Last modified by Mengting Qiu on 2025/06/04 18:42

From version 126.11
edited by Xiaoling
on 2023/06/19 15:59
Change comment: There is no comment for this version
To version 186.1
edited by Dilisi S
on 2024/11/11 02:43
Change comment: Nov 10 edits part 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
103 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,94 +223,175 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
226 -= 2. Power ON Device =
129 += 2. Assembling =
227 227  
131 +Attach the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
228 228  
229 -(((
230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
231 -)))
133 +== 2.2 Terminals ==
232 232  
233 -(((
234 -PWR will on when device is properly powered.
135 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
235 235  
236 -
237 -)))
137 +Upper screw terminal block (from left to right):
238 238  
239 -[[image:1653297104069-180.png]]
139 +(% style="width:634px" %)
140 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
141 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
142 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
143 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
144 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
145 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
146 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
240 240  
148 +Lower screw terminal block (from left to right):
241 241  
242 -= 3. Operation Mode =
150 +(% style="width:633px" %)
151 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
152 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
153 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
154 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
155 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
156 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
157 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
158 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
159 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
160 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
161 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
243 243  
244 -== 3.1 How it works? ==
163 +== 2.3 Powering the device ==
245 245  
165 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
246 246  
247 -(((
248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
249 -)))
167 +Powering on the device
250 250  
251 -(((
252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
253 -)))
169 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
254 254  
171 +{{warning}}
172 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
173 +{{/warning}}
255 255  
256 -== 3.2 Example to join LoRaWAN network ==
257 257  
176 +[[image:1653297104069-180.png]]
258 258  
259 -(((
260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
261 261  
262 -
263 -)))
179 += 3. Registering with a LoRaWAN Network Server =
264 264  
265 -[[image:image-20220523172350-1.png||height="266" width="864"]]
181 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
266 266  
183 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
267 267  
268 -(((
269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
185 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
270 270  
271 -
272 -)))
187 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
273 273  
274 -(((
275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
276 -)))
189 +[[image:image-20220523172350-1.png||height="266" width="864"]]
277 277  
278 -(((
279 -Each LT is shipped with a sticker with the default device EUI as below:
280 -)))
191 +=== 3.2.1 Prerequisites ===
281 281  
193 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
194 +
282 282  [[image:image-20230425173427-2.png||height="246" width="530"]]
283 283  
197 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
284 284  
285 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
199 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
286 286  
287 -**Add APP EUI in the application.**
201 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
288 288  
289 -[[image:1653297955910-247.png||height="321" width="716"]]
203 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
204 +* Create an application with The Things Stack if you do not have one yet.
205 +* Go to your application page and click on the **End devices** in the left menu.
206 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
290 290  
208 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
291 291  
292 -**Add APP KEY and DEV EUI**
210 +* On the **Register end device** page:
211 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
212 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
213 +*** **End device brand**: Dragino Technology Co., Limited
214 +*** **Model**: LT22222-L I/O Controller
215 +*** **Hardware ver**: Unknown
216 +*** **Firmware ver**: 1.6.0
217 +*** **Profile (Region)**: Select the region that matches your device.
218 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
293 293  
294 -[[image:1653298023685-319.png]]
220 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
295 295  
296 296  
223 +* Register end device page continued...
224 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
225 +** In the **DevEUI** field, enter the **DevEUI**.
226 +** In the **AppKey** field, enter the **AppKey.**
227 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
228 +** Under **After registration**, select the **View registered end device** option.
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
230 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
300 300  
301 -
302 -)))
232 +==== ====
303 303  
304 -[[image:1653298044601-602.png||height="405" width="709"]]
234 +==== 3.2.2.2 Adding device manually ====
305 305  
236 +* On the **Register end device** page:
237 +** Select the option **Enter end device specifies manually** under **Input method**.
238 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
239 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
240 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
241 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
242 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
243 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
306 306  
307 -== 3.3 Uplink Payload ==
245 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
308 308  
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
248 +* Register end device page continued...
249 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
250 +** In the **DevEUI** field, enter the **DevEUI**.
251 +** In the **AppKey** field, enter the **AppKey**.
252 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
253 +** Under **After registration**, select the **View registered end device** option.
254 +** Click the **Register end device** button.
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
256 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
313 313  
258 +
259 +You will be navigated to the **Device overview** page.
260 +
261 +
262 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
263 +
264 +
265 +==== 3.2.2.3 Joining ====
266 +
267 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
268 +
269 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
270 +
271 +
272 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
273 +
274 +
275 +By default, you will receive an uplink data message from the device every 10 minutes.
276 +
277 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
278 +
279 +[[image:lt-22222-ul-payload-decoded.png]]
280 +
281 +
282 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
283 +
284 +{{info}}
285 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
286 +{{/info}}
287 +
288 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
289 +
290 +
291 +== 3.3 Work Modes and their Uplink Payload formats ==
292 +
293 +
294 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
295 +
296 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
297 +
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
316 316  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -321,14 +321,17 @@
321 321  
322 322  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
323 323  
308 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
309 +
324 324  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
325 325  
326 -
327 327  (((
328 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
313 +This is the default mode.
329 329  
315 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
316 +
330 330  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
331 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
318 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
332 332  |Value|(((
333 333  AVI1 voltage
334 334  )))|(((
... ... @@ -337,31 +337,31 @@
337 337  ACI1 Current
338 338  )))|(((
339 339  ACI2 Current
340 -)))|DIDORO*|(((
327 +)))|**DIDORO***|(((
341 341  Reserve
342 342  )))|MOD
343 343  )))
344 344  
345 345  (((
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
333 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
347 347  
348 348  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
336 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
337 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
353 -* RO is for relay. ROx=1 : close,ROx=0 always open.
354 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
340 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
341 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
342 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
356 356  
357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
344 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
358 358  
359 -For example if payload is: [[image:image-20220523175847-2.png]]
346 +For example, if the payload is: [[image:image-20220523175847-2.png]]
360 360  
361 361  
362 -**The value for the interface is:  **
349 +**The interface values can be calculated as follows:  **
363 363  
364 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
351 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
365 365  
366 366  AVI2 channel voltage is 0x04AC/1000=1.196V
367 367  
... ... @@ -369,40 +369,35 @@
369 369  
370 370  ACI2 channel current is 0x1300/1000=4.864mA
371 371  
372 -The last byte 0xAA= 10101010(B) means
359 +The last byte 0xAA= **10101010**(b) means,
373 373  
374 -* [1] RO1 relay channel is close and the RO1 LED is ON.
