Last modified by Mengting Qiu on 2025/06/04 18:42

From version 122.3
edited by Xiaoling
on 2023/06/08 17:13
Change comment: There is no comment for this version
To version 188.1
edited by Bei Jinggeng
on 2024/11/11 09:50
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +{{info}}
44 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
45 +{{/info}}
48 48  )))
49 49  
50 50  (((
... ... @@ -53,268 +53,256 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12V
62 +** 20dB Transmit: 34mA@12V
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
65 +(% style="color:#037691" %)**Interface for Model: LT22222-L:**
82 82  
83 -(((
84 -
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01V)
72 +* Power Input 7~~ 24V DC. 
85 85  
86 -(% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
74 +(% style="color:#037691" %)**LoRa Spec:**
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 MHz
78 +** Band 2 (LF): 410 ~~ 528 MHz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
107 107  
108 -(((
109 -
95 +== 1.3 Features ==
110 110  
111 -(% style="color:#037691" %)**LoRa Spec:**
112 -)))
97 +* LoRaWAN Class A & Class C modes
98 +* Optional Customized LoRa Protocol
99 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
100 +* AT Commands to change parameters
101 +* Remotely configure parameters via LoRaWAN Downlink
102 +* Firmware upgradable via program port
103 +* Counting
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
105 +== 1.4 Applications ==
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
107 +* Smart buildings & home automation
108 +* Logistics and supply chain management
109 +* Smart metering
110 +* Smart agriculture
111 +* Smart cities
112 +* Smart factory
170 170  
114 +== 1.5 Hardware Variants ==
171 171  
172 -
116 +
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
119 +|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
120 +(% style="text-align:center" %)
121 +[[image:image-20230424115112-1.png||height="106" width="58"]]
122 +)))|(% style="width:334px" %)(((
123 +* 2 x Digital Input (Bi-direction)
124 +* 2 x Digital Output
125 +* 2 x Relay Output (5A@250VAC / 30VDC)
126 +* 2 x 0~~20mA Analog Input (res:0.01mA)
127 +* 2 x 0~~30V Analog Input (res:0.01v)
128 +* 1 x Counting Port
173 173  )))
174 174  
175 -== 1.3 Features ==
131 += 2Assembling the device =
176 176  
133 +== 2.1 Connecting the antenna ==
177 177  
178 -* LoRaWAN Class A & Class C protocol
135 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
179 179  
180 -* Optional Customized LoRa Protocol
137 +{{warning}}
138 +Warning! Do not power on the device without connecting the antenna.
139 +{{/warning}}
181 181  
182 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
141 +== 2.2 Terminals ==
183 183  
184 -* AT Commands to change parameters
143 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
185 185  
186 -* Remote configure parameters via LoRa Downlink
145 +Upper screw terminal block (from left to right):
187 187  
188 -* Firmware upgradable via program port
147 +(% style="width:634px" %)
148 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
149 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
150 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
151 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
152 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
153 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
154 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
189 189  
190 -* Counting
156 +Lower screw terminal block (from left to right):
191 191  
158 +(% style="width:633px" %)
159 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
160 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
169 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
192 192  
171 +== 2.3 Powering the device ==
193 193  
194 -== 1.Applications ==
173 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
195 195  
175 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
196 196  
197 -* Smart Buildings & Home Automation
177 +{{warning}}
178 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
179 +{{/warning}}
198 198  
199 -* Logistics and Supply Chain Management
200 200  
201 -* Smart Metering
182 +[[image:1653297104069-180.png]]
202 202  
203 -* Smart Agriculture
204 204  
205 -* Smart Cities
185 += 3. Registering with a LoRaWAN Network Server =
206 206  
207 -* Smart Factory
187 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
208 208  
189 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
209 209  
191 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
210 210  
211 -== 1.5 Hardware Variants ==
193 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
212 212  
195 +[[image:image-20220523172350-1.png||height="266" width="864"]]
213 213  
214 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
215 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
216 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
217 -(% style="text-align:center" %)
218 -[[image:image-20230424115112-1.png||height="106" width="58"]]
219 -)))|(% style="width:334px" %)(((
220 -* 2 x Digital Input (Bi-direction)
221 -* 2 x Digital Output
222 -* 2 x Relay Output (5A@250VAC / 30VDC)
223 -* 2 x 0~~20mA Analog Input (res:0.01mA)
224 -* 2 x 0~~30V Analog Input (res:0.01v)
225 -* 1 x Counting Port
226 -)))
197 +=== 3.2.1 Prerequisites ===
227 227  
199 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
228 228  
201 +[[image:image-20230425173427-2.png||height="246" width="530"]]
229 229  
230 -= 2. Power ON Device =
203 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
231 231  
205 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
232 232  
233 -(((
234 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
235 -)))
207 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
236 236  
237 -(((
238 -PWR will on when device is properly powered.
