Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20240219115718-1.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -13,38 +13,32 @@ 13 13 14 14 15 15 16 -= 1.Introduction = 20 += 1. Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,164 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high-efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 -* Remote configure parameters via LoRa Downlink 187 - 101 +* Remotely configure parameters via LoRaWAN Downlink 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 - 208 - 209 209 == 1.5 Hardware Variants == 210 210 211 211 212 212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 213 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 214 214 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 215 215 (% style="text-align:center" %) 216 216 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -223,93 +223,140 @@ 223 223 * 1 x Counting Port 224 224 ))) 225 225 226 -= 2. PowerONDevice =131 += 2. Assembling the Device = 227 227 133 +== 2.1 What is included in the package? == 228 228 229 -((( 230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 231 -))) 135 +The package includes the following items: 232 232 233 -((( 234 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 235 235 236 - 237 -))) 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 238 238 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 239 239 [[image:1653297104069-180.png]] 240 240 241 241 242 242 = 3. Operation Mode = 243 243 244 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 245 245 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 246 246 247 -((( 248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 249 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 250 250 251 -((( 252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 253 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 254 254 190 +== 3.2 Registering with a LoRaWAN network server == 255 255 256 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 257 257 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 258 258 259 -((( 260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 261 261 262 - 263 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 264 264 265 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 266 266 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 267 267 268 -((( 269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 270 270 271 - 272 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 273 273 274 -((( 275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 276 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 277 277 278 -((( 279 -Each LT is shipped with a sticker with the default device EUI as below: 280 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 281 281 282 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 283 283 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 284 284 285 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 286 286 287 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 288 288 289 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 290 290 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 291 291 292 -**Add APP KEY and DEV EUI** 293 293 294 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 295 295 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 296 296 297 297 298 -((( 299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 252 +==== Joining ==== 300 300 301 - 302 -))) 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 303 303 304 304 [[image:1653298044601-602.png||height="405" width="709"]] 305 305 306 306 307 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 308 308 309 309 310 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 311 311 312 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 313 313 314 314 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 315 315 ... ... @@ -325,10 +325,10 @@ 325 325 326 326 327 327 ((( 328 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 329 329 330 330 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 331 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 332 332 |Value|((( 333 333 AVI1 voltage 334 334 )))|((( ... ... @@ -343,25 +343,25 @@ 343 343 ))) 344 344 345 345 ((( 346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 347 347 348 348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 351 351 ))) 352 352 353 -* RO is for relay. ROx=1 ,ROx=0 always open.354 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 356 356 357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 358 358 359 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 360 360 361 361 362 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 363 363 364 -AVI1 channel voltage is 0x04AB/1000=1195 (DEC)/1000=1.195V316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 365 365 366 366 AVI2 channel voltage is 0x04AC/1000=1.196V 367 367 ... ... @@ -369,40 +369,35 @@ 369 369 370 370 ACI2 channel current is 0x1300/1000=4.864mA 371 371 372 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= **10101010**(b) means, 373 373 374 -* [1] RO1 relay channel is close and the RO1 LED is ON. 375 -* [0] RO2 relay channel is open and RO2 LED is OFF; 326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 - not used for LT-22222-L. 335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 336 +* [0] DO1 channel output state: 337 +** DO1 is FLOATING when there is no load between DO1 and V+. 