Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.12
edited by Xiaoling
on 2023/06/19 16:04
Change comment: There is no comment for this version
To version 165.1
edited by Dilisi S
on 2024/11/06 22:47
Change comment: some minor edits on 6th nov. as part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,93 +223,140 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
226 -= 2. Power ON Device =
131 += 2. Assembling the Device =
227 227  
133 +== 2.1 What is included in the package? ==
228 228  
229 -(((
230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
231 -)))
135 +The package includes the following items:
232 232  
233 -(((
234 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
235 235  
236 -
237 -)))
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
238 238  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
239 239  [[image:1653297104069-180.png]]
240 240  
241 241  
242 242  = 3. Operation Mode =
243 243  
244 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
245 245  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
246 246  
247 -(((
248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
249 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
250 250  
251 -(((
252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
253 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
254 254  
190 +== 3.2 Registering with a LoRaWAN network server ==
255 255  
256 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
257 257  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
258 258  
259 -(((
260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
261 261  
262 -
263 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
264 264  
265 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
266 266  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
267 267  
268 -(((
269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
270 270  
271 -
272 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
273 273  
274 -(((
275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
276 -)))
210 +==== Using the LoRaWAN Device Repository: ====
277 277  
278 -(((
279 -Each LT is shipped with a sticker with the default device EUI as below:
280 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
281 281  
282 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
283 283  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
284 284  
285 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
286 286  
287 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
288 288  
289 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
290 290  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
291 291  
292 -**Add APP KEY and DEV EUI**
293 293  
294 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
295 295  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
296 296  
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
300 300  
301 -
302 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
303 303  
304 304  [[image:1653298044601-602.png||height="405" width="709"]]
305 305  
306 306  
307 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
308 308  
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
313 313  
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
... ... @@ -325,10 +325,10 @@
325 325  
326 326  
327 327  (((
328 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
329 329  
330 330  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
331 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
332 332  |Value|(((
333 333  AVI1 voltage
334 334  )))|(((
... ... @@ -343,25 +343,25 @@
343 343  )))
344 344  
345 345  (((
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
347 347  
348 348  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
353 -* RO is for relay. ROx=1 : closeROx=0 always open.
354 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
356 356  
357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
358 358  
359 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
360 360  
361 361  
362 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
363 363  
364 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
365 365  
366 366  AVI2 channel voltage is 0x04AC/1000=1.196V
367 367  
... ... @@ -369,40 +369,35 @@
369 369  
370 370  ACI2 channel current is 0x1300/1000=4.864mA
371 371  
372 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
373 373  
374 -* [1] RO1 relay channel is close and the RO1 LED is ON.
375 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
376 376  
377 -**LT22222-L:**
378 -
379 -* [1] DI2 channel is high input and DI2 LED is ON;
380 -* [0] DI1 channel is low input;
381 -
382 -* [0] DO3 channel output state
383 -** DO3 is float in case no load between DO3 and V+.;
384 -** DO3 is high in case there is load between DO3 and V+.
385 -** DO3 LED is off in both case
386 -* [1] DO2 channel output is low and DO2 LED is ON.
387 -* [0] DO1 channel output state
388 -** DO1 is float in case no load between DO1 and V+.;
389 -** DO1 is high in case there is load between DO1 and V+.
390 -** DO1 LED is off in both case
391 -
392 -
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,27 +409,28 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : closeROx=0 always open.