375 -* [0] RO2 relay channel is open and RO2 LED is OFF;
361 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
362 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
363 +* **[1] DI3 - not used for LT-22222-L.**
364 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
365 +* [1] DI1 channel input state:
366 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
367 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
368 +** DI1 LED is ON in both cases.
369 +* **[0] DO3 - not used for LT-22222-L.**
370 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
371 +* [0] DO1 channel output state:
372 +** DO1 is FLOATING when there is no load between DO1 and V+.
373 +** DO1 is HIGH when there is a load between DO1 and V+.
374 +** DO1 LED is OFF in both cases.
376 376  
377 -**LT22222-L:**
378 -
379 -* [1] DI2 channel is high input and DI2 LED is ON;
380 -* [0] DI1 channel is low input;
381 -
382 -* [0] DO3 channel output state
383 -** DO3 is float in case no load between DO3 and V+.;
384 -** DO3 is high in case there is load between DO3 and V+.
385 -** DO3 LED is off in both case
386 -* [1] DO2 channel output is low and DO2 LED is ON.
387 -* [0] DO1 channel output state
388 -** DO1 is float in case no load between DO1 and V+.;
389 -** DO1 is high in case there is load between DO1 and V+.
390 -** DO1 LED is off in both case
391 -
392 -
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
380 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
384 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
387 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,36 +409,37 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
394 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
397 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
398 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : close,ROx=0 always open.
400 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
403 +* FIRST: Indicates that this is the first packet after joining the network.
404 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
407 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
408 +
409 +
426 426  )))
427 427  
428 428  (((
429 -**To use counting mode, please run:**
413 +**To activate this mode, run the following AT commands:**
430 430  )))
431 431  
432 -
433 433  (((
417 +(% class="box infomessage" %)
418 +(((
434 434  **AT+MOD=2**
435 -)))
436 436  
437 -(((
438 438  **ATZ**
439 439  )))
423 +)))
440 440  
441 -
442 442  (((
443 443  
444 444  
... ... @@ -448,17 +448,17 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
434 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
436 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
438 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
440 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
442 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
444 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
... ... @@ -465,10 +465,10 @@
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
451 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
454 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 472  |Value|COUNT1|(((
473 473  ACI1 Current
474 474  )))|(((
... ... @@ -476,24 +476,24 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
462 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
465 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
466 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : closeROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
469 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
470 +* FIRST: Indicates that this is the first packet after joining the network.
471 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
474 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
492 492  )))
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
479 +**To activate this mode, run the following AT commands:**
497 497  )))
498 498  
499 499  (((
... ... @@ -505,9 +505,10 @@
505 505  )))
506 506  )))
507 507  
508 -
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
492 +AT Commands for counting:
493 +
494 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
502 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
506 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
509 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,52 +529,50 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
516 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
519 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
520 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : closeROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
523 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
524 +* FIRST: Indicates that this is the first packet after joining the network.
525 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
545 -)))
528 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
546 546  
547 -(((
548 548  
549 -
550 -**To use this mode, please run:**
551 551  )))
552 552  
553 -
554 554  (((
555 -**AT+MOD=4**
534 +**To activate this mode, run the following AT commands:**
556 556  )))
557 557  
558 558  (((
538 +(% class="box infomessage" %)
539 +(((
540 +**AT+MOD=4**
541 +
559 559  **ATZ**
560 560  )))
544 +)))
561 561  
562 -
563 -
564 564  (((
565 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
547 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
566 566  )))
567 567  
568 568  (((
569 -**Plus below command for AVI1 Counting:**
551 +**In addition to that, below are the commands for AVI1 Counting:**
570 570  
571 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
553 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
572 572  
573 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
555 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
574 574  
575 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
557 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
576 576  
577 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
559 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
578 578  )))
579 579  
580 580  
... ... @@ -581,10 +581,10 @@
581 581  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
582 582  
583 583  
584 -**LT22222-L**: This mode the DI1 is used as a counting pin.
566 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
585 585  
586 586  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
587 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
569 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
588 588  |Value|(((
589 589  AVI1 voltage
590 590  )))|(((
... ... @@ -596,41 +596,38 @@
596 596  )))|MOD
597 597  
598 598  (((
599 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
581 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
600 600  
601 601  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
602 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
584 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
603 603  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
604 604  )))
605 605  
606 -* RO is for relay. ROx=1 : closeROx=0 always open.
607 -* FIRST: Indicate this is the first packet after join network.
588 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
589 +* FIRST: Indicates that this is the first packet after joining the network.
608 608  * (((
609 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
591 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
610 610  )))
611 611  
612 612  (((
613 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
595 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
614 614  )))
615 615  
616 616  (((
617 -
618 -
619 -**To use this mode, please run:**
599 +**To activate this mode, run the following AT commands:**
620 620  )))
621 621  
622 -
623 623  (((
603 +(% class="box infomessage" %)
604 +(((
624 624  **AT+MOD=5**
625 -)))
626 626  
627 -(((
628 628  **ATZ**
629 629  )))
609 +)))
630 630  
631 -
632 632  (((
633 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
612 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
634 634  )))
635 635  
636 636  
... ... @@ -637,49 +637,48 @@
637 637  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
638 638  
639 639  
640 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
619 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
641 641  
642 -For example, if user has configured below commands:
621 +For example, if you configured the following commands:
643 643  
644 -* **AT+MOD=1 ** **~-~->**  The normal working mode
645 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
623 +* **AT+MOD=1 ** **~-~->**  The default work mode
624 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
646 646  
647 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
626 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
648 648  
649 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
650 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
628 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
629 +1. (((
630 +Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
631 +)))
651 651  
652 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
633 +(% style="color:#037691" %)**AT Commands to set Trigger Condition**:
653 653  
635 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
654 654  
655 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
656 -
657 657  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
658 658  
659 659  
660 660  **Example:**
661 661  
662 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
642 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
663 663  
664 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
644 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
665 665  
666 666  
647 +(% style="color:#4f81bd" %)**Trigger based on current**:
667 667  
668 -(% style="color:#4f81bd" %)**Trigger base on current**:
669 -
670 670  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
671 671  
672 672  
673 673  **Example:**
674 674  
675 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
654 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
676 676  
677 677  
657 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
678 678  
679 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
659 +DI status triggers Flag.