209 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
210 +* Create an application with The Things Stack if you do not have one yet.
211 +* Go to your application page and click on the **End devices** in the left menu.
212 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
239 239  
240 -
241 -)))
214 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
242 242  
243 -[[image:1653297104069-180.png]]
216 +* On the **Register end device** page:
217 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
218 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
219 +*** **End device brand**: Dragino Technology Co., Limited
220 +*** **Model**: LT22222-L I/O Controller
221 +*** **Hardware ver**: Unknown
222 +*** **Firmware ver**: 1.6.0
223 +*** **Profile (Region)**: Select the region that matches your device.
224 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
244 244  
226 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
245 245  
246 -= 3. Operation Mode =
247 247  
248 -== 3.1 How it works? ==
229 +* Register end device page continued...
230 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
231 +** In the **DevEUI** field, enter the **DevEUI**.
232 +** In the **AppKey** field, enter the **AppKey.**
233 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
234 +** Under **After registration**, select the **View registered end device** option.
249 249  
236 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
250 250  
251 -(((
252 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
253 -)))
238 +==== ====
254 254  
255 -(((
256 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
257 -)))
240 +==== 3.2.2.2 Adding device manually ====
258 258  
242 +* On the **Register end device** page:
243 +** Select the option **Enter end device specifies manually** under **Input method**.
244 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
245 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
246 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
247 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
248 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
249 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
259 259  
260 -== 3.2 Example to join LoRaWAN network ==
251 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
261 261  
262 262  
263 -(((
264 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
254 +* Register end device page continued...
255 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
256 +** In the **DevEUI** field, enter the **DevEUI**.
257 +** In the **AppKey** field, enter the **AppKey**.
258 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
259 +** Under **After registration**, select the **View registered end device** option.
260 +** Click the **Register end device** button.
265 265  
266 -
267 -)))
262 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
268 268  
269 -[[image:image-20220523172350-1.png||height="266" width="864"]]
270 270  
265 +You will be navigated to the **Device overview** page.
271 271  
272 -(((
273 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
274 274  
275 -
276 -)))
268 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
277 277  
278 -(((
279 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
280 -)))
281 281  
282 -(((
283 -Each LT is shipped with a sticker with the default device EUI as below:
284 -)))
271 +==== 3.2.2.3 Joining ====
285 285  
286 -[[image:image-20230425173427-2.png||height="246" width="530"]]
273 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
287 287  
275 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
288 288  
289 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
290 290  
291 -**Add APP EUI in the application.**
278 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
292 292  
293 -[[image:1653297955910-247.png||height="321" width="716"]]
294 294  
281 +By default, you will receive an uplink data message from the device every 10 minutes.
295 295  
296 -**Add APP KEY and DEV EUI**
283 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
297 297  
298 -[[image:1653298023685-319.png]]
285 +[[image:lt-22222-ul-payload-decoded.png]]
299 299  
300 300  
288 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
301 301  
302 -(((
303 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
290 +{{info}}
291 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
292 +{{/info}}
304 304  
305 -
306 -)))
294 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
307 307  
308 -[[image:1653298044601-602.png||height="405" width="709"]]
309 309  
297 +== 3.3 Work Modes and Uplink Payload formats ==
310 310  
311 -== 3.3 Uplink Payload ==
312 312  
300 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
313 313  
314 -There are five working modes + one interrupt mode on LT for different type application:
302 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
315 315  
316 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
317 -
318 318  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
319 319  
320 320  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
... ... @@ -325,16 +325,21 @@
325 325  
326 326  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
327 327  
314 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
328 328  
329 -
330 330  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
331 331  
332 -
333 333  (((
334 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
319 +This is the default mode.
335 335  
336 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
337 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
321 +The uplink payload is 11 bytes long.
