step):**
1448 1448  
1449 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1443 +* Click the **Create new** button if it is not selected by default.
1444 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1445 +* Click the **JavaScript** button.
1446 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1447 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1450 1450  
1449 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1451 1451  
1452 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1453 1453  
1452 +**Connection:**
1454 1454  
1455 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1454 +* Choose **Region** from the **Host type**.
1455 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1456 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1457 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1456 1456  
1459 +[[image:message-1.png]]
1457 1457  
1458 -== 3.6 Interface Detail ==
1459 1459  
1462 +* Click the **Add** button.
1463 +
1464 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1465 +
1466 +
1467 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1468 +
1469 +
1470 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1471 +
1472 +
1473 +**Viewing integration details**:
1474 +
1475 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1476 +
1477 +[[image:integration-details.png||height="686" width="1000"]]
1478 +
1479 +
1480 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1481 +
1482 +Note: See also ThingsEye documentation.
1483 +
1484 +
1485 +**Viewing events:**
1486 +
1487 +This tab  displays all the uplink messages from the LT-22222-L.
1488 +
1489 +* Click on the **Events **tab.
1490 +* Select **Debug **from the **Event type** dropdown.
1491 +* Select the** time frame** from the **time window**.
1492 +
1493 +[insert image]
1494 +
1495 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1496 +
1497 +[insert image]
1498 +
1499 +
1500 +**Deleting the integration**:
1501 +
1502 +If you want to delete this integration, click the **Delete integratio**n button.
1503 +
1504 +
1505 +== 3.6 Interface Details ==
1506 +
1460 1460  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1461 1461  
1462 1462  
1463 -Support NPN Type sensor
1510 +Support NPN-type sensor
1464 1464  
1465 1465  [[image:1653356991268-289.png]]
1466 1466  
1467 1467  
1468 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1515 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1469 1469  
1470 1470  
1471 1471  (((
1472 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1519 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1473 1473  )))
1474 1474  
1475 1475  (((
1476 1476  (((
1477 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1524 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1478 1478  
1479 1479  
1480 1480  )))
... ... @@ -1484,7 +1484,7 @@
1484 1484  
1485 1485  (((
1486 1486  (((
1487 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1534 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1488 1488  )))
1489 1489  )))
1490 1490  
... ... @@ -1493,22 +1493,22 @@
1493 1493  )))
1494 1494  
1495 1495  (((
1496 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1543 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1497 1497  )))
1498 1498  
1499 1499  (((
1500 -This type of sensor will output a low signal GND when active.
1547 +This type of sensor outputs a low (GND) signal when active.
1501 1501  )))
1502 1502  
1503 1503  * (((
1504 -Connect sensor's output to DI1-
1551 +Connect the sensor's output to DI1-
1505 1505  )))
1506 1506  * (((
1507 -Connect sensor's VCC to DI1+.
1554 +Connect the sensor's VCC to DI1+.
1508 1508  )))
1509 1509  
1510 1510  (((
1511 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1558 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1512 1512  )))
1513 1513  
1514 1514  (((
... ... @@ -1516,7 +1516,7 @@
1516 1516  )))
1517 1517  
1518 1518  (((
1519 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1566 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1520 1520  )))
1521 1521  
1522 1522  (((
... ... @@ -1524,22 +1524,22 @@
1524 1524  )))
1525 1525  
1526 1526  (((
1527 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1574 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1528 1528  )))
1529 1529  
1530 1530  (((
1531 -This type of sensor will output a high signal (example 24v) when active.
1578 +This type of sensor outputs a high signal (e.g., 24V) when active.
1532 1532  )))
1533 1533  
1534 1534  * (((
1535 -Connect sensor's output to DI1+
1582 +Connect the sensor's output to DI1+
1536 1536  )))
1537 1537  * (((
1538 -Connect sensor's GND DI1-.
1585 +Connect the sensor's GND DI1-.
1539 1539  )))
1540 1540  
1541 1541  (((
1542 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1589 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1543 1543  )))
1544 1544  
1545 1545  (((
... ... @@ -1547,7 +1547,7 @@
1547 1547  )))
1548 1548  
1549 1549  (((
1550 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1597 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1551 1551  )))
1552 1552  
1553 1553  (((
... ... @@ -1555,22 +1555,22 @@
1555 1555  )))
1556 1556  
1557 1557  (((
1558 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1605 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1559 1559  )))
1560 1560  
1561 1561  (((
1562 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1609 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1563 1563  )))
1564 1564  
1565 1565  * (((
1566 -Connect sensor's output to DI1+ with a serial 50K resistor
1613 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1567 1567  )))
1568 1568  * (((
1569 -Connect sensor's GND DI1-.
1616 +Connect the sensor's GND DI1-.
