<
From version < 126.11 >
edited by Xiaoling
on 2023/06/19 15:59
To version < 162.1 >
edited by Dilisi S
on 2024/11/05 03:38
>
Change comment: edits from section 3.6.3

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -15,36 +15,30 @@
15 15  
16 16  = 1.Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Setup your own private LoRaWAN network.
44 +
45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 186  * Remote configure parameters via LoRa Downlink
187 -
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
105 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 -
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 212  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:266px" %)**Description**
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,93 +223,140 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
226 -= 2. Power ON Device =
131 += 2. Assembling the Device =
227 227  
133 +== 2.1 What is included in the package? ==
228 228  
229 -(((
230 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
231 -)))
135 +The package includes the following items:
232 232  
233 -(((
234 -PWR will on when device is properly powered.
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
235 235  
236 -
237 -)))
142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise.
238 238  
144 +== 2.2 Terminals ==
145 +
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
239 239  [[image:1653297104069-180.png]]
240 240  
241 241  
242 242  = 3. Operation Mode =
243 243  
244 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
245 245  
184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
246 246  
247 -(((
248 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
249 -)))
186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 250  
251 -(((
252 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
253 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
254 254  
190 +== 3.2 Registering with a LoRaWAN network server ==
255 255  
256 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
257 257  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
258 258  
259 -(((
260 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
261 261  
262 -
263 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
264 264  
265 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
266 266  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
267 267  
268 -(((
269 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
270 270  
271 -
272 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options available:
273 273  
274 -(((
275 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
276 -)))
210 +==== Using the LoRaWAN Device Repository: ====
277 277  
278 -(((
279 -Each LT is shipped with a sticker with the default device EUI as below:
280 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches with your device.
281 281  
282 -[[image:image-20230425173427-2.png||height="246" width="530"]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
283 283  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
284 284  
285 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
286 286  
287 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
288 288  
289 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches with your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
290 290  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
291 291  
292 -**Add APP KEY and DEV EUI**
293 293  
294 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
295 295  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
296 296  
297 297  
298 -(((
299 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
300 300  
301 -
302 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
303 303  
304 304  [[image:1653298044601-602.png||height="405" width="709"]]
305 305  
306 306  
307 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
308 308  
309 309  
310 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
311 311  
312 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
313 313  
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
315 315  
... ... @@ -325,10 +325,10 @@
325 325  
326 326  
327 327  (((
328 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %)
329 329  
330 330  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
331 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
332 332  |Value|(((
333 333  AVI1 voltage
334 334  )))|(((
... ... @@ -343,25 +343,25 @@
343 343  )))
344 344  
345 345  (((
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
347 347  
348 348  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
349 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
353 -* RO is for relay. ROx=1 : closeROx=0 always open.
354 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
355 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
305 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
356 356  
357 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
358 358  
359 -For example if payload is: [[image:image-20220523175847-2.png]]
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
360 360  
361 361  
362 -**The value for the interface is:  **
314 +**The interface values can be calculated as follows:  **
363 363  
364 -AVI1 channel voltage is 0x04AB/1000=1195DEC/1000=1.195V
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
365 365  
366 366  AVI2 channel voltage is 0x04AC/1000=1.196V
367 367  
... ... @@ -369,40 +369,38 @@
369 369  
370 370  ACI2 channel current is 0x1300/1000=4.864mA
371 371  
372 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= 10101010(b) means,
373 373  
374 -* [1] RO1 relay channel is close and the RO1 LED is ON.
375 -* [0] RO2 relay channel is open and RO2 LED is OFF;
376 -
377 -**LT22222-L:**
378 -
379 -* [1] DI2 channel is high input and DI2 LED is ON;
380 -* [0] DI1 channel is low input;
381 -
382 -* [0] DO3 channel output state
383 -** DO3 is float in case no load between DO3 and V+.;
326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON.
327 +* [0] RO2 relay channel is open, and RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is low, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is floating when there is no load between DI1 and V+.
332 +** DI1 is high when there is load between DI1 and V+.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 channel output state:
335 +** DO3 is float in case no load between DO3 and V+.
384 384  ** DO3 is high in case there is load between DO3 and V+.
385 -** DO3 LED is off in both case
386 -* [1] DO2 channel output is low and DO2 LED is ON.
