Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Saxer Lin on 2025/04/15 17:24
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 13 added, 0 removed)
- image-20240219115718-1.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -13,38 +13,32 @@ 13 13 14 14 15 15 16 -= 1.Introduction = 20 += 1. Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Set up your own private LoRaWAN network. 44 + 45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,164 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high-efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 -* Remote configure parameters via LoRa Downlink 187 - 101 +* Remotely configure parameters via LoRaWAN Downlink 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 - 208 - 209 209 == 1.5 Hardware Variants == 210 210 211 211 212 212 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 213 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 214 214 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 215 215 (% style="text-align:center" %) 216 216 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -223,93 +223,140 @@ 223 223 * 1 x Counting Port 224 224 ))) 225 225 226 -= 2. PowerONDevice =131 += 2. Assembling the Device = 227 227 133 +== 2.1 What is included in the package? == 228 228 229 -((( 230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 231 -))) 135 +The package includes the following items: 232 232 233 -((( 234 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 235 235 236 - 237 -))) 142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise. 238 238 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering the LT-22222-L == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 239 239 [[image:1653297104069-180.png]] 240 240 241 241 242 242 = 3. Operation Mode = 243 243 244 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 245 245 184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 246 246 247 -((( 248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 249 -))) 186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 250 250 251 -((( 252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 253 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 254 254 190 +== 3.2 Registering with a LoRaWAN network server == 255 255 256 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 257 257 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 258 258 259 -((( 260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 261 261 262 - 263 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 264 264 265 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 266 266 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 267 267 268 -((( 269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 270 270 271 - 272 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options are available: 273 273 274 -((( 275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 276 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 277 277 278 -((( 279 -Each LT is shipped with a sticker with the default device EUI as below: 280 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches your device. 281 281 282 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 283 283 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 284 284 285 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 286 286 287 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 288 288 289 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under the **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 290 290 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 291 291 292 -**Add APP KEY and DEV EUI** 293 293 294 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 295 295 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 296 296 297 297 298 -((( 299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 252 +==== Joining ==== 300 300 301 - 302 -))) 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 303 303 304 304 [[image:1653298044601-602.png||height="405" width="709"]] 305 305 306 306 307 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 308 308 309 309 310 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 311 311 312 -* (% style="color:blue" %)**MOD1**(%%): (default set ting): 2 x ACI + 2AVI + DI + DO + RO264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 313 313 314 314 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 315 315 ... ... @@ -325,10 +325,10 @@ 325 325 326 326 327 327 ((( 328 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %) 329 329 330 330 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 331 