338 +** DO1 is HIGH when there is a load between DO1 and V+. 339 +** DO1 LED is OFF in both cases. 376 376 377 -**LT22222-L:** 378 - 379 -* [1] DI2 channel is high input and DI2 LED is ON; 380 -* [0] DI1 channel is low input; 381 - 382 -* [0] DO3 channel output state 383 -** DO3 is float in case no load between DO3 and V+.; 384 -** DO3 is high in case there is load between DO3 and V+. 385 -** DO3 LED is off in both case 386 -* [1] DO2 channel output is low and DO2 LED is ON. 387 -* [0] DO1 channel output state 388 -** DO1 is float in case no load between DO1 and V+.; 389 -** DO1 is high in case there is load between DO1 and V+. 390 -** DO1 LED is off in both case 391 - 392 - 393 - 394 394 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 395 395 396 396 397 397 ((( 398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 399 399 ))) 400 400 401 401 ((( 402 -T otal:11 bytespayload349 +The uplink payload is 11 bytes long. 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 405 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 406 406 |Value|COUNT1|COUNT2 |DIDORO*|((( 407 407 Reserve 408 408 )))|MOD ... ... @@ -409,27 +409,28 @@ 409 409 ))) 410 410 411 411 ((( 412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 413 413 414 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 417 417 418 -RO is for relay. ROx=1 ,ROx=0 always open.365 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 419 419 ))) 420 420 421 -* FIRST: Indicate this is the first packet after join network. 422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 368 +* FIRST: Indicates that this is the first packet after joining the network. 369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 423 423 424 424 ((( 425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 373 + 374 + 426 426 ))) 427 427 428 428 ((( 429 -**To usecountingmode,pleaserun:**378 +**To activate this mode, run the following AT commands:** 430 430 ))) 431 431 432 - 433 433 ((( 434 434 (% class="box infomessage" %) 435 435 ((( ... ... @@ -448,17 +448,17 @@ 448 448 ((( 449 449 **For LT22222-L:** 450 450 451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 452 452 453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 454 454 455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 456 456 457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 458 458 459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 460 460 461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 462 462 ))) 463 463 464 464 ... ... @@ -465,10 +465,10 @@ 465 465 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 466 466 467 467 468 -**LT22222-L**: This mode the DI1 is used as a counting pin.416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 469 469 470 470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 471 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 472 472 |Value|COUNT1|((( 473 473 ACI1 Current 474 474 )))|((( ... ... @@ -476,24 +476,24 @@ 476 476 )))|DIDORO*|Reserve|MOD 477 477 478 478 ((( 479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 484 484 ))) 485 485 486 -* RO is for relay. ROx=1 ,ROx=0 always open.487 -* FIRST: Indicate this is the first packet after join network. 488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 434 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 435 +* FIRST: Indicates that this is the first packet after joining the network. 436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 489 489 490 490 ((( 491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 492 492 ))) 493 493 494 494 495 495 ((( 496 -**To usecountingmode,pleaserun:**444 +**To activate this mode, run the following AT commands:** 497 497 ))) 498 498 499 499 ((( ... ... @@ -505,9 +505,10 @@ 505 505 ))) 506 506 ))) 507 507 508 - 509 509 ((( 510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 457 +AT Commands for counting: 458 + 459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 511 511 ))) 512 512 513 513 ... ... @@ -515,14 +515,14 @@ 515 515 516 516 517 517 ((( 518 -**LT22222-L**: This mode the DI1 is used as a counting pin.467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 519 519 ))) 520 520 521 521 ((( 522 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 523 523 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 525 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 526 526 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 527 527 Reserve 528 528 )))|MOD ... ... @@ -529,23 +529,25 @@ 529 529 ))) 530 530 531 531 ((( 532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 533 533 534 534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 537 537 ))) 538 538 539 -* RO is for relay. ROx=1 ,ROx=0 always open.540 -* FIRST: Indicate this is the first packet after join network. 541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 488 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 489 +* FIRST: Indicates that this is the first packet after joining the network. 