680 680  
681 -DI status trigger Flag.
682 -
683 683  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
684 684  
685 685  
... ... @@ -688,42 +688,41 @@
688 688  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
689 689  
690 690  
691 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
669 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
692 692  
693 693  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
694 694  
695 695  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
696 696  
697 - AA: Code for this downlink Command:
675 + AA: Type Code for this downlink Command:
698 698  
699 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
677 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
700 700  
701 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
679 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
702 702  
703 - yy2 yy2: AC1 or AV1 high limit.
681 + yy2 yy2: AC1 or AV1 HIGH limit.
704 704  
705 - yy3 yy3: AC2 or AV2 low limit.
683 + yy3 yy3: AC2 or AV2 LOW limit.
706 706  
707 - Yy4 yy4: AC2 or AV2 high limit.
685 + Yy4 yy4: AC2 or AV2 HIGH limit.
708 708  
709 709  
710 -**Example1**: AA 00 13 88 00 00 00 00 00 00
688 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
711 711  
712 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
690 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
713 713  
714 714  
715 -**Example2**: AA 02 01 00
693 +**Example 2**: AA 02 01 00
716 716  
717 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
695 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
718 718  
719 719  
720 -
721 721  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
722 722  
723 -MOD6 Payload : total 11 bytes payload
700 +MOD6 Payload: total of 11 bytes
724 724  
725 725  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
726 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
703 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
727 727  |Value|(((
728 728  TRI_A FLAG
729 729  )))|(((
... ... @@ -734,10 +734,10 @@
734 734  MOD(6)
735 735  )))
736 736  
737 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
714 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
738 738  
739 739  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
740 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
717 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
741 741  |(((
742 742  AV1_LOW
743 743  )))|(((
... ... @@ -756,17 +756,17 @@
756 756  AC2_HIGH
757 757  )))
758 758  
759 -* Each bits shows if the corresponding trigger has been configured.
736 +* Each bit shows if the corresponding trigger has been configured.
760 760  
761 761  **Example:**
762 762  
763 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
740 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
764 764  
765 765  
766 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
743 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
767 767  
768 768  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
769 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
746 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
770 770  |(((
771 771  AV1_LOW
772 772  )))|(((
... ... @@ -785,11 +785,11 @@
785 785  AC2_HIGH
786 786  )))
787 787  
788 -* Each bits shows which status has been trigger on this uplink.
765 +* Each bit shows which status has been triggered on this uplink.
789 789  
790 790  **Example:**
791 791  
792 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
769 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
793 793  
794 794  
795 795  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
... ... @@ -798,7 +798,7 @@
798 798  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
799 799  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
800 800  
801 -* Each bits shows which status has been trigger on this uplink.
778 +* Each bits shows which status has been triggered on this uplink.
802 802  
803 803  **Example:**
804 804  
... ... @@ -825,62 +825,80 @@
825 825  )))
826 826  
827 827  
828 -== 3.4 ​Configure LT via AT or Downlink ==
805 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
829 829  
830 -
831 831  (((
832 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
808 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
833 833  )))
834 834  
835 835  (((
836 836  (((
837 -There are two kinds of Commands:
813 +There are two tytes of commands:
838 838  )))
839 839  )))
840 840  
841 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +* (% style="color:blue" %)**Common commands**(%%):
842 842  
843 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
819 +* (% style="color:blue" %)**Sensor-related commands**(%%):
844 844  
845 -=== 3.4.1 Common Commands ===
821 +=== 3.4.1 Common commands ===
846 846  
847 -
848 848  (((
849 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
824 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
850 850  )))
851 851  
827 +=== 3.4.2 Sensor-related commands ===
852 852  
853 -=== 3.4.2 Sensor related commands ===
829 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
854 854  
855 855  ==== 3.4.2.1 Set Transmit Interval ====
856 856  
833 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
857 857  
858 -Set device uplink interval.
835 +(% style="color:#037691" %)**AT command**
859 859  
860 -* (% style="color:#037691" %)**AT Command:**
837 +(% style="width:500px" %)
838 +|Command|AT+TDC<time>
839 +|Response|
840 +|Parameters|<time> uplink interval is in milliseconds
841 +|Example|(((
842 +AT+TDC=30000
861 861  
862 -(% style="color:blue" %)**AT+TDC=N **
844 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
845 +)))
863 863  
847 +(% style="color:#037691" %)**Downlink payload**
864 864  
865 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
849 +(% style="width:500px" %)
850 +|Payload|(((
851 +<prefix><time>
852 +)))
853 +|Parameters|(((
854 +<prefix> 0x01
866 866  
856 +<time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
857 +)))
858 +|Example|(((
859 +01 **00 75 30**
867 867  
868 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
861 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
869 869  
870 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
863 +Note: 00 75 30 (hex) = 30000 (dec)
864 +)))
871 871  
866 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
872 872  
873 873  
874 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
869 +Sets the work mode.
875 875  
871 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
876 876  
877 -Set work mode.
873 +Where N is the work mode.
878 878  
879 -* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
875 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
880 880  
881 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
882 882  
883 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
878 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
884 884  
885 885  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
886 886  
... ... @@ -888,11 +888,13 @@
888 888  
889 889  ==== 3.4.2.3 Poll an uplink ====
890 890  
886 +Requests the device to send an uplink.
891 891  
892 -* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
893 893  
894 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
889 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
895 895  
891 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
892 +
896 896  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
897 897  
898 898  **Example**: 0x08FF, ask device to send an Uplink
... ... @@ -899,16 +899,15 @@
899 899  
900 900  
901 901  
902 -==== 3.4.2.4 Enable Trigger Mode ====
899 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
903 903  
901 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
904 904  
905 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
906 -
907 907  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
908 908  
909 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
905 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
910 910  
911 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
907 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
912 912  
913 913  
914 914  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
... ... @@ -919,9 +919,8 @@
919 919  
920 920  ==== 3.4.2.5 Poll trigger settings ====
921 921  
918 +Polls the trigger settings.