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 332 332 |Value|((( 333 333 AVI1 voltage 334 334 )))|((( ... ... @@ -343,25 +343,25 @@ 343 343 ))) 344 344 345 345 ((( 346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 347 347 348 348 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 351 351 ))) 352 352 353 -* RO is for relay. ROx=1 ,ROx=0 always open.354 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 305 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 356 356 357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L** 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 358 358 359 -For example if payload is: [[image:image-20220523175847-2.png]] 311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 360 360 361 361 362 -**The value fortheinterfaceis: **314 +**The interface values can be calculated as follows: ** 363 363 364 -AVI1 channel voltage is 0x04AB/1000=1195 (DEC)/1000=1.195V316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 365 365 366 366 AVI2 channel voltage is 0x04AC/1000=1.196V 367 367 ... ... @@ -369,40 +369,35 @@ 369 369 370 370 ACI2 channel current is 0x1300/1000=4.864mA 371 371 372 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= **10101010**(b) means, 373 373 374 -* [1] RO1 relay channel is close and the RO1 LED is ON. 375 -* [0] RO2 relay channel is open and RO2 LED is OFF; 326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON. 327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-. 332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 - not used for LT-22222-L. 335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON. 336 +* [0] DO1 channel output state: 337 +** DO1 is FLOATING when there is no load between DO1 and V+. 338 +** DO1 is HIGH when there is a load between DO1 and V+. 339 +** DO1 LED is OFF in both cases. 376 376 377 -**LT22222-L:** 378 - 379 -* [1] DI2 channel is high input and DI2 LED is ON; 380 -* [0] DI1 channel is low input; 381 - 382 -* [0] DO3 channel output state 383 -** DO3 is float in case no load between DO3 and V+.; 384 -** DO3 is high in case there is load between DO3 and V+. 385 -** DO3 LED is off in both case 386 -* [1] DO2 channel output is low and DO2 LED is ON. 387 -* [0] DO1 channel output state 388 -** DO1 is float in case no load between DO1 and V+.; 389 -** DO1 is high in case there is load between DO1 and V+. 390 -** DO1 LED is off in both case 391 - 392 - 393 - 394 394 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 395 395 396 396 397 397 ((( 398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 399 399 ))) 400 400 401 401 ((( 402 -T otal:11 bytespayload349 +The uplink payload is 11 bytes long. 403 403 404 404 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 405 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 406 406 |Value|COUNT1|COUNT2 |DIDORO*|((( 407 407 Reserve 408 408 )))|MOD ... ... @@ -409,36 +409,37 @@ 409 409 ))) 410 410 411 411 ((( 412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DO3, DO2 and DO1.Totally1bytesas below359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 413 413 414 414 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 417 417 418 -RO is for relay. ROx=1 ,ROx=0 always open.365 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 419 419 ))) 420 420 421 -* FIRST: Indicate this is the first packet after join network. 422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 368 +* FIRST: Indicates that this is the first packet after joining the network. 369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 423 423 424 424 ((( 425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 373 + 374 + 426 426 ))) 427 427 428 428 ((( 429 -**To usecountingmode,pleaserun:**378 +**To activate this mode, run the following AT commands:** 430 430 ))) 431 431 432 - 433 433 ((( 382 +(% class="box infomessage" %) 383 +((( 434 434 **AT+MOD=2** 435 -))) 436 436 437 -((( 438 438 **ATZ** 439 439 ))) 388 +))) 440 440 441 - 442 442 ((( 443 443 444 444 ... ... @@ -448,17 +448,17 @@ 448 448 ((( 449 449 **For LT22222-L:** 450 450 451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** lowlevel,valid signal is 100ms) **399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) ** 452 452 453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** highlevel,valid signal is 100ms401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 454 454 455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** lowlevel,valid signal is 100ms) **403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) ** 456 456 457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** highlevel,valid signal is 