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
373 +
374 +
426 426  )))
427 427  
428 428  (((
429 -**To use counting mode, please run:**
378 +**To activate this mode, run the following AT commands:**
430 430  )))
431 431  
432 -
433 433  (((
434 434  (% class="box infomessage" %)
435 435  (((
... ... @@ -448,17 +448,17 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
... ... @@ -465,10 +465,10 @@
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 472  |Value|COUNT1|(((
473 473  ACI1 Current
474 474  )))|(((
... ... @@ -476,24 +476,24 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : closeROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 492  )))
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
497 497  )))
498 498  
499 499  (((
... ... @@ -505,9 +505,10 @@
505 505  )))
506 506  )))
507 507  
508 -
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,26 +529,29 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : closeROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
494 +
495 +
545 545  )))
546 546  
547 547  (((
548 -**To use this mode, please run:**
499 +**To activate this mode, run the following AT commands:**
549 549  )))
550 550  
551 551  (((
503 +(% class="box infomessage" %)
552 552  (((
553 553  **AT+MOD=4**
554 554  
... ... @@ -556,21 +556,20 @@
556 556  )))
557 557  )))
558 558  
559 -
560 560  (((
561 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
562 562  )))
563 563  
564 564  (((
565 -**Plus below command for AVI1 Counting:**
516 +**In addition to that, below are the commands for AVI1 Counting:**
566 566  
567 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
568 568  
569 569  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
570 570  
571 571  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
572 572  
573 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
574 574  )))
575 575  
576 576  
... ... @@ -577,10 +577,10 @@
577 577  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
578 578  
579 579  
580 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
581 581  
582 582  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
583 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
584 584  |Value|(((
585 585  AVI1 voltage
586 586  )))|(((
... ... @@ -592,30 +592,27 @@
592 592  )))|MOD
593 593  
594 594  (((
595 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
596 596  
597 597  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
598 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
599 599  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
600 600  )))
601 601  
602 -* RO is for relay. ROx=1 : closeROx=0 always open.
603 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
604 604  * (((
605 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
606 606  )))
607 607  
608 608  (((
609 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
610 610  )))
611 611  
612 612  (((
613 -
614 -
615 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
616 616  )))
617 617  
618 -
619 619  (((
620 620  (% class="box infomessage" %)
621 621  (((
... ... @@ -625,9 +625,8 @@
625 625  )))
626 626  )))
627 627  
628 -
629 629  (((
630 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
631 631  )))
632 632  
633 633  
... ... @@ -634,49 +634,46 @@
634 634  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
635 635  
636 636  
637 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
638 638  
639 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
640 640  
641 641  * **AT+MOD=1 ** **~-~->**  The normal working mode
642 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
643 643  
644 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
645 645  
646 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
647 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
648 648  
649 649  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
650 650  
598 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
651 651  
652 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
653 -
654 654  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
655 655  
656 656  
657 657  **Example:**
658 658  
659 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
605 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
660 660  
661 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
607 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
662 662  
663 663  
610 +(% style="color:#4f81bd" %)**Trigger based on current**:
664 664  
665 -(% style="color:#4f81bd" %)**Trigger base on current**:
666 -
667 667  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
668 668  
669 669  
670 670  **Example:**
671 671  
672 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
617 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
673 673  
674 674  
620 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
675 675  
676 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
622 +DI status triggers Flag.
677 677  
678 -DI status trigger Flag.
679 -
680 680  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
681 681  
682 682  
... ... @@ -685,42 +685,41 @@
685 685  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
686 686  
687 687  
688 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
632 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
689 689  
690 690  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
691 691  
692 692  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
693 693  
694 - AA: Code for this downlink Command:
638 + AA: Type Code for this downlink Command:
695 695  
696 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
640 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
697 697  
698 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
642 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
699 699  
700 - yy2 yy2: AC1 or AV1 high limit.
644 + yy2 yy2: AC1 or AV1 HIGH limit.
701 701  
702 - yy3 yy3: AC2 or AV2 low limit.
646 + yy3 yy3: AC2 or AV2 LOW limit.
703 703  
704 - Yy4 yy4: AC2 or AV2 high limit.
648 + Yy4 yy4: AC2 or AV2 HIGH limit.
705 705  
706 706  
707 -**Example1**: AA 00 13 88 00 00 00 00 00 00
651 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
708 708  
709 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
653 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
710 710  
711 711  
712 -**Example2**: AA 02 01 00
656 +**Example 2**: AA 02 01 00
713 713  
714 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
658 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
715 715  
716 716  
717 -
718 718  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
719 719  
720 -MOD6 Payload : total 11 bytes payload
663 +MOD6 Payload: total of 11 bytes
721 721  
722 722  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
723 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
666 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
724 724  |Value|(((
725 725  TRI_A FLAG
726 726  )))|(((
... ... @@ -731,10 +731,10 @@
731 731  MOD(6)
732 732  )))
733 733  
734 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
677 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
735 735  
736 736  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
737 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
680 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
738 738  |(((
739 739  AV1_LOW
740 740  )))|(((
... ... @@ -753,17 +753,17 @@
753 753  AC2_HIGH
754 754  )))
755 755  
756 -* Each bits shows if the corresponding trigger has been configured.
699 +* Each bit shows if the corresponding trigger has been configured.