322 +
323 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
324 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
325 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
326 +
327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
328 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
338 338  |Value|(((
339 339  AVI1 voltage
340 340  )))|(((
... ... @@ -343,35 +343,32 @@
343 343  ACI1 Current
344 344  )))|(((
345 345  ACI2 Current
346 -)))|DIDORO*|(((
337 +)))|**DIDORO***|(((
347 347  Reserve
348 348  )))|MOD
349 349  )))
350 350  
351 351  (((
352 -
343 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
353 353  
354 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
355 -
356 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
358 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
345 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
346 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
347 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
359 359  )))
360 360  
350 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
351 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
352 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
361 361  
362 -* RO is for relay. ROx=1 : close,ROx=0 always open.
363 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
364 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
354 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
365 365  
366 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
356 +For example, if the payload is: [[image:image-20220523175847-2.png]]
367 367  
368 -For example if payload is: [[image:image-20220523175847-2.png]]
369 369  
359 +**The interface values can be calculated as follows:  **
370 370  
371 -**The value for the interface is **
361 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
372 372  
373 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
374 -
375 375  AVI2 channel voltage is 0x04AC/1000=1.196V
376 376  
377 377  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -378,38 +378,39 @@
378 378  
379 379  ACI2 channel current is 0x1300/1000=4.864mA
380 380  
381 -The last byte 0xAA= 10101010(B) means
369 +The last byte 0xAA= **10101010**(b) means,
382 382  
383 -* [1] RO1 relay channel is close and the RO1 LED is ON.
384 -* [0] RO2 relay channel is open and RO2 LED is OFF;
371 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
372 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
373 +* **[1] DI3 - not used for LT-22222-L.**
374 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
375 +* [1] DI1 channel input state:
376 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
377 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
378 +** DI1 LED is ON in both cases.
379 +* **[0] DO3 - not used for LT-22222-L.**
380 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
381 +* [0] DO1 channel output state:
382 +** DO1 is FLOATING when there is no load between DO1 and V+.
383 +** DO1 is HIGH when there is a load between DO1 and V+.
384 +** DO1 LED is OFF in both cases.
385 385  
386 -**LT22222-L:**
387 -
388 -* [1] DI2 channel is high input and DI2 LED is ON;
389 -* [0] DI1 channel is low input;
390 -
391 -* [0] DO3 channel output state
392 -** DO3 is float in case no load between DO3 and V+.;
393 -** DO3 is high in case there is load between DO3 and V+.
394 -** DO3 LED is off in both case
395 -* [1] DO2 channel output is low and DO2 LED is ON.
396 -* [0] DO1 channel output state
397 -** DO1 is float in case no load between DO1 and V+.;
398 -** DO1 is high in case there is load between DO1 and V+.
399 -** DO1 LED is off in both case
400 -
401 401  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
402 402  
403 403  
404 404  (((
405 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
390 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
406 406  )))
407 407  
408 408  (((
409 -Total : 11 bytes payload
394 +The uplink payload is 11 bytes long.
410 410  
411 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
412 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**4**|(% style="background-color:#D9E2F3;color:#0070C0" %)**4**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="background-color:#D9E2F3;color:#0070C0" %)**1**
396 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
397 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
398 +It starts counting again when it reaches the maximum value.**
399 +
400 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
401 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
413 413  |Value|COUNT1|COUNT2 |DIDORO*|(((
414 414  Reserve
415 415  )))|MOD
... ... @@ -416,76 +416,70 @@
416 416  )))
417 417  
418 418  (((
419 -
408 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
420 420  
421 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
410 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
411 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
412 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
422 422  
423 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
425 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
426 -
427 -RO is for relay. ROx=1 : close,ROx=0 always open.
414 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
428 428  )))
429 429  
430 -* FIRST: Indicate this is the first packet after join network.
431 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
417 +* FIRST: Indicates that this is the first packet after joining the network.
418 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
432 432  
433 433  (((
434 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
435 -)))
421 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
436 436  
437 -(((
438 438  
424 +)))
439 439  
440 -**To use counting mode, please run:**
426 +(((
427 +**To activate this mode, run the following AT commands:**
441 441  )))
442 442  
430 +(((
443 443  (% class="box infomessage" %)
444 444  (((
445 -(((
446 -(((
447 447  **AT+MOD=2**
448 -)))
449 449  
450 -(((
451 451  **ATZ**
452 452  )))
453 453  )))
454 -)))
455 455  
456 456  (((
457 457  
458 458  
459 459  (% style="color:#4f81bd" %)**AT Commands for counting:**
460 -
461 -
462 462  )))
463 463  
464 464  (((
465 465  **For LT22222-L:**
466 466  
448 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
467 467  
468 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
450 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
469 469  
470 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
452 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
471 471  
472 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
454 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
473 473  
474 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
456 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
475 475  
476 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
477 -
478 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
458 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
479 479  )))
480 480  
481 481  
482 482  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
483 483  
464 +(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
465 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
466 +It starts counting again when it reaches the maximum value.**
484 484  
485 -**LT22222-L**: This mode the DI1 is used as a counting pin.