922 922  
923 -Poll trigger settings
924 -
925 925  * (% style="color:#037691" %)**AT Command:**
926 926  
927 927  There is no AT Command for this feature.
... ... @@ -928,18 +928,17 @@
928 928  
929 929  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
930 930  
931 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
926 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
932 932  
933 933  
934 934  
935 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
930 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
936 936  
932 +Enable or disable DI1/DI2/DI2 as a trigger.
937 937  
938 -Enable Disable DI1/DI2/DI2 as trigger,
939 -
940 940  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
941 941  
942 -**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
936 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
943 943  
944 944  
945 945  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
... ... @@ -948,11 +948,10 @@
948 948  
949 949  
950 950  
951 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
945 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
952 952  
947 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
953 953  
954 -Set DI1 or DI3(for LT-33222-L) trigger.
955 -
956 956  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
957 957  
958 958  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
... ... @@ -967,19 +967,17 @@
967 967  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
968 968  
969 969  
963 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
970 970  
971 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
965 +Sets DI2 as a trigger.
972 972  
973 -
974 -Set DI2 trigger.
975 -
976 976  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
977 977  
978 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
969 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
979 979  
980 980  (% style="color:red" %)**b :** (%%)delay timing.
981 981  
982 -**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
973 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
983 983  
984 984  
985 985  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
... ... @@ -987,12 +987,10 @@
987 987  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
988 988  
989 989  
981 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
990 990  
991 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
983 +Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
992 992  
993 -
994 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
995 -
996 996  * (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
997 997  
998 998  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
... ... @@ -1003,9 +1003,8 @@
1003 1003  
1004 1004  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1005 1005  
995 +Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1006 1006  
1007 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1008 -
1009 1009  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1010 1010  
1011 1011  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
... ... @@ -1013,12 +1013,10 @@
1013 1013  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1014 1014  
1015 1015  
1016 -
1017 1017  ==== 3.4.2.11 Trigger – Set minimum interval ====
1018 1018  
1006 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1019 1019  
1020 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1021 -
1022 1022  * (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1023 1023  
1024 1024  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
... ... @@ -1033,6 +1033,7 @@
1033 1033  
1034 1034  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1035 1035  
1022 +Controls the digital outputs DO1, DO2, and DO3
1036 1036  
1037 1037  * (% style="color:#037691" %)**AT Command**
1038 1038  
... ... @@ -1051,7 +1051,7 @@
1051 1051  01: Low,  00: High ,  11: No action
1052 1052  
1053 1053  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1041 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1055 1055  |02  01  00  11|Low|High|No Action
1056 1056  |02  00  11  01|High|No Action|Low
1057 1057  |02  11  01  00|No Action|Low|High
... ... @@ -1094,7 +1094,7 @@
1094 1094  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1095 1095  
1096 1096  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1097 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1084 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1098 1098  |0x01|DO1 set to low
1099 1099  |0x00|DO1 set to high
1100 1100  |0x11|DO1 NO Action
... ... @@ -1102,7 +1102,7 @@
1102 1102  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1103 1103  
1104 1104  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1105 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1092 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1106 1106  |0x01|DO2 set to low
1107 1107  |0x00|DO2 set to high
1108 1108  |0x11|DO2 NO Action
... ... @@ -1110,7 +1110,7 @@
1110 1110  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1111 1111  
1112 1112  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1113 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1100 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1114 1114  |0x01|DO3 set to low
1115 1115  |0x00|DO3 set to high
1116 1116  |0x11|DO3 NO Action
... ... @@ -1147,7 +1147,7 @@
1147 1147  
1148 1148  
1149 1149  
1150 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1137 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1151 1151  
1152 1152  
1153 1153  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1165,10 +1165,10 @@
1165 1165  )))
1166 1166  
1167 1167  (((
1168 -01: Close ,  00: Open , 11: No action
1155 +00: Closed ,  01: Open , 11: No action
1169 1169  
1170 1170  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1171 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1158 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1172 1172  |03  00  11|Open|No Action
1173 1173  |03  01  11|Close|No Action
1174 1174  |03  11  00|No Action|Open
... ... @@ -1287,7 +1287,7 @@
1287 1287  
1288 1288  
1289 1289  
1290 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1277 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1291 1291  
1292 1292  
1293 1293  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1408,75 +1408,145 @@
1408 1408  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1409 1409  
1410 1410  
1411 -== 3.5 Integrate with Mydevice ==
1398 +== 3.5 Integrating with ThingsEye.io ==
1412 1412  
1400 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1413 1413  
1414 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1402 +=== 3.5.1 Configuring The Things Stack ===
1415 1415  
1416 -(((
1417 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1418 -)))
1404 +We use The Things Stack Sandbox in this example:
1419 1419  
1420 -(((
1421 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1406 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1407 +* Select **MQTT** under **Integrations** in the left menu.
1408 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1409 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1422 1422  
1423 -
1424 -)))
1411 +{{info}}
1412 +The username and  password (API key) you created here are required in the next section.
1413 +{{/info}}
1425 1425  
1426 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1415 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1427 1427  
1417 +=== 3.5.2 Configuring ThingsEye.io ===
1428 1428  
1419 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1420 +* Under the **Integrations center**, click **Integrations**.
1421 +* Click the **Add integration** button (the button with the **+** symbol).
1429 1429  
1430 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1423 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1431 1431  
1432 1432  
1433 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1426 +On the **Add integration** window, configure the following:
1434 1434  
1435 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1428 +**Basic settings:**
1436 1436  
1437 -Search under The things network
1430 +* Select **The Things Stack Community** from the **Integration type** list.
1431 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1432 +* Ensure the following options are turned on.
1433 +** Enable integration
1434 +** Debug mode
1435 +** Allow create devices or assets
1436 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1438 1438  
1439 -[[image:1653356838789-523.png||height="337" width="740"]]
1438 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1440 1440  
1441 1441  
1441 +**Uplink data converter:**
1442 1442  
1443 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1443 +* Click the **Create new** button if it is not selected by default.
1444 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1445 +* Click the **JavaScript** button.
1446 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1447 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1444 1444  
1445 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1449 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1446 1446  
1447 1447  
1448 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1452 +**Downlink data converter (this is an optional step):**
1449 1449  
1454 +* Click the **Create new** button if it is not selected by default.