490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 542 542 543 543 ((( 544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 494 + 495 + 545 545 ))) 546 546 547 547 ((( 548 -**To use this mode,pleaserun:**499 +**To activate this mode, run the following AT commands:** 549 549 ))) 550 550 551 551 ((( ... ... @@ -557,21 +557,20 @@ 557 557 ))) 558 558 ))) 559 559 560 - 561 561 ((( 562 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 563 563 ))) 564 564 565 565 ((( 566 -** Plusbelow command for AVI1 Counting:**516 +**In addition to that, below are the commands for AVI1 Counting:** 567 567 568 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 569 569 570 570 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 571 571 572 572 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 573 573 574 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 575 575 ))) 576 576 577 577 ... ... @@ -578,10 +578,10 @@ 578 578 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 579 579 580 580 581 -**LT22222-L**: This mode the DI1 is used as a counting pin.531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 582 582 583 583 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 584 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 585 585 |Value|((( 586 586 AVI1 voltage 587 587 )))|((( ... ... @@ -593,30 +593,27 @@ 593 593 )))|MOD 594 594 595 595 ((( 596 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 597 597 598 598 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 599 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 600 600 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 601 601 ))) 602 602 603 -* RO is for relay. ROx=1 ,ROx=0 always open.604 -* FIRST: Indicate this is the first packet after join network. 553 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 554 +* FIRST: Indicates that this is the first packet after joining the network. 605 605 * ((( 606 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 607 607 ))) 608 608 609 609 ((( 610 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 611 611 ))) 612 612 613 613 ((( 614 - 615 - 616 -**To use this mode, please run:** 564 +**To activate this mode, run the following AT commands:** 617 617 ))) 618 618 619 - 620 620 ((( 621 621 (% class="box infomessage" %) 622 622 ((( ... ... @@ -626,9 +626,8 @@ 626 626 ))) 627 627 ))) 628 628 629 - 630 630 ((( 631 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 632 632 ))) 633 633 634 634 ... ... @@ -635,49 +635,46 @@ 635 635 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 636 636 637 637 638 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 639 639 640 -For example, if u serhasconfiguredbelow commands:586 +For example, if you configured the following commands: 641 641 642 642 * **AT+MOD=1 ** **~-~->** The normal working mode 643 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 589 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 644 644 645 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 646 646 647 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type648 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 649 649 650 650 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 651 651 598 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 652 652 653 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 654 - 655 655 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 656 656 657 657 658 658 **Example:** 659 659 660 -AT+AVLIM=3000,6000,0,2000 ( If AVI1 voltage lower than 3vor higher than 6v.v, LT will trigger Uplink)605 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V) 661 661 662 -AT+AVLIM=5000,0,0,0 ( If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)607 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use) 663 663 664 664 610 +(% style="color:#4f81bd" %)**Trigger based on current**: 665 665 666 -(% style="color:#4f81bd" %)**Trigger base on current**: 667 - 668 668 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 669 669 670 670 671 671 **Example:** 672 672 673 -AT+ACLIM=10000,15000,0,0 ( If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)617 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA) 674 674 675 675 620 +(% style="color:#4f81bd" %)**Trigger based on DI status**: 676 676 677 - (%style="color:#4f81bd"%)**Triggerbaseon DI status**:622 +DI status triggers Flag. 678 678 679 -DI status trigger Flag. 680 - 681 681 Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG > 682 682 683 683 ... ... @@ -686,42 +686,41 @@ 686 686 AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 687 687 688 688 689 -(% style="color:#037691" %)**Downlink Command toset Trigger Condition:**632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:** 690 690 691 691 Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM** 692 692 693 693 Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4 694 694 695 - AA: Code for this downlink Command: 638 + AA: Type Code for this downlink Command: 696 696 697 - xx: 0: Limit for AV1 and AV2; ,DI2 trigger enable/disable640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable. 698 698 699 - yy1 yy1: AC1 or AV1 lowlimit or DI1/DI2 trigger status.642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status. 700 700 701 - yy2 yy2: AC1 or AV1 highlimit.644 + yy2 yy2: AC1 or AV1 HIGH limit. 702 702 703 - yy3 yy3: AC2 or AV2 lowlimit.646 + yy3 yy3: AC2 or AV2 LOW limit. 704 704 705 - Yy4 yy4: AC2 or AV2 highlimit.648 + Yy4 yy4: AC2 or AV2 HIGH limit. 