757 757  
758 758  **Example:**
759 759  
760 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
703 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
761 761  
762 762  
763 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
764 764  
765 765  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
766 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
767 767  |(((
768 768  AV1_LOW
769 769  )))|(((
... ... @@ -782,11 +782,11 @@
782 782  AC2_HIGH
783 783  )))
784 784  
785 -* Each bits shows which status has been trigger on this uplink.
728 +* Each bit shows which status has been triggered on this uplink.
786 786  
787 787  **Example:**
788 788  
789 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
732 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
790 790  
791 791  
792 792  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -795,7 +795,7 @@
795 795  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
796 796  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
797 797  
798 -* Each bits shows which status has been trigger on this uplink.
741 +* Each bits shows which status has been triggered on this uplink.
799 799  
800 800  **Example:**
801 801  
... ... @@ -852,33 +852,37 @@
852 852  ==== 3.4.2.1 Set Transmit Interval ====
853 853  
854 854  
855 -Set device uplink interval.
798 +Sets the uplink interval of the device.
856 856  
857 -* (% style="color:#037691" %)**AT Command:**
800 +* (% style="color:#037691" %)**AT command:**
858 858  
859 -(% style="color:blue" %)**AT+TDC=N **
802 +(% style="color:blue" %)**AT+TDC=N**
860 860  
804 +where N is the time in milliseconds.
861 861  
862 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
806 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
863 863  
864 864  
865 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
809 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
866 866  
867 867  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
868 868  
869 869  
870 870  
871 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
815 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
872 872  
873 873  
874 -Set work mode.
818 +Sets the work mode.
875 875  
876 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
820 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
877 877  
878 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
822 +Where N is the work mode.
879 879  
880 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
824 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
881 881  
826 +
827 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
828 +
882 882  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
883 883  
884 884  
... ... @@ -886,10 +886,12 @@
886 886  ==== 3.4.2.3 Poll an uplink ====
887 887  
888 888  
889 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
836 +Asks the device to send an uplink.
890 890  
891 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
838 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
892 892  
840 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
841 +
893 893  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
894 894  
895 895  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -896,16 +896,16 @@
896 896  
897 897  
898 898  
899 -==== 3.4.2.4 Enable Trigger Mode ====
848 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
900 900  
901 901  
902 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
851 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
903 903  
904 904  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
905 905  
906 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
855 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
907 907  
908 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
857 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
909 909  
910 910  
911 911  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -917,7 +917,7 @@
917 917  ==== 3.4.2.5 Poll trigger settings ====
918 918  
919 919  
920 -Poll trigger settings
869 +Polls the trigger settings
921 921  
922 922  * (% style="color:#037691" %)**AT Command:**
923 923  
... ... @@ -925,7 +925,7 @@
925 925  
926 926  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
927 927  
928 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
877 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
929 929  
930 930  
931 931  
... ... @@ -932,11 +932,11 @@
932 932  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
933 933  
934 934  
935 -Enable Disable DI1/DI2/DI2 as trigger,
884 +Enable or Disable DI1/DI2/DI2 as trigger,
936 936  
937 937  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
938 938  
939 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
888 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
940 940  
941 941  
942 942  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -968,15 +968,15 @@
968 968  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
969 969  
970 970  
971 -Set DI2 trigger.
920 +Sets DI2 trigger.
972 972  
973 973  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
974 974  
975 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
924 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
976 976  
977 977  (% style="color:red" %)**b :** (%%)delay timing.