100ms405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) ** 458 458 459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** Set COUNT1 value to 60)**407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)** 460 460 461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** Set COUNT2 value to 60)**409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)** 462 462 ))) 463 463 464 464 ... ... @@ -465,10 +465,10 @@ 465 465 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 466 466 467 467 468 -**LT22222-L**: This mode the DI1 is used as a counting pin.416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 469 469 470 470 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 471 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 472 472 |Value|COUNT1|((( 473 473 ACI1 Current 474 474 )))|((( ... ... @@ -476,24 +476,24 @@ 476 476 )))|DIDORO*|Reserve|MOD 477 477 478 478 ((( 479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 480 480 481 481 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 484 484 ))) 485 485 486 -* RO is for relay. ROx=1 ,ROx=0 always open.487 -* FIRST: Indicate this is the first packet after join network. 488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 434 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 435 +* FIRST: Indicates that this is the first packet after joining the network. 436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 489 489 490 490 ((( 491 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 492 492 ))) 493 493 494 494 495 495 ((( 496 -**To usecountingmode,pleaserun:**444 +**To activate this mode, run the following AT commands:** 497 497 ))) 498 498 499 499 ((( ... ... @@ -505,9 +505,10 @@ 505 505 ))) 506 506 ))) 507 507 508 - 509 509 ((( 510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 457 +AT Commands for counting: 458 + 459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 511 511 ))) 512 512 513 513 ... ... @@ -515,14 +515,14 @@ 515 515 516 516 517 517 ((( 518 -**LT22222-L**: This mode the DI1 is used as a counting pin.467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 519 519 ))) 520 520 521 521 ((( 522 -The AVI1 is also used for counting. AVI1 is usedtomonitor the voltage.Itwillcheck thevoltage**every 60s**,if voltage is higher or lower than VOLMAX mV, the AVI1Countingincrease 1,so AVI1 countingcanbe used to measure a machine working hour.471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 523 523 524 524 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 525 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 526 526 |Value|COUNT1|AVI1 Counting|DIDORO*|((( 527 527 Reserve 528 528 )))|MOD ... ... @@ -529,52 +529,50 @@ 529 529 ))) 530 530 531 531 ((( 532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 533 533 534 534 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 537 537 ))) 538 538 539 -* RO is for relay. ROx=1 ,ROx=0 always open.540 -* FIRST: Indicate this is the first packet after join network. 541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 488 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 489 +* FIRST: Indicates that this is the first packet after joining the network. 490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 542 542 543 543 ((( 544 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 545 -))) 493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 546 546 547 -((( 548 548 549 - 550 -**To use this mode, please run:** 551 551 ))) 552 552 553 - 554 554 ((( 555 -**AT +MOD=4**499 +**To activate this mode, run the following AT commands:** 556 556 ))) 557 557 558 558 ((( 503 +(% class="box infomessage" %) 504 +((( 505 +**AT+MOD=4** 506 + 559 559 **ATZ** 560 560 ))) 509 +))) 561 561 562 - 563 - 564 564 ((( 565 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 566 566 ))) 567 567 568 568 ((( 569 -** Plusbelow command for AVI1 Counting:**516 +**In addition to that, below are the commands for AVI1 Counting:** 570 570 571 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** set AVI Count to 60)**518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (Sets AVI Count to 60)** 572 572 573 573 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 574 574 575 575 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** 576 576 577 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)** 524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 578 578 ))) 579 579 580 580 ... ... @@ -581,10 +581,10 @@ 581 581 === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI === 582 582 583 583 584 -**LT22222-L**: This mode the DI1 is used as a counting