706 706 707 707 708 -**Example1**: AA 00 13 88 00 00 00 00 00 00 651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00 709 709 710 -Same as AT+AVLIM=5000,0,0,0 If AVI1 voltage lower than 5V, triggeruplink,0 meansignore)653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use) 711 711 712 712 713 -**Example2**: AA 02 01 00 656 +**Example 2**: AA 02 01 00 714 714 715 -Same as AT+ DTRI =1,0 658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 716 716 717 717 718 - 719 719 (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:** 720 720 721 -MOD6 Payload payload663 +MOD6 Payload: total of 11 bytes 722 722 723 723 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 724 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**666 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 725 725 |Value|((( 726 726 TRI_A FLAG 727 727 )))|((( ... ... @@ -732,10 +732,10 @@ 732 732 MOD(6) 733 733 ))) 734 734 735 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below 736 736 737 737 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 738 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 739 739 |((( 740 740 AV1_LOW 741 741 )))|((( ... ... @@ -754,17 +754,17 @@ 754 754 AC2_HIGH 755 755 ))) 756 756 757 -* Each bit sshows if the corresponding trigger has been configured.699 +* Each bit shows if the corresponding trigger has been configured. 758 758 759 759 **Example:** 760 760 761 -10100000: Means the system has configure to use the trigger: A C1_LOW and AV2_LOW703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW 762 762 763 763 764 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below 765 765 766 766 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 767 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 768 768 |((( 769 769 AV1_LOW 770 770 )))|((( ... ... @@ -783,11 +783,11 @@ 783 783 AC2_HIGH 784 784 ))) 785 785 786 -* Each bit sshows which status has been trigger on this uplink.728 +* Each bit shows which status has been triggered on this uplink. 787 787 788 788 **Example:** 789 789 790 -10000000: Means this p acketis trigger by AC1_LOW.Means voltage too low.732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low. 791 791 792 792 793 793 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below ... ... @@ -796,7 +796,7 @@ 796 796 |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 797 797 |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 798 798 799 -* Each bits shows which status has been trigger on this uplink. 741 +* Each bits shows which status has been triggered on this uplink. 800 800 801 801 **Example:** 802 802 ... ... @@ -853,33 +853,37 @@ 853 853 ==== 3.4.2.1 Set Transmit Interval ==== 854 854 855 855 856 -Set deviceuplink interval.798 +Sets the uplink interval of the device. 857 857 858 -* (% style="color:#037691" %)**AT Command:**800 +* (% style="color:#037691" %)**AT command:** 859 859 860 -(% style="color:blue" %)**AT+TDC=N 802 +(% style="color:blue" %)**AT+TDC=N** 861 861 804 +where N is the time in milliseconds. 862 862 863 -**Example: **AT+TDC=30000. Means set interval to 30 seconds806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds 864 864 865 865 866 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):** 867 867 868 868 (% style="color:blue" %)**0x01 aa bb cc **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)** 869 869 870 870 871 871 872 -==== 3.4.2.2 Set Work Mode (AT+MOD) ==== 815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ==== 873 873 874 874 875 -Set work mode. 818 +Sets the work mode. 876 876 877 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N **820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 878 878 879 - **Example**:AT+MOD=2.Set work modeto Double DI counting mode822 +Where N is the work mode. 880 880 881 -* (%style="color:#037691"%)**DownlinkPayload(prefix 0x0A):**824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode. 882 882 826 + 827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):** 828 + 883 883 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa 884 884 885 885 ... ... @@ -887,10 +887,12 @@ 887 887 ==== 3.4.2.3 Poll an uplink ==== 888 888 889 889 890 - * (%style="color:#037691"%)**AT Command:**(%%) ThereisnoAT Commandto polluplink836 +Asks the device to send an uplink. 891 891 892 -* (% style="color:#037691" %)** DownlinkPayload(prefix0x08):**838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink 893 893 840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):** 841 + 894 894 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 895 895 896 896 **Example**: 0x08FF, ask device to send an Uplink ... ... @@ -897,16 +897,16 @@ 897 897 898 898 899 899 900 -==== 3.4.2.4 Enable Trigger Mode ==== 848 +==== 3.4.2.4 Enable/Disable Trigger Mode ==== 901 901 902 902 903 - Use oftrigger mode,pleasecheck[[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]). 904 904 905 905 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 906 906 907 -(% style="color:red" %)**1:** (%%)Enable TriggerMode855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode 908 908 909 -(% style="color:red" %)**0: **(%%)Disable TriggerMode857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode 910 910 911 911 912 912 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):** ... ... @@ -918,7 +918,7 @@ 918 918 ==== 3.4.2.5 Poll trigger settings ==== 919 919 920 920 921 -Poll trigger settings 869 +Polls the trigger settings 922 922 923 923 * (% style="color:#037691" %)**AT Command:** 924 924 ... ... @@ -926,7 +926,7 @@ 926 926 927 927 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 928 928 929 -(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings ,device will uplink trigger settings once receive this command877 +(% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command 930 930 931 931 932 932 ... ... @@ -933,11 +933,11 @@ 933 933 ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ==== 934 934 935 935 936 -Enable Disable DI1/DI2/DI2 as trigger, 884 +Enable or Disable DI1/DI2/DI2 as trigger, 937 937 938 938 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 939 939 940 -**Example:** AT+ DTRI =1,0 888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 941 941 942 942 943 943 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** ... ... @@ -969,15 +969,15 @@ 969 969 ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ==== 970 970 971 971 972 -Set DI2 trigger. 