387 -* [0] DO1 channel output state
388 -** DO1 is float in case no load between DO1 and V+.;
389 -** DO1 is high in case there is load between DO1 and V+.
390 -** DO1 LED is off in both case
337 +** DO3 LED is OFF in both case
338 +* [1] DO2 channel output is low, and the DO2 LED is ON.
339 +* [0] DO1 channel output state:
340 +** DO1 is floating when there is no load between DO1 and V+.
341 +** DO1 is high when there is load between DO1 and V+.
342 +** DO1 LED is OFF in both case.
391 391  
392 -
393 -
394 394  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
395 395  
396 396  
397 397  (((
398 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
399 399  )))
400 400  
401 401  (((
402 -Total : 11 bytes payload
352 +The uplink payload is 11 bytes long.
403 403  
404 404  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
405 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
355 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
406 406  |Value|COUNT1|COUNT2 |DIDORO*|(((
407 407  Reserve
408 408  )))|MOD
... ... @@ -409,36 +409,37 @@
409 409  )))
410 410  
411 411  (((
412 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
413 413  
414 414  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
415 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
416 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
417 417  
418 -RO is for relay. ROx=1 : closeROx=0 always open.
368 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
419 419  )))
420 420  
421 -* FIRST: Indicate this is the first packet after join network.
422 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
371 +* FIRST: Indicates that this is the first packet after joining the network.
372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
423 423  
424 424  (((
425 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
376 +
377 +
426 426  )))
427 427  
428 428  (((
429 -**To use counting mode, please run:**
381 +**To activate this mode, please run the following AT command:**
430 430  )))
431 431  
432 -
433 433  (((
385 +(% class="box infomessage" %)
386 +(((
434 434  **AT+MOD=2**
435 -)))
436 436  
437 -(((
438 438  **ATZ**
439 439  )))
391 +)))
440 440  
441 -
442 442  (((
443 443  
444 444  
... ... @@ -448,17 +448,17 @@
448 448  (((
449 449  **For LT22222-L:**
450 450  
451 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) **
452 452  
453 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) **
454 454  
455 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) **
456 456  
457 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) **
458 458  
459 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set the COUNT1 value to 60)**
460 460  
461 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set the COUNT2 value to 60)**
462 462  )))
463 463  
464 464  
... ... @@ -465,10 +465,10 @@
465 465  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
466 466  
467 467  
468 -**LT22222-L**: This mode the DI1 is used as a counting pin.
419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
469 469  
470 470  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
422 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
472 472  |Value|COUNT1|(((
473 473  ACI1 Current
474 474  )))|(((
... ... @@ -476,16 +476,16 @@
476 476  )))|DIDORO*|Reserve|MOD
477 477  
478 478  (((
479 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
480 480  
481 481  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
483 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
484 484  )))
485 485  
486 -* RO is for relay. ROx=1 : closeROx=0 always open.
487 -* FIRST: Indicate this is the first packet after join network.
488 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
437 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
438 +* FIRST: Indicates that this is the first packet after joining the network.
439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
489 489  
490 490  (((
491 491  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
... ... @@ -493,7 +493,7 @@
493 493  
494 494  
495 495  (((
496 -**To use counting mode, please run:**
447 +**To activate this mode, please run the following AT command:**
497 497  )))
498 498  
499 499  (((
... ... @@ -505,9 +505,10 @@
505 505  )))
506 506  )))
507 507  
508 -
509 509  (((
510 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
460 +AT Commands for counting:
461 +
462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'.
511 511  )))
512 512  
513 513  
... ... @@ -515,14 +515,14 @@
515 515  
516 516  
517 517  (((
518 -**LT22222-L**: This mode the DI1 is used as a counting pin.
470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
519 519  )))
520 520  
521 521  (((
522 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
523 523  
524 524  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
525 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**4**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
477 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
526 526  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
527 527  Reserve
528 528  )))|MOD
... ... @@ -529,46 +529,44 @@
529 529  )))
530 530  
531 531  (((
532 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
533 533  
534 534  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
535 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
536 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
537 537  )))
538 538  
539 -* RO is for relay. ROx=1 : closeROx=0 always open.
540 -* FIRST: Indicate this is the first packet after join network.
541 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
491 +* RO is for relay. ROx=1 : closed, ROx=0 always open.
492 +* FIRST: Indicates that this is the first packet after joining the network.