468 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
486 486  
487 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
488 -|**Size(bytes)**|**4**|**2**|**2**|**1**|**1**|**1**
470 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
471 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
489 489  |Value|COUNT1|(((
490 490  ACI1 Current
491 491  )))|(((
... ... @@ -493,185 +493,165 @@
493 493  )))|DIDORO*|Reserve|MOD
494 494  
495 495  (((
496 -
479 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
497 497  
498 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
499 -
500 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
501 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
502 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
482 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
483 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
503 503  )))
504 504  
486 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
487 +* FIRST: Indicates that this is the first packet after joining the network.
488 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
505 505  
506 -* RO is for relay. ROx=1 : close,ROx=0 always open.
507 -* FIRST: Indicate this is the first packet after join network.
508 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
509 -
510 510  (((
511 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
491 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
512 512  )))
513 513  
514 514  
515 515  (((
516 -**To use counting mode, please run:**
496 +**To activate this mode, run the following AT commands:**
517 517  )))
518 518  
499 +(((
519 519  (% class="box infomessage" %)
520 520  (((
521 -(((
522 -(((
523 523  **AT+MOD=3**
524 -)))
525 525  
526 -(((
527 527  **ATZ**
528 528  )))
529 529  )))
530 -)))
531 531  
532 532  (((
533 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
509 +AT Commands for counting:
510 +
511 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
534 534  )))
535 535  
536 536  
537 537  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
538 538  
517 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
518 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
519 +It starts counting again when it reaches the maximum value.**
539 539  
521 +
540 540  (((
541 -**LT22222-L**: This mode the DI1 is used as a counting pin.
523 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
542 542  )))
543 543  
544 544  (((
545 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
527 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
546 546  
547 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 -|**Size(bytes)**|**4**|**4**|**1**|**1**|**1**
529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
530 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
549 549  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
550 550  Reserve
551 -
552 -
553 553  )))|MOD
554 554  )))
555 555  
556 -
557 557  (((
558 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
537 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
559 559  
560 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
561 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
562 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
539 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
540 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
541 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
563 563  )))
564 564  
544 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
545 +* FIRST: Indicates that this is the first packet after joining the network.
546 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
565 565  
566 -* RO is for relay. ROx=1 : close,ROx=0 always open.
567 -* FIRST: Indicate this is the first packet after join network.
568 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
569 -
570 570  (((
571 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
572 -)))
549 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
573 573  
574 -(((
575 575  
552 +)))
576 576  
577 -**To use this mode, please run:**
554 +(((
555 +**To activate this mode, run the following AT commands:**
578 578  )))
579 579  
558 +(((
580 580  (% class="box infomessage" %)
581 581  (((
582 -(((
583 -(((
584 584  **AT+MOD=4**
585 -)))
586 586  
587 -(((
588 588  **ATZ**
589 589  )))
590 590  )))
591 -)))
592 592  
593 -
594 594  (((
595 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
568 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
596 596  )))
597 597  
598 598  (((
599 -
572 +**In addition to that, below are the commands for AVI1 Counting:**
600 600  
601 -**Plus below command for AVI1 Counting:**
574 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI Count to 60)**
602 602  
576 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
603 603  
604 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
578 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
605 605  
606 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
607 -
608 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
609 -
610 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
580 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
611 611  )))
612 612  
613 613  
614 614  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
615 615  
586 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
587 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
588 +It starts counting again when it reaches the maximum value.**
616 616  
617 -**LT22222-L**: This mode the DI1 is used as a counting pin.