920 +Sets DI2 trigger. 973 973 974 974 * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 975 975 976 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1). 977 977 978 978 (% style="color:red" %)**b :** (%%)delay timing. 979 979 980 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms ) 981 981 982 982 983 983 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** ... ... @@ -1015,7 +1015,7 @@ 1015 1015 ==== 3.4.2.11 Trigger – Set minimum interval ==== 1016 1016 1017 1017 1018 -Set AV and AC trigger minimum interval ,systemwon't response to the second trigger within this set time after the first trigger.966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger. 1019 1019 1020 1020 * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 1021 1021 ... ... @@ -1049,7 +1049,7 @@ 1049 1049 01: Low, 00: High , 11: No action 1050 1050 1051 1051 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1052 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**1000 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1053 1053 |02 01 00 11|Low|High|No Action 1054 1054 |02 00 11 01|High|No Action|Low 1055 1055 |02 11 01 00|No Action|Low|High ... ... @@ -1092,7 +1092,7 @@ 1092 1092 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1093 1093 1094 1094 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1095 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1096 1096 |0x01|DO1 set to low 1097 1097 |0x00|DO1 set to high 1098 1098 |0x11|DO1 NO Action ... ... @@ -1100,7 +1100,7 @@ 1100 1100 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1101 1101 1102 1102 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1103 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1104 1104 |0x01|DO2 set to low 1105 1105 |0x00|DO2 set to high 1106 1106 |0x11|DO2 NO Action ... ... @@ -1108,7 +1108,7 @@ 1108 1108 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1109 1109 1110 1110 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1111 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1059 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1112 1112 |0x01|DO3 set to low 1113 1113 |0x00|DO3 set to high 1114 1114 |0x11|DO3 NO Action ... ... @@ -1145,7 +1145,7 @@ 1145 1145 1146 1146 1147 1147 1148 -==== 3.4.2. 1096 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1149 1149 1150 1150 1151 1151 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1163,10 +1163,10 @@ 1163 1163 ))) 1164 1164 1165 1165 ((( 1166 -0 1: Close , 00: Open , 11: No action1114 +00: Closed , 01: Open , 11: No action 1167 1167 1168 1168 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1169 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1117 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1170 1170 |03 00 11|Open|No Action 1171 1171 |03 01 11|Close|No Action 1172 1172 |03 11 00|No Action|Open ... ... @@ -1285,7 +1285,7 @@ 1285 1285 1286 1286 1287 1287 1288 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ==== 1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ==== 1289 1289 1290 1290 1291 1291 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1406,75 +1406,91 @@ 1406 1406 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1407 1407 1408 1408 1409 -== 3.5 Integrat ewithMydevice==1357 +== 3.5 Integrating with ThingsEye.io == 1410 1410 1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1411 1411 1412 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1361 +=== 3.5.1 Configuring The Things Stack Sandbox === 1413 1413 1414 - (((1415 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1416 - )))1363 +* Go to your Application and select MQTT under Integrations. 1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1417 1417 1418 -((( 1419 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1420 1420 1421 - 1422 -))) 1369 +=== 3.5.2 Configuring ThingsEye.io === 1423 1423 1424 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1371 +* Login to your thingsEye.io account. 1372 +* Under the Integrations center, click Integrations. 1373 +* Click the Add integration button (the button with the + symbol). 1425 1425 1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1426 1426 1427 1427 1428 - [[image:image-20220719110247-2.png||height="388"width="683"]]1378 +On the Add integration page configure the following: 1429 1429 1380 +Basic settings: 1430 1430 1431 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1382 +* Select The Things Stack Community from the Integration type list. 1383 +* Enter a suitable name for your integration in the Name box or keep the default name. 1384 +* Click the Next button. 