493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
542 542  
543 543  (((
544 544  (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
545 -)))
546 546  
547 -(((
548 548  
549 -
550 -**To use this mode, please run:**
551 551  )))
552 552  
553 -
554 554  (((
555 -**AT+MOD=4**
502 +**To activate this mode, please run the following AT command:**
556 556  )))
557 557  
558 558  (((
506 +(% class="box infomessage" %)
507 +(((
508 +**AT+MOD=4**
509 +
559 559  **ATZ**
560 560  )))
512 +)))
561 561  
562 -
563 -
564 564  (((
565 565  Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
566 566  )))
567 567  
568 568  (((
569 -**Plus below command for AVI1 Counting:**
519 +**In addition to that, below are the commands for AVI1 Counting:**
570 570  
571 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
572 572  
573 573  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
574 574  
... ... @@ -584,7 +584,7 @@
584 584  **LT22222-L**: This mode the DI1 is used as a counting pin.
585 585  
586 586  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
587 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**1**
537 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
588 588  |Value|(((
589 589  AVI1 voltage
590 590  )))|(((
... ... @@ -603,7 +603,7 @@
603 603  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
604 604  )))
605 605  
606 -* RO is for relay. ROx=1 : closeROx=0 always open.
556 +* RO is for relay. ROx=1 : close, ROx=0 always open.
607 607  * FIRST: Indicate this is the first packet after join network.
608 608  * (((
609 609  DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
... ... @@ -614,21 +614,18 @@
614 614  )))
615 615  
616 616  (((
617 -
618 -
619 619  **To use this mode, please run:**
620 620  )))
621 621  
622 -
623 623  (((
571 +(% class="box infomessage" %)
572 +(((
624 624  **AT+MOD=5**
625 -)))
626 626  
627 -(((
628 628  **ATZ**
629 629  )))
577 +)))
630 630  
631 -
632 632  (((
633 633  Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
634 634  )))
... ... @@ -723,7 +723,7 @@
723 723  MOD6 Payload : total 11 bytes payload
724 724  
725 725  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
726 -|(% style="background-color:#d9e2f3; color:#0070c0; width:60px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:69px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:49px" %)**6**|(% style="background-color:#d9e2f3; color:#0070c0; width:109px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**1**
673 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
727 727  |Value|(((
728 728  TRI_A FLAG
729 729  )))|(((
... ... @@ -1051,7 +1051,7 @@
1051 1051  01: Low,  00: High ,  11: No action
1052 1052  
1053 1053  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1001 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1055 1055  |02  01  00  11|Low|High|No Action
1056 1056  |02  00  11  01|High|No Action|Low
1057 1057  |02  11  01  00|No Action|Low|High
... ... @@ -1094,7 +1094,7 @@
1094 1094  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1095 1095  
1096 1096  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1097 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1098 1098  |0x01|DO1 set to low
1099 1099  |0x00|DO1 set to high
1100 1100  |0x11|DO1 NO Action
... ... @@ -1102,7 +1102,7 @@
1102 1102  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1103 1103  
1104 1104  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1105 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1052 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1106 1106  |0x01|DO2 set to low
1107 1107  |0x00|DO2 set to high
1108 1108  |0x11|DO2 NO Action
... ... @@ -1110,7 +1110,7 @@
1110 1110  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1111 1111  
1112 1112  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1113 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1060 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1114 1114  |0x01|DO3 set to low
1115 1115  |0x00|DO3 set to high
1116 1116  |0x11|DO3 NO Action
... ... @@ -1147,7 +1147,7 @@
1147 1147  
1148 1148  
1149 1149  
1150 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1097 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1151 1151  
1152 1152  
1153 1153  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1165,10 +1165,10 @@
1165 1165  )))
1166 1166  
1167 1167  (((
1168 -01: Close ,  00: Open , 11: No action
1115 +00: Close ,  01: Open , 11: No action
1169 1169  
1170 1170  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1171 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1118 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1172 1172  |03  00  11|Open|No Action
1173 1173  |03  01  11|Close|No Action
1174 1174  |03  11  00|No Action|Open
... ... @@ -1408,57 +1408,73 @@
1408 1408  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1409 1409  
1410 1410  
1411 -== 3.5 Integrate with Mydevice ==
1358 +== 3.5 Integrating with ThingsEye.io ==
1412 1412  
1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1413 1413  
1414 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1362 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1415 1415  
1416 -(((
1417 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1418 -)))
1364 +* Go to your Application and select MQTT under Integrations.