1455 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1456 +* Click the **JavaScript** button.
1457 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1458 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1450 1450  
1451 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1460 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1452 1452  
1453 1453  
1454 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1463 +**Connection:**
1455 1455  
1465 +* Choose **Region** from the **Host type**.
1466 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1467 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1468 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1456 1456  
1457 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1470 +[[image:message-1.png]]
1458 1458  
1459 1459  
1460 -== 3.6 Interface Detail ==
1473 +* Click the **Add** button.
1461 1461  
1475 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1476 +
1477 +
1478 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1479 +
1480 +
1481 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1482 +
1483 +
1484 +**Viewing integration details**:
1485 +
1486 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1487 +
1488 +[[image:integration-details.png||height="686" width="1000"]]
1489 +
1490 +
1491 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1492 +
1493 +{{info}}
1494 +See also ThingsEye documentation.
1495 +{{/info}}
1496 +
1497 +**Viewing events:**
1498 +
1499 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1500 +
1501 +* Select **Debug **from the **Event type** dropdown.
1502 +* Select the** time frame** from the **time window**.
1503 +
1504 +[[image:thingseye-events.png||height="686" width="1000"]]
1505 +
1506 +
1507 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1508 +
1509 +[[image:thingseye-json.png||width="1000"]]
1510 +
1511 +
1512 +**Deleting the integration**:
1513 +
1514 +If you want to delete this integration, click the **Delete integratio**n button.
1515 +
1516 +
1517 +== 3.6 Interface Details ==
1518 +
1462 1462  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1463 1463  
1464 1464  
1465 -Support NPN Type sensor
1522 +Support NPN-type sensor
1466 1466  
1467 1467  [[image:1653356991268-289.png]]
1468 1468  
1469 1469  
1470 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1527 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1471 1471  
1472 1472  
1473 1473  (((
1474 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1531 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1475 1475  )))
1476 1476  
1477 1477  (((
1478 1478  (((
1479 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1536 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1480 1480  
1481 1481  
1482 1482  )))
... ... @@ -1486,7 +1486,7 @@
1486 1486  
1487 1487  (((
1488 1488  (((
1489 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1546 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1490 1490  )))
1491 1491  )))
1492 1492  
... ... @@ -1495,22 +1495,22 @@
1495 1495  )))
1496 1496  
1497 1497  (((
1498 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1555 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -This type of sensor will output a low signal GND when active.
1559 +This type of sensor outputs a low (GND) signal when active.
1503 1503  )))
1504 1504  
1505 1505  * (((
1506 -Connect sensor's output to DI1-
1563 +Connect the sensor's output to DI1-
1507 1507  )))
1508 1508  * (((
1509 -Connect sensor's VCC to DI1+.
1566 +Connect the sensor's VCC to DI1+.
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1570 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1514 1514  )))
1515 1515  
1516 1516  (((
... ... @@ -1518,7 +1518,7 @@
1518 1518  )))
1519 1519  
1520 1520  (((
1521 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1578 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1522 1522  )))
1523 1523  
1524 1524  (((
... ... @@ -1526,22 +1526,22 @@
1526 1526  )))
1527 1527  
1528 1528  (((
1529 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1586 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -This type of sensor will output a high signal (example 24v) when active.
1590 +This type of sensor outputs a high signal (e.g., 24V) when active.
1534 1534  )))
1535 1535  
1536 1536  * (((
1537 -Connect sensor's output to DI1+
1594 +Connect the sensor's output to DI1+
1538 1538  )))
1539 1539  * (((
1540 -Connect sensor's GND DI1-.
1597 +Connect the sensor's GND DI1-.
1541 1541  )))
1542 1542  
1543 1543  (((
1544 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1601 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1545 1545  )))
1546 1546  
1547 1547  (((
... ... @@ -1549,7 +1549,7 @@
1549 1549  )))
1550 1550  
1551 1551  (((
1552 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1609 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1553 1553  )))
1554 1554  
1555 1555  (((
... ... @@ -1557,22 +1557,22 @@
1557 1557  )))
1558 1558  
1559 1559  (((
1560 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1617 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1621 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1565 1565  )))
1566 1566  
1567 1567  * (((
1568 -Connect sensor's output to DI1+ with a serial 50K resistor
1625 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1569 1569  )))
1570 1570  * (((
1571 -Connect sensor's GND DI1-.
1628 +Connect the sensor's GND DI1-.
1572 1572  )))
1573 1573  
1574 1574  (((
1575 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1632 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1576 1576  )))
1577 1577  
1578 1578  (((
... ... @@ -1580,34 +1580,37 @@
1580 1580  )))
1581 1581  
1582 1582  (((
1583 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1640 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1584 1584  )))
1585 1585  
1586 1586  
1587 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1644 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1588 1588  
1589 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1646 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1590 1590  
1591 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1648 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1592 1592  
1593 1593  [[image:image-20230616235145-1.png]]
1594 1594  
1652 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1595 1595  
1654 +[[image:image-20240219115718-1.png]]
1596 1596  
1597 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1598 1598  
1657 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1599 1599  
1600 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1601 1601  
1602 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1660 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1603 1603  
1662 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1663 +
1604 1604  [[image:1653357531600-905.png]]
1605 1605  
1606 1606  
1607 -=== 3.6.4 Analog Input Interface ===
1667 +=== 3.6.4 Analog Input Interfaces ===
1608 1608  
1609 1609  
1610 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1670 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1611 1611  
1612 1612  
1613 1613  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1614,14 +1614,14 @@
1614 1614  
1615 1615  [[image:1653357592296-182.png]]
1616 1616  
1617 -Example to connect a 4~~20mA sensor
1677 +Example: Connecting a 4~~20mA sensor
1618 1618  
1619 -We take the wind speed sensor as an example for reference only.
1679 +We will use the wind speed sensor as an example for reference only.