978 978  
979 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
928 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
980 980  
981 981  
982 982  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -1014,7 +1014,7 @@
1014 1014  ==== 3.4.2.11 Trigger – Set minimum interval ====
1015 1015  
1016 1016  
1017 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
966 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1018 1018  
1019 1019  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1020 1020  
... ... @@ -1048,7 +1048,7 @@
1048 1048  01: Low,  00: High ,  11: No action
1049 1049  
1050 1050  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1051 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1000 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1052 1052  |02  01  00  11|Low|High|No Action
1053 1053  |02  00  11  01|High|No Action|Low
1054 1054  |02  11  01  00|No Action|Low|High
... ... @@ -1091,7 +1091,7 @@
1091 1091  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1092 1092  
1093 1093  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1094 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1043 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1095 1095  |0x01|DO1 set to low
1096 1096  |0x00|DO1 set to high
1097 1097  |0x11|DO1 NO Action
... ... @@ -1099,7 +1099,7 @@
1099 1099  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1100 1100  
1101 1101  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1102 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1051 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1103 1103  |0x01|DO2 set to low
1104 1104  |0x00|DO2 set to high
1105 1105  |0x11|DO2 NO Action
... ... @@ -1107,7 +1107,7 @@
1107 1107  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1108 1108  
1109 1109  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1110 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1059 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1111 1111  |0x01|DO3 set to low
1112 1112  |0x00|DO3 set to high
1113 1113  |0x11|DO3 NO Action
... ... @@ -1144,7 +1144,7 @@
1144 1144  
1145 1145  
1146 1146  
1147 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1096 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1148 1148  
1149 1149  
1150 1150  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1162,10 +1162,10 @@
1162 1162  )))
1163 1163  
1164 1164  (((
1165 -01: Close ,  00: Open , 11: No action
1114 +00: Closed ,  01: Open , 11: No action
1166 1166  
1167 1167  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1168 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1117 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1169 1169  |03  00  11|Open|No Action
1170 1170  |03  01  11|Close|No Action
1171 1171  |03  11  00|No Action|Open
... ... @@ -1284,7 +1284,7 @@
1284 1284  
1285 1285  
1286 1286  
1287 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1236 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1288 1288  
1289 1289  
1290 1290  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1405,75 +1405,91 @@
1405 1405  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1406 1406  
1407 1407  
1408 -== 3.5 Integrate with Mydevice ==
1357 +== 3.5 Integrating with ThingsEye.io ==
1409 1409  
1359 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1410 1410  
1411 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1361 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1412 1412  
1413 -(((
1414 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1415 -)))
1363 +* Go to your Application and select MQTT under Integrations.
1364 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1365 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1416 1416  
1417 -(((
1418 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1367 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1419 1419  
1420 -
1421 -)))
1369 +=== 3.5.2 Configuring ThingsEye.io ===
1422 1422  
1423 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1371 +* Login to your thingsEye.io account.
1372 +* Under the Integrations center, click Integrations.
1373 +* Click the Add integration button (the button with the + symbol).
1424 1424  
1375 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1425 1425  
1426 1426  
1427 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1378 +On the Add integration page configure the following:
1428 1428  
1380 +Basic settings:
1429 1429  
1430 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1382 +* Select The Things Stack Community from the Integration type list.
1383 +* Enter a suitable name for your integration in the Name box or keep the default name.
1384 +* Click the Next button.
1431 1431  
1432 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1386 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1433 1433  
1434 -Search under The things network
1388 +Uplink Data converter:
1435 1435  
1436 -[[image:1653356838789-523.png||height="337" width="740"]]
1390 +* Click the Create New button if it is not selected by default.
1391 +* Click the JavaScript button.
1392 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1393 +* Click the Next button.
1437 1437  
1395 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1438 1438  
1397 +Downlink Data converter (this is an optional step):
1439 1439  
1440 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1399 +* Click the Create new button if it is not selected by default.
1400 +* Click the JavaScript button.
1401 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1402 +* Click the Next button.
1441 1441  
1442 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1404 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1443 1443  
1406 +Connection:
1444 1444  
1445 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1408 +* Choose Region from the Host type.
1409 +* Enter the cluster of your The Things Stack in the Region textbox.
1410 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1411 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1412 +* Click the Add button.
1446 1446  
1414 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1447 1447  
1448 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1449 1449  
1417 +Your integration is added to the integrations list and it will display on the Integrations page.
1450 1450  
1451 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1419 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1452 1452  
1453 1453  
1454 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1422 +== 3.6 Interface Details ==
1455 1455  
1456 -
1457 -== 3.6 Interface Detail ==
1458 -
1459 1459  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1460 1460  
1461 1461  
1462 -Support NPN Type sensor
1427 +Support NPN-type sensor
1463 1463  
1464 1464  [[image:1653356991268-289.png]]
1465 1465  
1466 1466  
1467 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1432 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1468 1468  
1469 1469  
1470 1470  (((
1471 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1436 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1472 1472  )))
1473 1473  
1474 1474  (((
1475 1475  (((
1476 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1441 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1477 1477  
1478 1478  
1479 1479  )))
... ... @@ -1483,7 +1483,7 @@
1483 1483  
1484 1484  (((
1485 1485  (((
1486 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1451 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1487 1487  )))
1488 1488  )))
1489 1489  
... ... @@ -1492,22 +1492,22 @@
1492 1492  )))
1493 1493  
1494 1494  (((
1495 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1460 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1496 1496  )))
1497 1497  
1498 1498  (((
1499 -This type of sensor will output a low signal GND when active.