1570 1570  )))
1571 1571  
1572 1572  (((
1573 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1620 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1574 1574  )))
1575 1575  
1576 1576  (((
... ... @@ -1578,34 +1578,37 @@
1578 1578  )))
1579 1579  
1580 1580  (((
1581 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1628 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1582 1582  )))
1583 1583  
1584 1584  
1585 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1632 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1586 1586  
1587 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1634 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1588 1588  
1589 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1636 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1590 1590  
1591 1591  [[image:image-20230616235145-1.png]]
1592 1592  
1640 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1593 1593  
1642 +[[image:image-20240219115718-1.png]]
1594 1594  
1595 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1596 1596  
1645 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1597 1597  
1598 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1599 1599  
1600 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1648 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1601 1601  
1650 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1651 +
1602 1602  [[image:1653357531600-905.png]]
1603 1603  
1604 1604  
1605 -=== 3.6.4 Analog Input Interface ===
1655 +=== 3.6.4 Analog Input Interfaces ===
1606 1606  
1607 1607  
1608 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1658 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1609 1609  
1610 1610  
1611 1611  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1612,14 +1612,14 @@
1612 1612  
1613 1613  [[image:1653357592296-182.png]]
1614 1614  
1615 -Example to connect a 4~~20mA sensor
1665 +Example: Connecting a 4~~20mA sensor
1616 1616  
1617 -We take the wind speed sensor as an example for reference only.
1667 +We will use the wind speed sensor as an example for reference only.
1618 1618  
1619 1619  
1620 1620  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1621 1621  
1622 -(% style="color:red" %)**Red:  12~~24v**
1672 +(% style="color:red" %)**Red:  12~~24V**
1623 1623  
1624 1624  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1625 1625  
... ... @@ -1632,7 +1632,7 @@
1632 1632  [[image:1653357648330-671.png||height="155" width="733"]]
1633 1633  
1634 1634  
1635 -Example connected to a regulated power supply to measure voltage
1685 +Example: Connecting to a regulated power supply to measure voltage
1636 1636  
1637 1637  [[image:image-20230608101532-1.png||height="606" width="447"]]
1638 1638  
... ... @@ -1641,7 +1641,7 @@
1641 1641  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1642 1642  
1643 1643  
1644 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1694 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1645 1645  
1646 1646  (% style="color:red" %)**Red:  12~~24v**
1647 1647  
... ... @@ -1652,9 +1652,9 @@
1652 1652  
1653 1653  
1654 1654  (((
1655 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1705 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1656 1656  
1657 -**Note**: RO pins go to Open(NO) when device is power off.
1707 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1658 1658  )))
1659 1659  
1660 1660  [[image:image-20220524100215-9.png]]
... ... @@ -1666,12 +1666,9 @@
1666 1666  == 3.7 LEDs Indicators ==
1667 1667  
1668 1668  
1669 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1670 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1719 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1720 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1671 1671  |**PWR**|Always on if there is power
1672 -|**SYS**|(((
1673 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1674 -)))
1675 1675  |**TX**|(((
1676 1676  (((
1677 1677  Device boot: TX blinks 5 times.
... ... @@ -1685,40 +1685,32 @@
1685 1685  Transmit a LoRa packet: TX blinks once
1686 1686  )))
1687 1687  )))
1688 -|**RX**|RX blinks once when receive a packet.
1689 -|**DO1**|
1690 -|**DO2**|
1691 -|**DO3**|
1692 -|**DI2**|(((
1693 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1735 +|**RX**|RX blinks once when receiving a packet.
1736 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1737 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1738 +|**DI1**|(((
1739 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1694 1694  )))
1695 1695  |**DI2**|(((
1696 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1742 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1697 1697  )))
1698 -|**DI2**|(((
1699 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1700 -)))
1701 -|**RO1**|
1702 -|**RO2**|
1744 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1745 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1703 1703  
1704 -= 4. Use AT Command =
1747 += 4. Using AT Command =
1705 1705  
1706 -== 4.1 Access AT Command ==
1749 +== 4.1 Connecting the LT-22222-L to a computer ==
1707 1707  
1708 1708  
1709 1709  (((
1710 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1753 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1711 1711  )))
1712 1712  
1713 -(((
1714 -
1715 -)))
1716 -
1717 1717  [[image:1653358238933-385.png]]
1718 1718  
1719 1719  
1720 1720  (((
1721 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1760 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1722 1722  )))
1723 1723  
1724 1724  [[image:1653358355238-883.png]]
... ... @@ -1725,10 +1725,12 @@
1725 1725  
1726 1726  
1727 1727  (((
1728 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1767 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1729 1729  )))
1730 1730  
1731 1731  (((
1771 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1772 +
1732 1732  AT+<CMD>?        : Help on <CMD>
1733 1733  )))
1734 1734  
... ... @@ -2032,8 +2032,6 @@
2032 2032  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2033 2033  
2034 2034  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2035 -
2036 -
2037 2037  )))
2038 2038  
2039 2039  (((
... ... @@ -2040,9 +2040,6 @@
2040 2040  [[image:1653359097980-169.png||height="188" width="729"]]
2041 2041  )))
2042 2042  
2043 -(((
2044 -
2045 -)))
2046 2046  
2047 2047  === 4.2.3 Change to Class A ===
2048 2048  
... ... @@ -2050,44 +2050,50 @@
2050 2050  (((
2051 2051  (% style="color:blue" %)**If sensor JOINED:**
2052 2052  
2053 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2054 -ATZ**
2089 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2090 +
2091 +(% style="background-color:#dcdcdc" %)**ATZ**
2055 2055  )))
2056 2056  
2057 2057  
2058 2058  = 5. Case Study =
2059 2059  
2060 -== 5.1 Counting how many objects pass in Flow Line ==
2097 +== 5.1 Counting how many objects pass through the flow Line ==
2061 2061  
2062 2062  
2063 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2100 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2064 2064  
2065 2065  
2066 2066  = 6. FAQ =
2067 2067  
2068 -== 6.1 How to upgrade the image? ==
2105 +== 6.1 How to upgrade the firmware image? ==
2069 2069  
2070 2070  
2071 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2108 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2072 2072  
2073 -* Support new features
2074 -* For bug fix
2110 +* Support new features.