1620 1620  
1621 1621  
1622 1622  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1623 1623  
1624 -(% style="color:red" %)**Red:  12~~24v**
1684 +(% style="color:red" %)**Red:  12~~24V**
1625 1625  
1626 1626  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1627 1627  
... ... @@ -1634,7 +1634,7 @@
1634 1634  [[image:1653357648330-671.png||height="155" width="733"]]
1635 1635  
1636 1636  
1637 -Example connected to a regulated power supply to measure voltage
1697 +Example: Connecting to a regulated power supply to measure voltage
1638 1638  
1639 1639  [[image:image-20230608101532-1.png||height="606" width="447"]]
1640 1640  
... ... @@ -1643,7 +1643,7 @@
1643 1643  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1644 1644  
1645 1645  
1646 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1706 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1647 1647  
1648 1648  (% style="color:red" %)**Red:  12~~24v**
1649 1649  
... ... @@ -1654,9 +1654,9 @@
1654 1654  
1655 1655  
1656 1656  (((
1657 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1717 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1658 1658  
1659 -**Note**: RO pins go to Open(NO) when device is power off.
1719 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1660 1660  )))
1661 1661  
1662 1662  [[image:image-20220524100215-9.png]]
... ... @@ -1668,12 +1668,9 @@
1668 1668  == 3.7 LEDs Indicators ==
1669 1669  
1670 1670  
1671 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1672 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1731 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1732 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1673 1673  |**PWR**|Always on if there is power
1674 -|**SYS**|(((
1675 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1676 -)))
1677 1677  |**TX**|(((
1678 1678  (((
1679 1679  Device boot: TX blinks 5 times.
... ... @@ -1687,40 +1687,33 @@
1687 1687  Transmit a LoRa packet: TX blinks once
1688 1688  )))
1689 1689  )))
1690 -|**RX**|RX blinks once when receive a packet.
1691 -|**DO1**|
1692 -|**DO2**|
1693 -|**DO3**|
1694 -|**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1747 +|**RX**|RX blinks once when receiving a packet.
1748 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1749 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1750 +|**DI1**|(((
1751 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1696 1696  )))
1697 1697  |**DI2**|(((
1698 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1754 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1699 1699  )))
1700 -|**DI2**|(((
1701 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1702 -)))
1703 -|**RO1**|
1704 -|**RO2**|
1756 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1757 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1705 1705  
1706 -= 4. Use AT Command =
1759 += 4. Using AT Commands =
1707 1707  
1708 -== 4.1 Access AT Command ==
1761 +The LT-22222-L supports programming using AT Commands.
1709 1709  
1763 +== 4.1 Connecting the LT-22222-L to a PC ==
1710 1710  
1711 1711  (((
1712 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1766 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1713 1713  )))
1714 1714  
1715 -(((
1716 -
1717 -)))
1718 -
1719 1719  [[image:1653358238933-385.png]]
1720 1720  
1721 1721  
1722 1722  (((
1723 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1773 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1724 1724  )))
1725 1725  
1726 1726  [[image:1653358355238-883.png]]
... ... @@ -1727,194 +1727,63 @@
1727 1727  
1728 1728  
1729 1729  (((
1730 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1731 -)))
1780 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1732 1732  
1733 -(((
1734 -AT+<CMD>?        : Help on <CMD>
1782 +== 4.2 LT-22222-L related AT commands ==
1735 1735  )))
1736 1736  
1737 1737  (((
1738 -AT+<CMD>         : Run <CMD>
1739 -)))
1786 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1740 1740  
1741 -(((
1742 -AT+<CMD>=<value> : Set the value
1788 +* AT+<CMD>? : Help on <CMD>
1789 +* AT+<CMD> : Run <CMD>
1790 +* AT+<CMD>=<value> : Set the value
1791 +* AT+<CMD>=? : Get the value
1792 +* ATZ: Trigger a reset of the MCU
1793 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1794 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1795 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1796 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1797 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1798 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1799 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1800 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1801 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1802 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1803 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1804 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1805 +* AT+RX2FQ: Get or set the Rx2 window frequency
1806 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1807 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1808 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1809 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1810 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1811 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1812 +* AT+NWKID: Get or set the Network ID
1813 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1814 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1815 +* AT+CLASS: Get or set the Device Class
1816 +* AT+JOIN: Join network
1817 +* AT+NJS: Get OTAA Join Status
1818 +* AT+SENDB: Send hexadecimal data along with the application port
1819 +* AT+SEND: Send text data along with the application port
1820 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1821 +* AT+RECV: Print last received data in raw format
1822 +* AT+VER: Get current image version and Frequency Band
1823 +* AT+CFM: Get or Set the confirmation mode (0-1)
1824 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1825 +* AT+SNR: Get the SNR of the last received packet
1826 +* AT+RSSI: Get the RSSI of the last received packet
1827 +* AT+TDC: Get or set the application data transmission interval in ms
1828 +* AT+PORT: Get or set the application port
1829 +* AT+DISAT: Disable AT commands
1830 +* AT+PWORD: Set password, max 9 digits
1831 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1832 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1833 +* AT+CFG: Print all settings
1743 1743  )))
1744 1744  
1745 -(((
1746 -AT+<CMD>=?       :  Get the value
1747 -)))
1748 1748  
1749 -(((
1750 -ATZ: Trig a reset of the MCU
1751 -)))
1752 -
1753 -(((
1754 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1755 -)))
1756 -
1757 -(((
1758 -AT+DEUI: Get or Set the Device EUI
1759 -)))
1760 -
1761 -(((
1762 -AT+DADDR: Get or Set the Device Address
1763 -)))
1764 -
1765 -(((
1766 -AT+APPKEY: Get or Set the Application Key
1767 -)))
1768 -
1769 -(((
1770 -AT+NWKSKEY: Get or Set the Network Session Key
1771 -)))
1772 -
1773 -(((
1774 -AT+APPSKEY:  Get or Set the Application Session Key