1464 +This type of sensor outputs a low (GND) signal when active.
1500 1500  )))
1501 1501  
1502 1502  * (((
1503 -Connect sensor's output to DI1-
1468 +Connect the sensor's output to DI1-
1504 1504  )))
1505 1505  * (((
1506 -Connect sensor's VCC to DI1+.
1471 +Connect the sensor's VCC to DI1+.
1507 1507  )))
1508 1508  
1509 1509  (((
1510 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1475 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1511 1511  )))
1512 1512  
1513 1513  (((
... ... @@ -1515,7 +1515,7 @@
1515 1515  )))
1516 1516  
1517 1517  (((
1518 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1483 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1519 1519  )))
1520 1520  
1521 1521  (((
... ... @@ -1523,22 +1523,22 @@
1523 1523  )))
1524 1524  
1525 1525  (((
1526 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1491 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1527 1527  )))
1528 1528  
1529 1529  (((
1530 -This type of sensor will output a high signal (example 24v) when active.
1495 +This type of sensor outputs a high signal (e.g., 24V) when active.
1531 1531  )))
1532 1532  
1533 1533  * (((
1534 -Connect sensor's output to DI1+
1499 +Connect the sensor's output to DI1+
1535 1535  )))
1536 1536  * (((
1537 -Connect sensor's GND DI1-.
1502 +Connect the sensor's GND DI1-.
1538 1538  )))
1539 1539  
1540 1540  (((
1541 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1506 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1542 1542  )))
1543 1543  
1544 1544  (((
... ... @@ -1546,7 +1546,7 @@
1546 1546  )))
1547 1547  
1548 1548  (((
1549 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1514 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1550 1550  )))
1551 1551  
1552 1552  (((
... ... @@ -1554,22 +1554,22 @@
1554 1554  )))
1555 1555  
1556 1556  (((
1557 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1522 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1558 1558  )))
1559 1559  
1560 1560  (((
1561 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1526 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1562 1562  )))
1563 1563  
1564 1564  * (((
1565 -Connect sensor's output to DI1+ with a serial 50K resistor
1530 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1566 1566  )))
1567 1567  * (((
1568 -Connect sensor's GND DI1-.
1533 +Connect the sensor's GND DI1-.
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1537 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1573 1573  )))
1574 1574  
1575 1575  (((
... ... @@ -1577,34 +1577,37 @@
1577 1577  )))
1578 1578  
1579 1579  (((
1580 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1545 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1581 1581  )))
1582 1582  
1583 1583  
1584 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1549 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1585 1585  
1586 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1551 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1587 1587  
1588 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1553 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1589 1589  
1590 1590  [[image:image-20230616235145-1.png]]
1591 1591  
1557 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1592 1592  
1559 +[[image:image-20240219115718-1.png]]
1593 1593  
1594 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1595 1595  
1562 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1596 1596  
1597 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1598 1598  
1599 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1565 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1600 1600  
1567 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1568 +
1601 1601  [[image:1653357531600-905.png]]
1602 1602  
1603 1603  
1604 -=== 3.6.4 Analog Input Interface ===
1572 +=== 3.6.4 Analog Input Interfaces ===
1605 1605  
1606 1606  
1607 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1575 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1608 1608  
1609 1609  
1610 1610  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1611,14 +1611,14 @@
1611 1611  
1612 1612  [[image:1653357592296-182.png]]
1613 1613  
1614 -Example to connect a 4~~20mA sensor
1582 +Example: Connecting a 4~~20mA sensor
1615 1615  
1616 -We take the wind speed sensor as an example for reference only.
1584 +We will use the wind speed sensor as an example for reference only.