1432 1432 1433 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1434 1434 1435 - Search underThethingsnetwork1388 +Uplink Data converter: 1436 1436 1437 -[[image:1653356838789-523.png||height="337" width="740"]] 1390 +* Click the Create New button if it is not selected by default. 1391 +* Click the JavaScript button. 1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1393 +* Click the Next button. 1438 1438 1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1439 1439 1397 +Downlink Data converter (this is an optional step): 1440 1440 1441 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1399 +* Click the Create new button if it is not selected by default. 1400 +* Click the JavaScript button. 1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1402 +* Click the Next button. 1442 1442 1443 -[[image:i mage-20220524094909-1.png||height="335" width="729"]]1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1444 1444 1406 +Connection: 1445 1445 1446 -[[image:image-20220524094909-2.png||height="337" width="729"]] 1408 +* Choose Region from the Host type. 1409 +* Enter the cluster of your The Things Stack in the Region textbox. 1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1412 +* Click the Add button. 1447 1447 1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1448 1448 1449 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1450 1450 1417 +Your integration is added to the integrations list and it will display on the Integrations page. 1451 1451 1452 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1453 1453 1454 1454 1455 - [[image:image-20220524094909-5.png||height="341" width="734"]]1422 +== 3.6 Interface Details == 1456 1456 1457 - 1458 -== 3.6 Interface Detail == 1459 - 1460 1460 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1461 1461 1462 1462 1463 -Support NPN Type sensor1427 +Support NPN-type sensor 1464 1464 1465 1465 [[image:1653356991268-289.png]] 1466 1466 1467 1467 1468 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1469 1469 1470 1470 1471 1471 ((( 1472 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1473 1473 ))) 1474 1474 1475 1475 ((( 1476 1476 ((( 1477 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1478 1478 1479 1479 1480 1480 ))) ... ... @@ -1484,7 +1484,7 @@ 1484 1484 1485 1485 ((( 1486 1486 ((( 1487 - When use need1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1488 1488 ))) 1489 1489 ))) 1490 1490 ... ... @@ -1493,22 +1493,22 @@ 1493 1493 ))) 1494 1494 1495 1495 ((( 1496 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1497 1497 ))) 1498 1498 1499 1499 ((( 1500 -This type of sensor willoutput a low signalGNDwhen active.1464 +This type of sensor outputs a low (GND) signal when active. 1501 1501 ))) 1502 1502 1503 1503 * ((( 1504 -Connect sensor's output to DI1- 1468 +Connect the sensor's output to DI1- 1505 1505 ))) 1506 1506 * ((( 1507 -Connect sensor's VCC to DI1+. 1471 +Connect the sensor's VCC to DI1+. 1508 1508 ))) 1509 1509 1510 1510 ((( 1511 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1512 1512 ))) 1513 1513 1514 1514 ((( ... ... @@ -1516,7 +1516,7 @@ 1516 1516 ))) 1517 1517 1518 1518 ((( 1519 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1520 1520 ))) 1521 1521 1522 1522 ((( ... ... @@ -1524,22 +1524,22 @@ 1524 1524 ))) 1525 1525 1526 1526 ((( 1527 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1528 1528 ))) 1529 1529 1530 1530 ((( 1531 -This type of sensor willoutput a high signal (example24v) when active.1495 +This type of sensor outputs a high signal (e.g., 24V) when active. 1532 1532 ))) 1533 1533 1534 1534 * ((( 1535 -Connect sensor's output to DI1+ 1499 +Connect the sensor's output to DI1+ 1536 1536 ))) 1537 1537 * ((( 1538 -Connect sensor's GND DI1-. 1502 +Connect the sensor's GND DI1-. 1539 1539 ))) 1540 1540 1541 1541 ((( 1542 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1543 1543 ))) 1544 1544 1545 1545 ((( ... ... @@ -1547,7 +1547,7 @@ 1547 1547 ))) 1548 1548 1549 1549 ((( 1550 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1551 1551 ))) 1552 1552 1553 1553 ((( ... ... @@ -1555,22 +1555,22 @@ 1555 1555 ))) 1556 1556 1557 1557 ((( 1558 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1559 1559 ))) 1560 1560 1561 1561 ((( 1562 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1563 1563 ))) 1564 1564 1565 1565 * ((( 1566 -Connect sensor's output to DI1+ with a serial50K resistor1530 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1567 1567 ))) 1568 1568 * ((( 1569 -Connect sensor's GND DI1-. 1533 +Connect the sensor's GND DI1-. 1570 1570 ))) 1571 1571 1572 1572 ((( 1573 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1574 1574 ))) 1575 1575 1576 1576 ((( ... ... @@ -1578,34 +1578,37 @@ 1578 1578 ))) 1579 1579 1580 1580 ((( 1581 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1545 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1582 1582 ))) 1583 1583 1584 1584 1585 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1586 1586 1587 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1588 1588 1589 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1590 1590 1591 1591 [[image:image-20230616235145-1.png]] 1592 1592 1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1593 1593 1559 +[[image:image-20240219115718-1.png]] 1594 1594 1595 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1596 1596 1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1597 1597 1598 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v. 1599 1599 1600 -(% style="color: red" %)**Note: DOpins goto floatwhendevice ispoweroff.