1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1419 1419  
1420 -(((
1421 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1422 1422  
1423 -
1424 -)))
1370 +=== 3.5.2 Configuring ThingsEye.io ===
1425 1425  
1426 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1372 +* Login to your thingsEye.io account.
1373 +* Under the Integrations center, click Integrations.
1374 +* Click the Add integration button (the button with the + symbol).
1427 1427  
1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1428 1428  
1429 1429  
1430 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1379 +On the Add integration page configure the following:
1431 1431  
1381 +Basic settings:
1432 1432  
1433 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1383 +* Select The Things Stack Community from the Integration type list.
1384 +* Enter a suitable name for your integration in the Name box or keep the default name.
1385 +* Click the Next button.
1434 1434  
1435 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1436 1436  
1437 -Search under The things network
1389 +Uplink Data converter:
1438 1438  
1439 -[[image:1653356838789-523.png||height="337" width="740"]]
1391 +* Click the Create New button if it is not selected by default.
1392 +* Click the JavaScript button.
1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1394 +* Click the Next button.
1440 1440  
1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1441 1441  
1398 +Downlink Data converter (this is an optional step):
1442 1442  
1443 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1400 +* Click the Create new button if it is not selected by default.
1401 +* Click the JavaScript button.
1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1403 +* Click the Next button.
1444 1444  
1445 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1446 1446  
1407 +Connection:
1447 1447  
1448 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1409 +* Choose Region from the Host type.
1410 +* Enter the cluster of your The Things Stack in the Region textbox.
1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1413 +* Click the Add button.
1449 1449  
1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1450 1450  
1451 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1452 1452  
1418 +Your integration is added to the integrations list and it will display on the Integrations page.
1453 1453  
1454 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1455 1455  
1456 1456  
1457 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1423 +== 3.6 Interface Details ==
1458 1458  
1459 -
1460 -== 3.6 Interface Detail ==
1461 -
1462 1462  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1463 1463  
1464 1464  
... ... @@ -1467,16 +1467,16 @@
1467 1467  [[image:1653356991268-289.png]]
1468 1468  
1469 1469  
1470 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1433 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1471 1471  
1472 1472  
1473 1473  (((
1474 -The DI port of LT-22222-L can support **NPN** or **PNP** or **Dry Contact** output sensor.
1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1475 1475  )))
1476 1476  
1477 1477  (((
1478 1478  (((
1479 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA). (% class="mark" %)When there is active current pass NEC2501 pin1 to pin2. The DI will be active high and DI LED status will change.
1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes.
1480 1480  
1481 1481  
1482 1482  )))
... ... @@ -1486,7 +1486,7 @@
1486 1486  
1487 1487  (((
1488 1488  (((
1489 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1452 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1490 1490  )))
1491 1491  )))
1492 1492  
... ... @@ -1495,22 +1495,22 @@
1495 1495  )))
1496 1496  
1497 1497  (((
1498 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor.
1499 1499  )))
1500 1500  
1501 1501  (((
1502 -This type of sensor will output a low signal GND when active.
1465 +This type of sensors outputs a low (GND) signal when active.
1503 1503  )))
1504 1504  
1505 1505  * (((
1506 -Connect sensor's output to DI1-
1469 +Connect the sensor's output to DI1-
1507 1507  )))
1508 1508  * (((
1509 -Connect sensor's VCC to DI1+.
1472 +Connect the sensor's VCC to DI1+.
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1514 1514  )))
1515 1515  
1516 1516  (((
... ... @@ -1518,7 +1518,7 @@
1518 1518  )))
1519 1519  
1520 1520  (((
1521 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1522 1522  )))
1523 1523  
1524 1524  (((
... ... @@ -1526,22 +1526,22 @@
1526 1526  )))
1527 1527  
1528 1528  (((
1529 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor.
1530 1530  )))
1531 1531  
1532 1532  (((
1533 -This type of sensor will output a high signal (example 24v) when active.
1496 +This type of sensors outputs a high signal (e.g., 24V) when active.