1617 1617  
1618 1618  
1619 1619  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1620 1620  
1621 -(% style="color:red" %)**Red:  12~~24v**
1589 +(% style="color:red" %)**Red:  12~~24V**
1622 1622  
1623 1623  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1624 1624  
... ... @@ -1631,7 +1631,7 @@
1631 1631  [[image:1653357648330-671.png||height="155" width="733"]]
1632 1632  
1633 1633  
1634 -Example connected to a regulated power supply to measure voltage
1602 +Example: Connecting to a regulated power supply to measure voltage
1635 1635  
1636 1636  [[image:image-20230608101532-1.png||height="606" width="447"]]
1637 1637  
... ... @@ -1640,7 +1640,7 @@
1640 1640  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1641 1641  
1642 1642  
1643 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1611 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1644 1644  
1645 1645  (% style="color:red" %)**Red:  12~~24v**
1646 1646  
... ... @@ -1651,9 +1651,9 @@
1651 1651  
1652 1652  
1653 1653  (((
1654 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1622 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1655 1655  
1656 -**Note**: RO pins go to Open(NO) when device is power off.
1624 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1657 1657  )))
1658 1658  
1659 1659  [[image:image-20220524100215-9.png]]
... ... @@ -1665,12 +1665,9 @@
1665 1665  == 3.7 LEDs Indicators ==
1666 1666  
1667 1667  
1668 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1669 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1636 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1637 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1670 1670  |**PWR**|Always on if there is power
1671 -|**SYS**|(((
1672 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1673 -)))
1674 1674  |**TX**|(((
1675 1675  (((
1676 1676  Device boot: TX blinks 5 times.
... ... @@ -1684,40 +1684,32 @@
1684 1684  Transmit a LoRa packet: TX blinks once
1685 1685  )))
1686 1686  )))
1687 -|**RX**|RX blinks once when receive a packet.
1688 -|**DO1**|
1689 -|**DO2**|
1690 -|**DO3**|
1691 -|**DI2**|(((
1692 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1652 +|**RX**|RX blinks once when receiving a packet.
1653 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1654 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1655 +|**DI1**|(((
1656 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1693 1693  )))
1694 1694  |**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1659 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1696 1696  )))
1697 -|**DI2**|(((
1698 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1699 -)))
1700 -|**RO1**|
1701 -|**RO2**|
1661 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1662 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1702 1702  
1703 -= 4. Use AT Command =
1664 += 4. Using AT Command =
1704 1704  
1705 -== 4.1 Access AT Command ==
1666 +== 4.1 Connecting the LT-22222-L to a computer ==
1706 1706  
1707 1707  
1708 1708  (((
1709 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1670 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1710 1710  )))
1711 1711  
1712 -(((
1713 -
1714 -)))
1715 -
1716 1716  [[image:1653358238933-385.png]]
1717 1717  
1718 1718  
1719 1719  (((
1720 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1677 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1721 1721  )))
1722 1722  
1723 1723  [[image:1653358355238-883.png]]
... ... @@ -1724,10 +1724,12 @@
1724 1724  
1725 1725  
1726 1726  (((
1727 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1684 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1728 1728  )))
1729 1729  
1730 1730  (((
1688 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1689 +
1731 1731  AT+<CMD>?        : Help on <CMD>
1732 1732  )))
1733 1733  
... ... @@ -2031,8 +2031,6 @@
2031 2031  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2032 2032  
2033 2033  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2034 -
2035 -
2036 2036  )))
2037 2037  
2038 2038  (((
... ... @@ -2039,9 +2039,6 @@
2039 2039  [[image:1653359097980-169.png||height="188" width="729"]]
2040 2040  )))
2041 2041  
2042 -(((
2043 -
2044 -)))
2045 2045  
2046 2046  === 4.2.3 Change to Class A ===
2047 2047  
... ... @@ -2049,17 +2049,18 @@
2049 2049  (((
2050 2050  (% style="color:blue" %)**If sensor JOINED:**
2051 2051  
2052 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2053 -ATZ**
2006 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2007 +
2008 +(% style="background-color:#dcdcdc" %)**ATZ**
2054 2054  )))
2055 2055  
2056 2056  
2057 2057  = 5. Case Study =
2058 2058  
2059 -== 5.1 Counting how many objects pass in Flow Line ==
2014 +== 5.1 Counting how many objects pass through the flow Line ==
2060 2060  
2061 2061  
2062 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2017 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2063 2063  
2064 2064  
2065 2065  = 6. FAQ =
... ... @@ -2067,26 +2067,26 @@
2067 2067  == 6.1 How to upgrade the image? ==
2068 2068  
2069 2069  
2070 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2025 +The LT-22222-L I/O Controller is shipped with a 3.5mm cable, which is used to upload an image to LT in order to:
2071 2071  
2072 -* Support new features
2073 -* For bug fix
2027 +* Support new features.