**1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1601 1601 1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1568 + 1602 1602 [[image:1653357531600-905.png]] 1603 1603 1604 1604 1605 -=== 3.6.4 Analog Input Interface === 1572 +=== 3.6.4 Analog Input Interfaces === 1606 1606 1607 1607 1608 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1609 1609 1610 1610 1611 1611 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1612,14 +1612,14 @@ 1612 1612 1613 1613 [[image:1653357592296-182.png]] 1614 1614 1615 -Example toconnect a 4~~20mA sensor1582 +Example: Connecting a 4~~20mA sensor 1616 1616 1617 -We take the wind speed sensor as an example for reference only.1584 +We will use the wind speed sensor as an example for reference only. 1618 1618 1619 1619 1620 1620 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1621 1621 1622 -(% style="color:red" %)**Red: 12~~24 v**1589 +(% style="color:red" %)**Red: 12~~24V** 1623 1623 1624 1624 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1625 1625 ... ... @@ -1632,7 +1632,7 @@ 1632 1632 [[image:1653357648330-671.png||height="155" width="733"]] 1633 1633 1634 1634 1635 -Example connectedto a regulated power supply to measure voltage1602 +Example: Connecting to a regulated power supply to measure voltage 1636 1636 1637 1637 [[image:image-20230608101532-1.png||height="606" width="447"]] 1638 1638 ... ... @@ -1641,7 +1641,7 @@ 1641 1641 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1642 1642 1643 1643 1644 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1645 1645 1646 1646 (% style="color:red" %)**Red: 12~~24v** 1647 1647 ... ... @@ -1652,9 +1652,9 @@ 1652 1652 1653 1653 1654 1654 ((( 1655 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1656 1656 1657 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1658 1658 ))) 1659 1659 1660 1660 [[image:image-20220524100215-9.png]] ... ... @@ -1666,12 +1666,9 @@ 1666 1666 == 3.7 LEDs Indicators == 1667 1667 1668 1668 1669 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1670 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1671 1671 |**PWR**|Always on if there is power 1672 -|**SYS**|((( 1673 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1674 -))) 1675 1675 |**TX**|((( 1676 1676 ((( 1677 1677 Device boot: TX blinks 5 times. ... ... @@ -1685,40 +1685,32 @@ 1685 1685 Transmit a LoRa packet: TX blinks once 1686 1686 ))) 1687 1687 ))) 1688 -|**RX**|RX blinks once when receive a packet. 1689 -|**DO1**| 1690 -|**DO2**| 1691 -|**DO3**| 1692 -|**DI2**|((( 1693 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1652 +|**RX**|RX blinks once when receiving a packet. 1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1655 +|**DI1**|((( 1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1694 1694 ))) 1695 1695 |**DI2**|((( 1696 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1697 1697 ))) 1698 -|**DI2**|((( 1699 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1700 -))) 1701 -|**RO1**| 1702 -|**RO2**| 1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1703 1703 1704 -= 4. Us eAT Command =1664 += 4. Using AT Command = 1705 1705 1706 -== 4.1 AccessATCommand==1666 +== 4.1 Connecting the LT-22222-L to a computer == 1707 1707 1708 1708 1709 1709 ((( 1710 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1711 1711 ))) 1712 1712 1713 -((( 1714 - 1715 -))) 1716 - 1717 1717 [[image:1653358238933-385.png]] 1718 1718 1719 1719 1720 1720 ((( 1721 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1722 1722 ))) 1723 1723 1724 1724 [[image:1653358355238-883.png]] ... ... @@ -1725,10 +1725,12 @@ 1725 1725 1726 1726 1727 1727 ((( 1728 - More detailAT Commandmanual can be found at1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1729 1729 ))) 1730 1730 1731 1731 ((( 1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1689 + 1732 1732 AT+<CMD>? : Help on <CMD> 1733 1733 ))) 1734 1734 ... ... @@ -2032,8 +2032,6 @@ 2032 2032 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2033 2033 2034 2034 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 2035 - 2036 - 2037 2037 ))) 2038 2038 2039 2039 ((( ... ... @@ -2040,9 +2040,6 @@ 2040 2040 [[image:1653359097980-169.png||height="188" width="729"]] 2041 2041 ))) 2042 2042 2043 -((( 2044 - 2045 -))) 2046 2046 2047 2047 === 4.2.3 Change to Class A === 2048 2048 ... ... @@ -2050,17 +2050,18 @@ 2050 2050 ((( 2051 2051 (% style="color:blue" %)**If sensor JOINED:** 2052 2052 2053 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A 2054 -ATZ** 2006 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A** 2007 + 2008 +(% style="background-color:#dcdcdc" %)**ATZ** 2055 2055 ))) 2056 2056 2057 2057 2058 2058 = 5. Case Study = 2059 2059 2060 -== 5.1 Counting how many objects pass inFlow Line ==2014 +== 5.1 Counting how many objects pass through the flow Line == 2061 2061 2062 2062 2063 -Reference Link: [[How to set up to count objects pass 2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]? 2064 2064 2065 2065 2066 2066 = 6. FAQ = ... ... @@ -2068,26 +2068,26 @@ 2068 2068 == 6.1 How to upgrade the image? == 2069 2069 2070 2070 2071 -The LT oRaWANController is shipped with a 3.5mm cable,thecableis used to upload image to LT to:2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to: 2072 2072 2073 -* Support new features 2074 -* F orbugfix2027 +* Support new features. 