1775 -)))
1776 -
1777 -(((
1778 -AT+APPEUI:  Get or Set the Application EUI
1779 -)))
1780 -
1781 -(((
1782 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1783 -)))
1784 -
1785 -(((
1786 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1787 -)))
1788 -
1789 -(((
1790 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1791 -)))
1792 -
1793 -(((
1794 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1795 -)))
1796 -
1797 -(((
1798 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1799 -)))
1800 -
1801 -(((
1802 -AT+RX2FQ: Get or Set the Rx2 window frequency
1803 -)))
1804 -
1805 -(((
1806 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1807 -)))
1808 -
1809 -(((
1810 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1811 -)))
1812 -
1813 -(((
1814 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1815 -)))
1816 -
1817 -(((
1818 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1819 -)))
1820 -
1821 -(((
1822 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1823 -)))
1824 -
1825 -(((
1826 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1827 -)))
1828 -
1829 -(((
1830 -AT+NWKID: Get or Set the Network ID
1831 -)))
1832 -
1833 -(((
1834 -AT+FCU: Get or Set the Frame Counter Uplink
1835 -)))
1836 -
1837 -(((
1838 -AT+FCD: Get or Set the Frame Counter Downlink
1839 -)))
1840 -
1841 -(((
1842 -AT+CLASS: Get or Set the Device Class
1843 -)))
1844 -
1845 -(((
1846 -AT+JOIN: Join network
1847 -)))
1848 -
1849 -(((
1850 -AT+NJS: Get OTAA Join Status
1851 -)))
1852 -
1853 -(((
1854 -AT+SENDB: Send hexadecimal data along with the application port
1855 -)))
1856 -
1857 -(((
1858 -AT+SEND: Send text data along with the application port
1859 -)))
1860 -
1861 -(((
1862 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1863 -)))
1864 -
1865 -(((
1866 -AT+RECV: Print last received data in raw format
1867 -)))
1868 -
1869 -(((
1870 -AT+VER:  Get current image version and Frequency Band
1871 -)))
1872 -
1873 -(((
1874 -AT+CFM: Get or Set the confirmation mode (0-1)
1875 -)))
1876 -
1877 -(((
1878 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1879 -)))
1880 -
1881 -(((
1882 -AT+SNR: Get the SNR of the last received packet
1883 -)))
1884 -
1885 -(((
1886 -AT+RSSI: Get the RSSI of the last received packet
1887 -)))
1888 -
1889 -(((
1890 -AT+TDC: Get or set the application data transmission interval in ms
1891 -)))
1892 -
1893 -(((
1894 -AT+PORT: Get or set the application port
1895 -)))
1896 -
1897 -(((
1898 -AT+DISAT: Disable AT commands
1899 -)))
1900 -
1901 -(((
1902 -AT+PWORD: Set password, max 9 digits
1903 -)))
1904 -
1905 -(((
1906 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1907 -)))
1908 -
1909 -(((
1910 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1911 -)))
1912 -
1913 -(((
1914 -AT+CFG: Print all settings
1915 -)))
1916 -
1917 -
1918 1918  == 4.2 Common AT Command Sequence ==
1919 1919  
1920 1920  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1923,41 +1923,41 @@
1923 1923  
1924 1924  
1925 1925  (((
1926 -(% style="color:blue" %)**If device has not joined network yet:**
1845 +(% style="color:blue" %)**If the device has not joined the network yet:**
1927 1927  )))
1928 1928  )))
1929 1929  
1930 1930  (((
1931 -(% style="background-color:#dcdcdc" %)**123456**
1850 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1932 1932  )))
1933 1933  
1934 1934  (((
1935 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1854 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1936 1936  )))
1937 1937  
1938 1938  (((
1939 -(% style="background-color:#dcdcdc" %)**123456**
1858 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1940 1940  )))
1941 1941  
1942 1942  (((
1943 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1862 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1944 1944  )))
1945 1945  
1946 1946  (((
1947 -(% style="background-color:#dcdcdc" %)**ATZ**
1866 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1948 1948  )))
1949 1949  
1950 1950  
1951 1951  (((
1952 -(% style="color:blue" %)**If device already joined network:**
1871 +(% style="color:blue" %)**If the device has already joined the network:**
1953 1953  )))
1954 1954  
1955 1955  (((
1956 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1875 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1957 1957  )))
1958 1958  
1959 1959  (((
1960 -(% style="background-color:#dcdcdc" %)**ATZ**
1879 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1961 1961  )))
1962 1962  
1963 1963  
... ... @@ -2034,8 +2034,6 @@
2034 2034  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2035 2035  
2036 2036  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2037 -
2038 -
2039 2039  )))
2040 2040  
2041 2041  (((
... ... @@ -2042,9 +2042,6 @@
2042 2042  [[image:1653359097980-169.png||height="188" width="729"]]
2043 2043  )))
2044 2044  
2045 -(((
2046 -
2047 -)))
2048 2048  
2049 2049  === 4.2.3 Change to Class A ===
2050 2050  
... ... @@ -2052,44 +2052,58 @@
2052 2052  (((
2053 2053  (% style="color:blue" %)**If sensor JOINED:**
2054 2054  
2055 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2056 -ATZ**
1969 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1970 +
1971 +(% style="background-color:#dcdcdc" %)**ATZ**
2057 2057  )))
2058 2058  
2059 2059  
2060 2060  = 5. Case Study =
2061 2061  
2062 -== 5.1 Counting how many objects pass in Flow Line ==
1977 +== 5.1 Counting how many objects pass through the flow Line ==
2063 2063  
2064 2064  
2065 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1980 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2066 2066  
2067 2067  
2068 2068  = 6. FAQ =
2069 2069  
2070 -== 6.1 How to upgrade the image? ==
1985 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2071 2071  
1987 +== 6.1 How to update the firmware? ==
2072 2072  
2073 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1989 +Dragino frequently releases firmware updates for the LT-22222-L.
2074 2074  
1991 +Updating your LT-22222-L with the latest firmware version helps to:
1992 +
2075 2075  * Support new features
2076 -* For bug fix
2077 -* Change LoRaWAN bands.
1994 +* Fix bugs
1995 +* Change LoRaWAN frequency bands
2078 2078  
2079 -Below shows the hardware connection for how to upload an image to the LT:
1997 +You will need the following things before proceeding:
2080 2080  
1999 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2000 +* USB to TTL adapter
2001 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2002 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2003 +
2004 +{{info}}
2005 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2006 +{{/info}}
2007 +
2008 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2009 +
2010 +
2081 2081  [[image:1653359603330-121.png]]
2082 2082  
2083 2083  
2084 -(((
2085 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2086 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
2087 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2088 -
2014 +Start the STM32 Flash Loader and choose the correct COM port to update.