pin.531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 585 585 586 586 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 587 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 588 588 |Value|((( 589 589 AVI1 voltage 590 590 )))|((( ... ... @@ -596,41 +596,38 @@ 596 596 )))|MOD 597 597 598 598 ((( 599 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination forRO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1.Totally1bytesas below546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 600 600 601 601 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 602 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 603 603 |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 604 604 ))) 605 605 606 -* RO is for relay. ROx=1 ,ROx=0 always open.607 -* FIRST: Indicate this is the first packet after join network. 553 +* RO is for the relay. ROx=1: closed, ROx=0 always open. 554 +* FIRST: Indicates that this is the first packet after joining the network. 608 608 * ((( 609 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 610 610 ))) 611 611 612 612 ((( 613 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 614 614 ))) 615 615 616 616 ((( 617 - 618 - 619 -**To use this mode, please run:** 564 +**To activate this mode, run the following AT commands:** 620 620 ))) 621 621 622 - 623 623 ((( 568 +(% class="box infomessage" %) 569 +((( 624 624 **AT+MOD=5** 625 -))) 626 626 627 -((( 628 628 **ATZ** 629 629 ))) 574 +))) 630 630 631 - 632 632 ((( 633 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s. 634 634 ))) 635 635 636 636 ... ... @@ -637,23 +637,23 @@ 637 637 === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) === 638 638 639 639 640 -(% style="color:#4f81bd" %)**This mode is anoptionalmode for trigger purpose. It can runtogether with other mode.**584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.** 641 641 642 -For example, if u serhasconfiguredbelow commands:586 +For example, if you configured the following commands: 643 643 644 644 * **AT+MOD=1 ** **~-~->** The normal working mode 645 -* **AT+ADDMOD6=1** **~-~->** Enable trigger 589 +* **AT+ADDMOD6=1** **~-~->** Enable trigger mode 646 646 647 -LT will keepmonitoringAV1/AV2/AC1/AC2 every 5 seconds;LT will send uplink packets in two cases:591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases: 648 648 649 -1. Periodically uplink (Base on TDC time). Payload is same asthenormalMOD(MODabove command). This uplink usesLoRaWAN(% style="color:#4f81bd" %)**unconfirmed**(%%)data type650 -1. Trigger uplink when meetthe trigger condition. LT will senttwo packets in this case, the first uplink use payload specifyin thismod (mod=6), the second packetsuseforabovesettings). BothUplinks use LoRaWAN(% style="color:#4f81bd" %)**CONFIRMEDdata type.**593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks. 594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.** 651 651 596 + 652 652 (% style="color:#037691" %)**AT Command to set Trigger Condition**: 653 653 599 +(% style="color:#4f81bd" %)**Trigger based on voltage**: 654 654 655 -(% style="color:#4f81bd" %)**Trigger base on voltage**: 656 - 657 657 Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH> 658 658 659 659 ... ... @@ -664,9 +664,8 @@ 664 664 AT+AVLIM=5000,0,0,0 (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore) 665 665 666 666 611 +(% style="color:#4f81bd" %)**Trigger based on current**: 667 667 668 -(% style="color:#4f81bd" %)**Trigger base on current**: 669 - 670 670 Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH> 671 671 672 672 ... ... @@ -675,7 +675,6 @@ 675 675 AT+ACLIM=10000,15000,0,0 (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink) 676 676 677 677 678 - 679 679 (% style="color:#4f81bd" %)**Trigger base on DI status**: 680 680 681 681 DI status trigger Flag. ... ... @@ -723,7 +723,7 @@ 723 723 MOD6 Payload : total 11 bytes payload 724 724 725 725 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 726 -|(% style="background-color:# d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**668 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 727 727 |Value|((( 728 728 TRI_A FLAG 729 729 )))|((( ... ... @@ -1051,7 +1051,7 @@ 1051 1051 01: Low, 00: High , 11: No action 1052 1052 1053 1053 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1054 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**996 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1055 1055 |02 01 00 11|Low|High|No Action 1056 1056 |02 00 11 01|High|No Action|Low 1057 1057 |02 11 01 00|No Action|Low|High ... ... @@ -1094,7 +1094,7 @@ 1094 1094 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1095 