618 618  
619 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
620 -|**Size(bytes)**|**2**|**2**|**2**|**2**|**1**|**1**|**1**
591 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
592 +
593 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
594 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
621 621  |Value|(((
622 -AVI1
623 -voltage
596 +AVI1 voltage
624 624  )))|(((
625 -AVI2
626 -voltage
598 +AVI2 voltage
627 627  )))|(((
628 -ACI1
629 -Current
600 +ACI1 Current
630 630  )))|COUNT1|DIDORO*|(((
631 631  Reserve
632 632  )))|MOD
633 633  
634 634  (((
635 -
606 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
636 636  
637 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
638 -
639 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
640 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
608 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
609 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
641 641  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
642 642  )))
643 643  
644 -* RO is for relay. ROx=1 : closeROx=0 always open.
645 -* FIRST: Indicate this is the first packet after join network.
613 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
614 +* FIRST: Indicates that this is the first packet after joining the network.
646 646  * (((
647 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
616 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
648 648  )))
649 649  
650 650  (((
651 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
620 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
652 652  )))
653 653  
654 654  (((
655 -
656 -
657 -**To use this mode, please run:**
624 +**To activate this mode, run the following AT commands:**
658 658  )))
659 659  
627 +(((
660 660  (% class="box infomessage" %)
661 661  (((
662 -(((
663 -(((
664 664  **AT+MOD=5**
665 -)))
666 666  
667 -(((
668 668  **ATZ**
669 669  )))
670 670  )))
671 -)))
672 672  
673 673  (((
674 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
637 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
675 675  )))
676 676  
677 677  
... ... @@ -678,49 +678,48 @@
678 678  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
679 679  
680 680  
681 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
644 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
682 682  
683 -For example, if user has configured below commands:
646 +For example, if you configured the following commands:
684 684  
685 -* **AT+MOD=1 ** **~-~->**  The normal working mode
686 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
648 +* **AT+MOD=1 ** **~-~->**  The default work mode
649 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
687 687  
688 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
651 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
689 689  
690 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
691 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
653 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
654 +1. (((
655 +Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
656 +)))
692 692  
693 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
658 +(% style="color:#037691" %)**AT Commands to set Trigger Condition**:
694 694  
660 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
695 695  
696 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
697 -
698 698  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
699 699  
700 700  
701 701  **Example:**
702 702  
703 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
667 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
704 704  
705 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
669 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
706 706  
707 707  
672 +(% style="color:#4f81bd" %)**Trigger based on current**:
708 708  
709 -(% style="color:#4f81bd" %)**Trigger base on current**:
710 -
711 711  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
712 712  
713 713  
714 714  **Example:**
715 715  
716 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
679 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
717 717  
718 718  
682 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
719 719  
720 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
684 +DI status triggers Flag.
721 721  
722 -DI status trigger Flag.
723 -
724 724  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
725 725  
726 726  
... ... @@ -729,137 +729,116 @@
729 729  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
730 730  
731 731  
732 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
694 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
733 733  
734 734  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
735 735  
736 736  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
737 737  
738 - AA: Code for this downlink Command:
700 + AA: Type Code for this downlink Command:
739 739  
740 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
702 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
741 741  
742 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
704 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
743 743  
744 - yy2 yy2: AC1 or AV1 high limit.
706 + yy2 yy2: AC1 or AV1 HIGH limit.
745 745  
746 - yy3 yy3: AC2 or AV2 low limit.
708 + yy3 yy3: AC2 or AV2 LOW limit.
747 747  
748 - Yy4 yy4: AC2 or AV2 high limit.
710 + Yy4 yy4: AC2 or AV2 HIGH limit.
749 749  
750 750  
751 -**Example1**: AA 00 13 88 00 00 00 00 00 00
713 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
752 752  
753 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
715 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
754 754  
755 755  
756 -**Example2**: AA 02 01 00
718 +**Example 2**: AA 02 01 00
757 757  
758 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
720 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
759 759  
760 760  
761 -
762 762  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
763 763  
764 -MOD6 Payload : total 11 bytes payload
725 +MOD6 Payload: total of 11 bytes
765 765  
766 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
767 -|**Size(bytes)**|**1**|**1**|**1**|**6**|**1**|**1**
727 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
728 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
768 768  |Value|(((
769 -TRI_A
770 -FLAG
730 +TRI_A FLAG
771 771  )))|(((
772 -TRI_A
773 -Status
732 +TRI_A Status
774 774  )))|(((
775 -TRI_DI
776 -FLAG+STA
734 +TRI_DI FLAG+STA
777 777  )))|Reserve|Enable/Disable MOD6|(((
778 -MOD
779 -(6)
736 +MOD(6)
780 780  )))
781 781  
782 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
739 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
783 783  
784 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
785 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
741 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
742 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
786 786  |(((
787 -AV1_
788 -LOW
744 +AV1_LOW
789 789  )))|(((
790 -AV1_
791 -HIGH
746 +AV1_HIGH
792 792  )))|(((
793 -AV2_
794 -LOW
748 +AV2_LOW
795 795  )))|(((
796 -AV2_
797 -HIGH
750 +AV2_HIGH
798 798  )))|(((
799 -AC1_
800 -LOW
752 +AC1_LOW
801 801  )))|(((
802 -AC1_
803 -HIGH
754 +AC1_HIGH
804 804  )))|(((
805 -AC2_
806 -LOW
756 +AC2_LOW
807 807  )))|(((
808 -AC2_
809 -HIGH
758 +AC2_HIGH
810 810  )))
811 811  
812 -* Each bits shows if the corresponding trigger has been configured.