2028 +* Fix bugs.
2074 2074  * Change LoRaWAN bands.
2075 2075  
2076 -Below shows the hardware connection for how to upload an image to the LT:
2031 +Below is the hardware connection setup for uploading an image to the LT:
2077 2077  
2078 2078  [[image:1653359603330-121.png]]
2079 2079  
2080 2080  
2081 2081  (((
2082 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2083 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2084 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2037 +(% style="color:#0000ff" %)**Step 1**(%%)**:** Download the F[[lash Loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2038 +(% style="color:#0000ff" %)**Step 2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2039 +(% style="color:#0000ff" %)**Step 3**(%%)**:** Open the Flash Loader and choose the correct COM port to update.
2085 2085  
2086 2086  
2087 2087  (((
2088 2088  (% style="color:blue" %)**For LT-22222-L**(%%):
2089 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2044 +Hold down the PRO button, then momentarily press the RST reset button. The (% style="color:red" %)**DO1 LED**(%%) will change from OFF to ON. When the (% style="color:red" %)**DO1 LED**(%%) is ON, it indicates that the device is in download mode.
2090 2090  )))
2091 2091  
2092 2092  
... ... @@ -2101,9 +2101,8 @@
2101 2101  [[image:image-20220524104033-15.png]]
2102 2102  
2103 2103  
2104 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2059 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2105 2105  
2106 -
2107 2107  [[image:1653360054704-518.png||height="186" width="745"]]
2108 2108  
2109 2109  
... ... @@ -2116,13 +2116,13 @@
2116 2116  )))
2117 2117  
2118 2118  (((
2119 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2073 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2120 2120  )))
2121 2121  
2122 2122  (((
2123 2123  
2124 2124  
2125 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2079 +== 6.3 How to set up LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2126 2126  
2127 2127  
2128 2128  )))
... ... @@ -2129,13 +2129,13 @@
2129 2129  
2130 2130  (((
2131 2131  (((
2132 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2133 2133  )))
2134 2134  )))
2135 2135  
2136 2136  (((
2137 2137  (((
2138 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2139 2139  
2140 2140  
2141 2141  )))
... ... @@ -2142,7 +2142,7 @@
2142 2142  )))
2143 2143  
2144 2144  (((
2145 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2146 2146  
2147 2147  
2148 2148  )))
... ... @@ -2167,13 +2167,21 @@
2167 2167  
2168 2168  (((
2169 2169  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124 +
2170 2170  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126 +
2171 2171  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128 +
2172 2172  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134 +
2175 2175  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136 +
2176 2176  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138 +
2177 2177  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2178 2178  )))
2179 2179  
... ... @@ -2185,13 +2185,13 @@
2185 2185  [[image:1653360498588-932.png||height="485" width="726"]]
2186 2186  
2187 2187  
2188 -== 6.4 How to change the uplink interval ==
2150 +== 6.4 How to change the uplink interval? ==
2189 2189  
2190 2190  
2191 2191  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2192 2192  
2193 2193  
2194 -== 6.5 Can I see counting event in Serial? ==
2156 +== 6.5 Can I see the counting event in Serial? ==
2195 2195  
2196 2196  
2197 2197  (((
... ... @@ -2198,10 +2198,10 @@
2198 2198  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2199 2199  
2200 2200  
2201 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2163 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2202 2202  
2203 2203  
2204 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2166 +Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]. this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2205 2205  
2206 2206  
2207 2207  )))
... ... @@ -2234,6 +2234,12 @@
2234 2234  Firmware version needs to be no less than 1.6.0.
2235 2235  
2236 2236  
2199 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2200 +
2201 +
2202 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2203 +
2204 +
2237 2237  = 7. Trouble Shooting =
2238 2238  )))
2239 2239  
... ... @@ -2274,6 +2274,13 @@
2274 2274  )))
2275 2275  
2276 2276  
2245 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2246 +
2247 +
2248 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2249 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2250 +
2251 +
2277 2277  = 8. Order Info =
2278 2278  
2279 2279  
... ... @@ -2327,5 +2327,3 @@
2327 2327  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2328 2328  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2329 2329  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2330 -
2331 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content