1095 1096 1096 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1097 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1039 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1098 1098 |0x01|DO1 set to low 1099 1099 |0x00|DO1 set to high 1100 1100 |0x11|DO1 NO Action ... ... @@ -1102,7 +1102,7 @@ 1102 1102 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1103 1103 1104 1104 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1105 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1047 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1106 1106 |0x01|DO2 set to low 1107 1107 |0x00|DO2 set to high 1108 1108 |0x11|DO2 NO Action ... ... @@ -1110,7 +1110,7 @@ 1110 1110 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1111 1111 1112 1112 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1113 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**1055 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1114 1114 |0x01|DO3 set to low 1115 1115 |0x00|DO3 set to high 1116 1116 |0x11|DO3 NO Action ... ... @@ -1147,7 +1147,7 @@ 1147 1147 1148 1148 1149 1149 1150 -==== 3.4.2. 1092 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1151 1151 1152 1152 1153 1153 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1165,10 +1165,10 @@ 1165 1165 ))) 1166 1166 1167 1167 ((( 1168 -0 1: Close , 00: Open , 11: No action1110 +00: Close , 01: Open , 11: No action 1169 1169 1170 1170 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1171 -|(% style="background-color:# d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**1113 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1172 1172 |03 00 11|Open|No Action 1173 1173 |03 01 11|Close|No Action 1174 1174 |03 11 00|No Action|Open ... ... @@ -1408,75 +1408,91 @@ 1408 1408 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1409 1409 1410 1410 1411 -== 3.5 Integrat ewithMydevice==1353 +== 3.5 Integrating with ThingsEye.io == 1412 1412 1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1413 1413 1414 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1357 +=== 3.5.1 Configuring The Things Stack Sandbox === 1415 1415 1416 - (((1417 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1418 - )))1359 +* Go to your Application and select MQTT under Integrations. 1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1419 1419 1420 -((( 1421 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1422 1422 1423 - 1424 -))) 1365 +=== 3.5.2 Configuring ThingsEye.io === 1425 1425 1426 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1367 +* Login to your thingsEye.io account. 1368 +* Under the Integrations center, click Integrations. 1369 +* Click the Add integration button (the button with the + symbol). 1427 1427 1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1428 1428 1429 1429 1430 - [[image:image-20220719110247-2.png||height="388"width="683"]]1374 +On the Add integration page configure the following: 1431 1431 1376 +Basic settings: 1432 1432 1433 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1378 +* Select The Things Stack Community from the Integration type list. 1379 +* Enter a suitable name for your integration in the Name box or keep the default name. 1380 +* Click the Next button. 1434 1434 1435 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none"%)1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1436 1436 1437 - Search underThethingsnetwork1384 +Uplink Data converter: 1438 1438 1439 -[[image:1653356838789-523.png||height="337" width="740"]] 1386 +* Click the Create New button if it is not selected by default. 1387 +* Click the JavaScript button. 1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1389 +* Click the Next button. 1440 1440 1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1441 1441 1393 +Downlink Data converter (this is an optional step): 1442 1442 1443 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1395 +* Click the Create new button if it is not selected by default. 1396 +* Click the JavaScript button. 1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1398 +* Click the Next button. 1444 1444 1445 -[[image:i mage-20220524094909-1.png||height="335" width="729"]]1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1446 1446 1402 +Connection: 1447 1447 1448 -[[image:image-20220524094909-2.png||height="337" width="729"]] 1404 +* Choose Region from the Host type. 1405 +* Enter the cluster of your The Things Stack in the Region textbox. 1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1408 +* Click the Add button. 