2111 +* Fix bugs.
2075 2075  * Change LoRaWAN bands.
2076 2076  
2077 -Below shows the hardware connection for how to upload an image to the LT:
2114 +Below is the hardware connection setup for uploading an firmware image to the LT-22222-L:
2078 2078  
2116 +(% class="box infomessage" %)
2117 +(((
2118 +The latest firmware version available for the LT-22222-L is v1.6.1 at the time of this writing.
2119 +)))
2120 +
2079 2079  [[image:1653359603330-121.png]]
2080 2080  
2081 2081  
2082 2082  (((
2083 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2084 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2085 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2086 -
2125 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2126 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2127 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2087 2087  
2088 2088  (((
2089 2089  (% style="color:blue" %)**For LT-22222-L**(%%):
2090 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2131 +
2132 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2091 2091  )))
2092 2092  
2093 2093  
... ... @@ -2102,9 +2102,8 @@
2102 2102  [[image:image-20220524104033-15.png]]
2103 2103  
2104 2104  
2105 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2147 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2106 2106  
2107 -
2108 2108  [[image:1653360054704-518.png||height="186" width="745"]]
2109 2109  
2110 2110  
... ... @@ -2117,13 +2117,13 @@
2117 2117  )))
2118 2118  
2119 2119  (((
2120 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2161 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2121 2121  )))
2122 2122  
2123 2123  (((
2124 2124  
2125 2125  
2126 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2167 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2127 2127  
2128 2128  
2129 2129  )))
... ... @@ -2130,13 +2130,13 @@
2130 2130  
2131 2131  (((
2132 2132  (((
2133 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2174 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2134 2134  )))
2135 2135  )))
2136 2136  
2137 2137  (((
2138 2138  (((
2139 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2180 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2140 2140  
2141 2141  
2142 2142  )))
... ... @@ -2143,7 +2143,7 @@
2143 2143  )))
2144 2144  
2145 2145  (((
2146 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2187 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2147 2147  
2148 2148  
2149 2149  )))
... ... @@ -2168,13 +2168,21 @@
2168 2168  
2169 2169  (((
2170 2170  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2212 +
2171 2171  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2214 +
2172 2172  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2216 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2218 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2220 +
2175 2175  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2222 +
2176 2176  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2224 +
2177 2177  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2226 +
2178 2178  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2179 2179  )))
2180 2180  
... ... @@ -2186,13 +2186,13 @@
2186 2186  [[image:1653360498588-932.png||height="485" width="726"]]
2187 2187  
2188 2188  
2189 -== 6.4 How to change the uplink interval ==
2238 +== 6.4 How to change the uplink interval? ==
2190 2190  
2191 2191  
2192 2192  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2193 2193  
2194 2194  
2195 -== 6.5 Can I see counting event in Serial? ==
2244 +== 6.5 Can I see the counting event in Serial? ==
2196 2196  
2197 2197  
2198 2198  (((
... ... @@ -2199,10 +2199,10 @@
2199 2199  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2200 2200  
2201 2201  
2202 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2251 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2203 2203  
2204 2204  
2205 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2254 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2206 2206  
2207 2207  
2208 2208  )))
... ... @@ -2235,6 +2235,12 @@
2235 2235  Firmware version needs to be no less than 1.6.0.
2236 2236  
2237 2237  
2287 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2288 +
2289 +
2290 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2291 +
2292 +
2238 2238  = 7. Trouble Shooting =
2239 2239  )))
2240 2240  
... ... @@ -2275,6 +2275,13 @@
2275 2275  )))
2276 2276  
2277 2277  
2333 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2334 +
2335 +
2336 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2337 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2338 +
2339 +
2278 2278  = 8. Order Info =
2279 2279  
2280 2280  
... ... @@ -2328,5 +2328,3 @@
2328 2328  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2329 2329  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2330 2330  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2331 -
2332 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content