2028 +* Fix bugs. 2075 2075 * Change LoRaWAN bands. 2076 2076 2077 -Below s howsthe hardware connection forhow toupload an image to the LT:2031 +Below is the hardware connection setup for uploading an image to the LT: 2078 2078 2079 2079 [[image:1653359603330-121.png]] 2080 2080 2081 2081 2082 2082 ((( 2083 -(% style="color: blue" %)**Step1**(%%)**:** Download [[flashloader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].2084 -(% style="color: blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].2085 -(% style="color: blue" %)**Step3**(%%)**:** Openflashloader;choose the correct COM port to update.2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update. 2086 2086 2087 2087 2088 2088 ((( 2089 2089 (% style="color:blue" %)**For LT-22222-L**(%%): 2090 -Hold down the PRO button andthen momentarily press the RST reset buttonand the (% style="color:red" %)**DO1led**(%%)on, itmeans the device is in download mode.2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode. 2091 2091 ))) 2092 2092 2093 2093 ... ... @@ -2102,9 +2102,8 @@ 2102 2102 [[image:image-20220524104033-15.png]] 2103 2103 2104 2104 2105 -(% style="color:red" %)**Not ice**(%%): Incaseuserhaslost the program cable.Usercanhandmade one from a 3.5mm cable. The pin mapping is:2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows: 2106 2106 2107 - 2108 2108 [[image:1653360054704-518.png||height="186" width="745"]] 2109 2109 2110 2110 ... ... @@ -2117,13 +2117,13 @@ 2117 2117 ))) 2118 2118 2119 2119 ((( 2120 - Usercan follow the introductionfor[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloadtheimages,choose the required image filefor download.2073 +You can follow the introductions on [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file. 2121 2121 ))) 2122 2122 2123 2123 ((( 2124 2124 2125 2125 2126 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? == 2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? == 2127 2127 2128 2128 2129 2129 ))) ... ... @@ -2130,13 +2130,13 @@ 2130 2130 2131 2131 ((( 2132 2132 ((( 2133 -In this case, u sersneed to set LT-33222-L to work in ABP mode&transmitin only one frequency.2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency. 2134 2134 ))) 2135 2135 ))) 2136 2136 2137 2137 ((( 2138 2138 ((( 2139 -Assume wehave a LG02 workingin the frequency 868400000now , belowisthe step.2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps. 2140 2140 2141 2141 2142 2142 ))) ... ... @@ -2143,7 +2143,7 @@ 2143 2143 ))) 2144 2144 2145 2145 ((( 2146 -(% style="color: blue" %)**Step1**(%%): Log in TTN,Create an ABP device in the application and input thenetworksession key (NETSKEY),app session key (APPSKEY)fromthe device.2099 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device. 2147 2147 2148 2148 2149 2149 ))) ... ... @@ -2168,13 +2168,21 @@ 2168 2168 2169 2169 ((( 2170 2170 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2124 + 2171 2171 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2126 + 2172 2172 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2128 + 2173 2173 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2130 + 2174 2174 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2132 + 2175 2175 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2134 + 2176 2176 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2136 + 2177 2177 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2138 + 2178 2178 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2179 2179 ))) 2180 2180 ... ... @@ -2186,13 +2186,13 @@ 2186 2186 [[image:1653360498588-932.png||height="485" width="726"]] 2187 2187 2188 2188 2189 -== 6.4 How to change the uplink interval ?==2150 +== 6.4 How to change the uplink interval? == 2190 2190 2191 2191 2192 2192 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] 2193 2193 2194 2194 2195 -== 6.5 Can I see counting event in Serial? == 2156 +== 6.5 Can I see the counting event in Serial? == 2196 2196 2197 2197 2198 2198 ((( ... ... @@ -2199,10 +2199,10 @@ 2199 2199 User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first. 2200 2200 2201 2201 2202 -== 6.6 Can iuse pointforLT-22222-L? ==2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? == 2203 2203 2204 2204 2205 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]] ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]]. 2206 2206 2207 2207 2208 2208 ))) ... ... @@ -2235,6 +2235,12 @@ 2235 2235 Firmware version needs to be no less than 1.6.0. 2236 2236 2237 2237 2199 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2200 + 2201 + 2202 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2203 + 2204 + 2238 2238 = 7. Trouble Shooting = 2239 2239 ))) 2240 2240 ... ... @@ -2275,6 +2275,13 @@ 2275 2275 ))) 2276 2276 2277 2277 2245 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2246 + 2247 + 2248 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2249 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2250 + 2251 + 2278 2278 = 8. Order Info = 2279 2279 2280 2280 ... ... @@ -2328,5 +2328,3 @@ 2328 2328 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2329 2329 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2330 2330 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2331 - 2332 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content