1449 1449 1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1450 1450 1451 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1452 1452 1413 +Your integration is added to the integrations list and it will display on the Integrations page. 1453 1453 1454 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1455 1455 1456 1456 1457 - [[image:image-20220524094909-5.png||height="341" width="734"]]1418 +== 3.6 Interface Details == 1458 1458 1459 - 1460 -== 3.6 Interface Detail == 1461 - 1462 1462 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1463 1463 1464 1464 1465 -Support NPN Type sensor1423 +Support NPN-type sensor 1466 1466 1467 1467 [[image:1653356991268-289.png]] 1468 1468 1469 1469 1470 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) === 1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) === 1471 1471 1472 1472 1473 1473 ((( 1474 -The DI port of LT-22222-L can support **NPN** or**PNP** or **DryContact** output sensor.1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1475 1475 ))) 1476 1476 1477 1477 ((( 1478 1478 ((( 1479 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA).(% class="mark" %)Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe activehighand DI LED statuswillchange.1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes. 1480 1480 1481 1481 1482 1482 ))) ... ... @@ -1486,7 +1486,7 @@ 1486 1486 1487 1487 ((( 1488 1488 ((( 1489 - When use need1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1490 1490 ))) 1491 1491 ))) 1492 1492 ... ... @@ -1495,22 +1495,22 @@ 1495 1495 ))) 1496 1496 1497 1497 ((( 1498 -(% style="color: blue" %)**Example1**(%%): Connect to aLow1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor. 1499 1499 ))) 1500 1500 1501 1501 ((( 1502 -This type of sensor willoutput a low signalGNDwhen active.1460 +This type of sensor outputs a low (GND) signal when active. 1503 1503 ))) 1504 1504 1505 1505 * ((( 1506 -Connect sensor's output to DI1- 1464 +Connect the sensor's output to DI1- 1507 1507 ))) 1508 1508 * ((( 1509 -Connect sensor's VCC to DI1+. 1467 +Connect the sensor's VCC to DI1+. 1510 1510 ))) 1511 1511 1512 1512 ((( 1513 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1514 1514 ))) 1515 1515 1516 1516 ((( ... ... @@ -1518,7 +1518,7 @@ 1518 1518 ))) 1519 1519 1520 1520 ((( 1521 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1522 1522 ))) 1523 1523 1524 1524 ((( ... ... @@ -1526,22 +1526,22 @@ 1526 1526 ))) 1527 1527 1528 1528 ((( 1529 -(% style="color: blue" %)**Example2**(%%): Connect to aHigh1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor. 1530 1530 ))) 1531 1531 1532 1532 ((( 1533 -This type of sensor willoutput a high signal (example24v) when active.1491 +This type of sensor outputs a high signal (e.g., 24V) when active. 1534 1534 ))) 1535 1535 1536 1536 * ((( 1537 -Connect sensor's output to DI1+ 1495 +Connect the sensor's output to DI1+ 1538 1538 ))) 1539 1539 * ((( 1540 -Connect sensor's GND DI1-. 1498 +Connect the sensor's GND DI1-. 1541 1541 ))) 1542 1542 1543 1543 ((( 1544 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1545 1545 ))) 1546 1546 1547 1547 ((( ... ... @@ -1549,7 +1549,7 @@ 1549 1549 ))) 1550 1550 1551 1551 ((( 1552 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mASo the LT-22222-L willbe able todetect this high1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal. 1553 1553 ))) 1554 1554 1555 1555 ((( ... ... @@ -1557,22 +1557,22 @@ 1557 1557 ))) 1558 1558 1559 1559 ((( 1560 -(% style="color: blue" %)**Example3**(%%): Connect to a 220vhigh1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor. 1561 1561 ))) 1562 1562 1563 1563 ((( 1564 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1565 1565 ))) 1566 1566 1567 1567 * ((( 1568 -Connect sensor's output to DI1+ with a serial50K resistor1526 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1569 1569 ))) 1570 1570 * ((( 1571 -Connect sensor's GND DI1-. 1529 +Connect the sensor's GND DI1-. 1572 1572 ))) 1573 1573 1574 1574 ((( 1575 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1576 1576 ))) 1577 1577 1578 1578 ((( ... ... @@ -1580,34 +1580,37 @@ 1580 1580 ))) 1581 1581 1582 1582 ((( 1583 -If sensor output is 220 v, the.