1534 1534  )))
1535 1535  
1536 1536  * (((
1537 -Connect sensor's output to DI1+
1500 +Connect the sensor's output to DI1+
1538 1538  )))
1539 1539  * (((
1540 -Connect sensor's GND DI1-.
1503 +Connect the sensor's GND DI1-.
1541 1541  )))
1542 1542  
1543 1543  (((
1544 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1545 1545  )))
1546 1546  
1547 1547  (((
... ... @@ -1549,7 +1549,7 @@
1549 1549  )))
1550 1550  
1551 1551  (((
1552 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal.
1553 1553  )))
1554 1554  
1555 1555  (((
... ... @@ -1557,22 +1557,22 @@
1557 1557  )))
1558 1558  
1559 1559  (((
1560 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor.
1561 1561  )))
1562 1562  
1563 1563  (((
1564 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1565 1565  )))
1566 1566  
1567 1567  * (((
1568 -Connect sensor's output to DI1+ with a serial 50K resistor
1531 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1569 1569  )))
1570 1570  * (((
1571 -Connect sensor's GND DI1-.
1534 +Connect the sensor's GND DI1-.
1572 1572  )))
1573 1573  
1574 1574  (((
1575 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1576 1576  )))
1577 1577  
1578 1578  (((
... ... @@ -1580,34 +1580,37 @@
1580 1580  )))
1581 1581  
1582 1582  (((
1583 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1546 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1584 1584  )))
1585 1585  
1586 1586  
1587 -(% style="color:blue" %)**Example4**(%%): Connect to Dry Contact sensor
1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1588 1588  
1589 -From above DI ports circuit, we can see that active the photocoupler will need to have a voltage difference between DI+ and DI- port. While the Dry Contact sensor is a passive component which can't provide this voltage difference.
1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1590 1590  
1591 -To detect a Dry Contact, we can provide a power source to one pin of the Dry Contact. Below is a reference connection.
1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1592 1592  
1593 1593  [[image:image-20230616235145-1.png]]
1594 1594  
1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1595 1595  
1560 +[[image:image-20240219115718-1.png]]
1596 1596  
1597 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1598 1598  
1563 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1599 1599  
1600 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1601 1601  
1602 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1566 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1603 1603  
1568 +(% style="color:red" %)**Note: The DO pins will float when device is powered off.**
1569 +
1604 1604  [[image:1653357531600-905.png]]
1605 1605  
1606 1606  
1607 -=== 3.6.4 Analog Input Interface ===
1573 +=== 3.6.4 Analog Input Interfaces ===
1608 1608  
1609 1609  
1610 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1576 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1611 1611  
1612 1612  
1613 1613  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1614,14 +1614,14 @@
1614 1614  
1615 1615  [[image:1653357592296-182.png]]
1616 1616  
1617 -Example to connect a 4~~20mA sensor
1583 +Example: Connecting a 4~~20mA sensor
1618 1618  
1619 -We take the wind speed sensor as an example for reference only.
1585 +We will use the wind speed sensor as an example for reference only.
1620 1620  
1621 1621  
1622 1622  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1623 1623  
1624 -(% style="color:red" %)**Red:  12~~24v**
1590 +(% style="color:red" %)**Red:  12~~24V**
1625 1625  
1626 1626  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1627 1627  
... ... @@ -1634,7 +1634,7 @@
1634 1634  [[image:1653357648330-671.png||height="155" width="733"]]
1635 1635  
1636 1636  
1637 -Example connected to a regulated power supply to measure voltage
1603 +Example: Connecting to a regulated power supply to measure voltage
1638 1638  
1639 1639  [[image:image-20230608101532-1.png||height="606" width="447"]]
1640 1640  
... ... @@ -1643,7 +1643,7 @@
1643 1643  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1644 1644  
1645 1645  
1646 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1647 1647  
1648 1648  (% style="color:red" %)**Red:  12~~24v**
1649 1649  
... ... @@ -1654,9 +1654,9 @@
1654 1654  
1655 1655  
1656 1656  (((
1657 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1623 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1658 1658  
1659 -**Note**: RO pins go to Open(NO) when device is power off.
1625 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1660 1660  )))
1661 1661  
1662 1662  [[image:image-20220524100215-9.png]]
... ... @@ -1668,12 +1668,9 @@
1668 1668  == 3.7 LEDs Indicators ==
1669 1669  
1670 1670  
1671 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1672 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1673 1673  |**PWR**|Always on if there is power
1674 -|**SYS**|(((
1675 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1676 -)))
1677 1677  |**TX**|(((
1678 1678  (((
1679 1679  Device boot: TX blinks 5 times.