2089 2089  
2090 2090  (((
2017 +(((
2091 2091  (% style="color:blue" %)**For LT-22222-L**(%%):
2092 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2019 +
2020 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2093 2093  )))
2094 2094  
2095 2095  
... ... @@ -2104,15 +2104,14 @@
2104 2104  [[image:image-20220524104033-15.png]]
2105 2105  
2106 2106  
2107 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2035 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2108 2108  
2109 -
2110 2110  [[image:1653360054704-518.png||height="186" width="745"]]
2111 2111  
2112 2112  
2113 2113  (((
2114 2114  (((
2115 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2042 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2116 2116  
2117 2117  
2118 2118  )))
... ... @@ -2119,13 +2119,13 @@
2119 2119  )))
2120 2120  
2121 2121  (((
2122 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2049 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2123 2123  )))
2124 2124  
2125 2125  (((
2126 2126  
2127 2127  
2128 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2055 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2129 2129  
2130 2130  
2131 2131  )))
... ... @@ -2132,13 +2132,13 @@
2132 2132  
2133 2133  (((
2134 2134  (((
2135 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2062 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2136 2136  )))
2137 2137  )))
2138 2138  
2139 2139  (((
2140 2140  (((
2141 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2068 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2142 2142  
2143 2143  
2144 2144  )))
... ... @@ -2145,7 +2145,7 @@
2145 2145  )))
2146 2146  
2147 2147  (((
2148 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2075 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2149 2149  
2150 2150  
2151 2151  )))
... ... @@ -2170,13 +2170,21 @@
2170 2170  
2171 2171  (((
2172 2172  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2100 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2102 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2104 +
2175 2175  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2106 +
2176 2176  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2108 +
2177 2177  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2110 +
2178 2178  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2112 +
2179 2179  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2114 +
2180 2180  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2181 2181  )))
2182 2182  
... ... @@ -2188,61 +2188,61 @@
2188 2188  [[image:1653360498588-932.png||height="485" width="726"]]
2189 2189  
2190 2190  
2191 -== 6.4 How to change the uplink interval ==
2126 +== 6.4 How to change the uplink interval? ==
2192 2192  
2193 2193  
2194 2194  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2195 2195  
2196 2196  
2197 -== 6.5 Can I see counting event in Serial? ==
2132 +== 6.5 Can I see the counting event in the serial output? ==
2198 2198  
2199 2199  
2200 2200  (((
2201 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2136 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2202 2202  
2203 2203  
2204 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2139 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2205 2205  
2206 2206  
2207 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2208 -
2209 -
2142 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2210 2210  )))
2211 2211  
2212 2212  (((
2213 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2146 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2214 2214  
2215 2215  
2216 -If the device is not shut down, but directly powered off.
2149 +* If the device is not properly shut down and is directly powered off.
2150 +* It will default to a power-off state.
2151 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2152 +* After a restart, the status before the power failure will be read from flash.
2217 2217  
2218 -It will default that this is a power-off state.
2154 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2219 2219  
2220 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2221 2221  
2222 -After restart, the status before power failure will be read from flash.
2157 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2223 2223  
2224 2224  
2225 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2160 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2226 2226  
2227 2227  
2228 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2163 +== 6.9 Can the LT-22222-L save the RO state? ==
2229 2229  
2230 2230  
2231 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2166 +The firmware version must be at least 1.6.0.
2232 2232  
2233 2233  
2234 -== 6.9 Can LT22222-L save RO state? ==
2169 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2235 2235  
2236 2236  
2237 -Firmware version needs to be no less than 1.6.0.
2172 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2238 2238  
2239 2239  
2240 -= 7. Trouble Shooting =
2175 += 7. Troubleshooting =
2241 2241  )))
2242 2242  
2243 2243  (((
2244 2244  (((
2245 -== 7.1 Downlink doesn't work, how to solve it? ==
2180 +== 7.1 Downlink isn't working. How can I solve this? ==
2246 2246  
2247 2247  
2248 2248  )))
... ... @@ -2249,78 +2249,84 @@
2249 2249  )))
2250 2250  
2251 2251  (((
2252 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2187 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2253 2253  )))
2254 2254  
2255 2255  (((
2256 2256  
2257 2257  
2258 -== 7.2 Have trouble to upload image. ==
2193 +== 7.2 Having trouble uploading an image? ==
2259 2259  
2260 2260  
2261 2261  )))
2262 2262  
2263 2263  (((
2264 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2199 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2265 2265  )))
2266 2266  
2267 2267  (((
2268 2268  
2269 2269  
2270 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2205 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2271 2271  
2272 2272  
2273 2273  )))
2274 2274  
2275 2275  (((
2276 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2211 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2277 2277  )))
2278 2278  
2279 2279  
2280 -= 8. Order Info =
2215 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2281 2281  
2282 2282  
2218 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2219 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2220 +
2221 +
2222 += 8. Ordering information =
2223 +
2224 +
2283 2283  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2284 2284  
2285 2285  (% style="color:#4f81bd" %)**XXX:**
2286 2286  
2287 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2288 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2289 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2290 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2291 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2292 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2293 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2294 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2295 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2229 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2230 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2231 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2232 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2233 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2234 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2235 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2236 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2237 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2296 2296  
2297 -= 9. Packing Info =
2239 += 9. Packing information =
2298 2298  
2299 2299  
2300 -**Package Includes**:
2242 +**Package includes**:
2301 2301  
2302 -* LT-22222-L I/O Controller x 1
2303 -* Stick Antenna for LoRa RF part x 1
2304 -* Bracket for controller x1
2305 -* Program cable x 1
2244 +* 1 x LT-22222-L I/O Controller
2245 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2246 +* 1 x bracket for DIN rail mounting
2247 +* 1 x 3.5mm programming cable
2306 2306  
2307 2307  **Dimension and weight**:
2308 2308  
2309 2309  * Device Size: 13.5 x 7 x 3 cm
2310 -* Device Weight: 105g
2252 +* Device Weight: 105 g
2311 2311  * Package Size / pcs : 14.5 x 8 x 5 cm
2312 -* Weight / pcs : 170g
2254 +* Weight / pcs : 170 g
2313 2313  
2314 2314  = 10. Support =
2315 2315  
2316 2316  
2317 2317  * (((
2318 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2260 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2319 2319  )))
2320 2320  * (((
2321 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2263 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2322 2322  
2323 -
2324 2324  
2325 2325  )))
2326 2326  
... ... @@ -2330,5 +2330,3 @@
2330 2330  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2331 2331  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2332 2332  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2333 -
2334 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content