= 4.3mA ,Sothe LT-22222-L will be able to detect this highsafely.1541 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1584 1584 ))) 1585 1585 1586 1586 1587 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor 1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1588 1588 1589 -From above DI portscircuit,we can see that activethe photocouplerwill needto haveavoltage difference between DI+ and DI- port.While the Dry Contact sensor is a passive componentwhichcan't provide this voltage difference.1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1590 1590 1591 -To detect a Dry Contact, wecan providea power source to one pin of the Dry Contact. Below is a reference connection.1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1592 1592 1593 1593 [[image:image-20230616235145-1.png]] 1594 1594 1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1595 1595 1555 +[[image:image-20240219115718-1.png]] 1596 1596 1597 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1598 1598 1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 === 1599 1599 1600 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v. 1601 1601 1602 -(% style="color: red" %)**Note: DOpins goto floatwhendevice ispoweroff.**1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V. 1603 1603 1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.** 1564 + 1604 1604 [[image:1653357531600-905.png]] 1605 1605 1606 1606 1607 -=== 3.6.4 Analog Input Interface === 1568 +=== 3.6.4 Analog Input Interfaces === 1608 1608 1609 1609 1610 -The analog input interface is as below. The LT will measure the IN2 voltagesoto calculate the current pass theLoad. The formula is:1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is: 1611 1611 1612 1612 1613 1613 (% style="color:blue" %)**AC2 = (IN2 voltage )/12** ... ... @@ -1614,14 +1614,14 @@ 1614 1614 1615 1615 [[image:1653357592296-182.png]] 1616 1616 1617 -Example toconnect a 4~~20mA sensor1578 +Example: Connecting a 4~~20mA sensor 1618 1618 1619 -We take the wind speed sensor as an example for reference only.1580 +We will use the wind speed sensor as an example for reference only. 1620 1620 1621 1621 1622 1622 (% style="color:blue" %)**Specifications of the wind speed sensor:** 1623 1623 1624 -(% style="color:red" %)**Red: 12~~24 v**1585 +(% style="color:red" %)**Red: 12~~24V** 1625 1625 1626 1626 (% style="color:#ffc000" %)**Yellow: 4~~20mA** 1627 1627 ... ... @@ -1634,7 +1634,7 @@ 1634 1634 [[image:1653357648330-671.png||height="155" width="733"]] 1635 1635 1636 1636 1637 -Example connectedto a regulated power supply to measure voltage1598 +Example: Connecting to a regulated power supply to measure voltage 1638 1638 1639 1639 [[image:image-20230608101532-1.png||height="606" width="447"]] 1640 1640 ... ... @@ -1643,7 +1643,7 @@ 1643 1643 [[image:image-20230608101722-3.png||height="102" width="1139"]] 1644 1644 1645 1645 1646 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(% %) (%style="color:blue" %)**:**1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:** 1647 1647 1648 1648 (% style="color:red" %)**Red: 12~~24v** 1649 1649 ... ... @@ -1654,9 +1654,9 @@ 1654 1654 1655 1655 1656 1656 ((( 1657 -The LT serial controllerhas two relay interfaces;eachinterfaceusestwo pins of the screw terminal.User can connectotherdevice'sPowerLinetoin serialof RO1_1 and RO_2. Such asbelow:1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below: 1658 1658 1659 -**Note**: RO pins gotoOpen(NO) whendeviceis power off.1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off. 1660 1660 ))) 1661 1661 1662 1662 [[image:image-20220524100215-9.png]] ... ... @@ -1668,12 +1668,9 @@ 1668 1668 == 3.7 LEDs Indicators == 1669 1669 1670 1670 1671 -(% border="1" cellspacing=" 4" style="background-color:#f2f2f2; width:520px" %)1672 -|(% style="background-color:# d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**1632 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1633 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1673 1673 |**PWR**|Always on if there is power 1674 -|**SYS**|((( 1675 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message. 1676 -))) 1677 1677 |**TX**|((( 1678 1678 ((( 1679 1679 Device boot: TX blinks 5 times. ... ... @@ -1687,40 +1687,32 @@ 1687 1687 Transmit a LoRa packet: TX blinks once 1688 1688 ))) 1689 1689 ))) 1690 -|**RX**|RX blinks once when receive a packet. 1691 -|**DO1**| 1692 -|**DO2**| 1693 -|**DO3**| 1694 -|**DI2**|((( 1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1648 +|**RX**|RX blinks once when receiving a packet. 1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high 1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high 1651 +|**DI1**|((( 1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low 1696 1696 ))) 1697 1697 |**DI2**|((( 1698 -For LT-22222-L: ON when DI2 is high, LOWwhen DI2 is low1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low 1699 1699 ))) 1700 -|**DI2**|((( 1701 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1702 -))) 1703 -|**RO1**| 1704 -|**RO2**| 1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open 1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open 1705 1705 1706 -= 4. Us eAT Command =1660 += 4. Using AT Command = 1707 1707 1708 -== 4.1 AccessATCommand==1662 +== 4.1 Connecting the LT-22222-L to a computer == 1709 1709 1710 1710 1711 1711 ((( 1712 -LT supports AT Command et.Usercan use a USBplusthe3.5mm Program Cable to connect toLTforusingATcommand, as below.1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below. 