... ... @@ -1688,39 +1688,31 @@
1688 1688  )))
1689 1689  )))
1690 1690  |**RX**|RX blinks once when receive a packet.
1691 -|**DO1**|
1692 -|**DO2**|
1693 -|**DO3**|
1694 -|**DI2**|(((
1695 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high
1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high
1656 +|**DI1**|(((
1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low
1696 1696  )))
1697 1697  |**DI2**|(((
1698 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1699 1699  )))
1700 -|**DI2**|(((
1701 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1702 -)))
1703 -|**RO1**|
1704 -|**RO2**|
1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open
1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open
1705 1705  
1706 -= 4. Use AT Command =
1665 += 4. Using AT Command =
1707 1707  
1708 -== 4.1 Access AT Command ==
1667 +== 4.1 Connecting the LT-22222-L to a computer ==
1709 1709  
1710 1710  
1711 1711  (((
1712 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1671 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1713 1713  )))
1714 1714  
1715 -(((
1716 -
1717 -)))
1718 -
1719 1719  [[image:1653358238933-385.png]]
1720 1720  
1721 1721  
1722 1722  (((
1723 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1678 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1724 1724  )))
1725 1725  
1726 1726  [[image:1653358355238-883.png]]
... ... @@ -1727,10 +1727,12 @@
1727 1727  
1728 1728  
1729 1729  (((
1730 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1685 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1731 1731  )))
1732 1732  
1733 1733  (((
1689 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1690 +
1734 1734  AT+<CMD>?        : Help on <CMD>
1735 1735  )))
1736 1736  
... ... @@ -2034,8 +2034,6 @@
2034 2034  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2035 2035  
2036 2036  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2037 -
2038 -
2039 2039  )))
2040 2040  
2041 2041  (((
... ... @@ -2042,9 +2042,6 @@
2042 2042  [[image:1653359097980-169.png||height="188" width="729"]]
2043 2043  )))
2044 2044  
2045 -(((
2046 -
2047 -)))
2048 2048  
2049 2049  === 4.2.3 Change to Class A ===
2050 2050  
... ... @@ -2052,8 +2052,9 @@
2052 2052  (((
2053 2053  (% style="color:blue" %)**If sensor JOINED:**
2054 2054  
2055 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2056 -ATZ**
2007 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2008 +
2009 +(% style="background-color:#dcdcdc" %)**ATZ**
2057 2057  )))
2058 2058  
2059 2059  
... ... @@ -2106,7 +2106,6 @@
2106 2106  
2107 2107  (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2108 2108  
2109 -
2110 2110  [[image:1653360054704-518.png||height="186" width="745"]]
2111 2111  
2112 2112  
... ... @@ -2170,13 +2170,21 @@
2170 2170  
2171 2171  (((
2172 2172  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2125 +
2173 2173  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2127 +
2174 2174  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2129 +
2175 2175  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2131 +
2176 2176  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2133 +
2177 2177  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2135 +
2178 2178  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2137 +
2179 2179  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2139 +
2180 2180  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2181 2181  )))
2182 2182  
... ... @@ -2188,7 +2188,7 @@
2188 2188  [[image:1653360498588-932.png||height="485" width="726"]]
2189 2189  
2190 2190  
2191 -== 6.4 How to change the uplink interval ==
2151 +== 6.4 How to change the uplink interval? ==
2192 2192  
2193 2193  
2194 2194  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
... ... @@ -2237,6 +2237,12 @@
2237 2237  Firmware version needs to be no less than 1.6.0.
2238 2238  
2239 2239  
2200 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2201 +
2202 +
2203 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2204 +
2205 +
2240 2240  = 7. Trouble Shooting =
2241 2241  )))
2242 2242  
... ... @@ -2277,6 +2277,13 @@
2277 2277  )))
2278 2278  
2279 2279  
2246 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2247 +
2248 +
2249 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2250 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2251 +
2252 +
2280 2280  = 8. Order Info =
2281 2281  
2282 2282  
... ... @@ -2330,5 +2330,3 @@
2330 2330  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2331 2331  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2332 2332  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2333 -
2334 -
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0