1713 1713 ))) 1714 1714 1715 -((( 1716 - 1717 -))) 1718 - 1719 1719 [[image:1653358238933-385.png]] 1720 1720 1721 1721 1722 1722 ((( 1723 - In PC,User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud ratetoforLT. The AT commands are disable by default andneedto enterpassword (default:(% style="color:green" %)**123456**)(%%) to activeit.As shown below:1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate of (% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below: 1724 1724 ))) 1725 1725 1726 1726 [[image:1653358355238-883.png]] ... ... @@ -1727,10 +1727,12 @@ 1727 1727 1728 1728 1729 1729 ((( 1730 - More detailAT Commandmanual can be found at1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]] 1731 1731 ))) 1732 1732 1733 1733 ((( 1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes. 1685 + 1734 1734 AT+<CMD>? : Help on <CMD> 1735 1735 ))) 1736 1736 ... ... @@ -2034,8 +2034,6 @@ 2034 2034 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 2035 2035 2036 2036 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 2037 - 2038 - 2039 2039 ))) 2040 2040 2041 2041 ((( ... ... @@ -2042,9 +2042,6 @@ 2042 2042 [[image:1653359097980-169.png||height="188" width="729"]] 2043 2043 ))) 2044 2044 2045 -((( 2046 - 2047 -))) 2048 2048 2049 2049 === 4.2.3 Change to Class A === 2050 2050 ... ... @@ -2052,8 +2052,9 @@ 2052 2052 ((( 2053 2053 (% style="color:blue" %)**If sensor JOINED:** 2054 2054 2055 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A 2056 -ATZ** 2002 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A** 2003 + 2004 +(% style="background-color:#dcdcdc" %)**ATZ** 2057 2057 ))) 2058 2058 2059 2059 ... ... @@ -2076,7 +2076,7 @@ 2076 2076 * For bug fix 2077 2077 * Change LoRaWAN bands. 2078 2078 2079 -Below s howsthe hardware connection for how to upload an image to the LT:2027 +Below is the hardware connection for how to upload an image to the LT: 2080 2080 2081 2081 [[image:1653359603330-121.png]] 2082 2082 ... ... @@ -2106,7 +2106,6 @@ 2106 2106 2107 2107 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is: 2108 2108 2109 - 2110 2110 [[image:1653360054704-518.png||height="186" width="745"]] 2111 2111 2112 2112 ... ... @@ -2170,13 +2170,21 @@ 2170 2170 2171 2171 ((( 2172 2172 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2120 + 2173 2173 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2122 + 2174 2174 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2124 + 2175 2175 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2126 + 2176 2176 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2128 + 2177 2177 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2130 + 2178 2178 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2132 + 2179 2179 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2134 + 2180 2180 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2181 2181 ))) 2182 2182 ... ... @@ -2188,7 +2188,7 @@ 2188 2188 [[image:1653360498588-932.png||height="485" width="726"]] 2189 2189 2190 2190 2191 -== 6.4 How to change the uplink interval ?==2146 +== 6.4 How to change the uplink interval? == 2192 2192 2193 2193 2194 2194 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] ... ... @@ -2237,6 +2237,12 @@ 2237 2237 Firmware version needs to be no less than 1.6.0. 2238 2238 2239 2239 2195 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2196 + 2197 + 2198 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2199 + 2200 + 2240 2240 = 7. Trouble Shooting = 2241 2241 ))) 2242 2242 ... ... @@ -2277,6 +2277,13 @@ 2277 2277 ))) 2278 2278 2279 2279 2241 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2242 + 2243 + 2244 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2245 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2246 + 2247 + 2280 2280 = 8. Order Info = 2281 2281 2282 2282 ... ... @@ -2330,5 +2330,3 @@ 2330 2330 * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]] 2331 2331 * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]] 2332 2332 * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]] 2333 - 2334 -
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content