761 +* Each bit shows if the corresponding trigger has been configured.
813 813  
814 814  **Example:**
815 815  
816 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
765 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
817 817  
818 818  
819 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
768 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
820 820  
821 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
822 -|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
770 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
771 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
823 823  |(((
824 -AV1_
825 -LOW
773 +AV1_LOW
826 826  )))|(((
827 -AV1_
828 -HIGH
775 +AV1_HIGH
829 829  )))|(((
830 -AV2_
831 -LOW
777 +AV2_LOW
832 832  )))|(((
833 -AV2_
834 -HIGH
779 +AV2_HIGH
835 835  )))|(((
836 -AC1_
837 -LOW
781 +AC1_LOW
838 838  )))|(((
839 -AC1_
840 -HIGH
783 +AC1_HIGH
841 841  )))|(((
842 -AC2_
843 -LOW
785 +AC2_LOW
844 844  )))|(((
845 -AC2_
846 -HIGH
787 +AC2_HIGH
847 847  )))
848 848  
849 -* Each bits shows which status has been trigger on this uplink.
790 +* Each bit shows which status has been triggered on this uplink.
850 850  
851 851  **Example:**
852 852  
853 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
794 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
854 854  
855 855  
856 856  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
857 857  
858 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
799 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
859 859  |**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
860 860  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
861 861  
862 -* Each bits shows which status has been trigger on this uplink.
803 +* Each bits shows which status has been triggered on this uplink.
863 863  
864 864  **Example:**
865 865  
... ... @@ -886,67 +886,83 @@
886 886  )))
887 887  
888 888  
889 -== 3.4 ​Configure LT via AT or Downlink ==
830 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
890 890  
891 -
892 892  (((
893 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
833 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
894 894  )))
895 895  
896 896  (((
897 897  (((
898 -There are two kinds of Commands:
838 +There are two tytes of commands:
899 899  )))
900 900  )))
901 901  
902 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
842 +* (% style="color:blue" %)**Common commands**(%%):
903 903  
904 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
844 +* (% style="color:blue" %)**Sensor-related commands**(%%):
905 905  
906 -=== 3.4.1 Common Commands ===
846 +=== 3.4.1 Common commands ===
907 907  
908 -
909 909  (((
910 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
849 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
911 911  )))
912 912  
852 +=== 3.4.2 Sensor-related commands ===
913 913  
914 -=== 3.4.2 Sensor related commands ===
854 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
915 915  
916 916  ==== 3.4.2.1 Set Transmit Interval ====
917 917  
858 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
918 918  
919 -Set device uplink interval.
860 +(% style="color:#037691" %)**AT command**
920 920  
921 -* (% style="color:#037691" %)**AT Command:**
862 +(% style="width:500px" %)
863 +|**Command**|AT+TDC<time>
864 +|**Response**|
865 +|**Parameters**|<time> uplink interval is in milliseconds
866 +|**Example**|(((
867 +AT+TDC=30000
922 922  
923 -(% style="color:blue" %)**AT+TDC=N **
869 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
870 +)))
924 924  
872 +(% style="color:#037691" %)**Downlink payload**
925 925  
926 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
874 +(% style="width:500px" %)
875 +|**Payload**|(((
876 +<prefix><time>
877 +)))
878 +|**Parameters**|(((
879 +<prefix> 0x01
927 927  
881 +<time> uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
882 +)))
883 +|**Example**|(((
884 +01 **00 75 30**
928 928  
929 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
886 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
930 930  
931 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
888 +Conversion: 30000 (dec) = 00 75 30 (hex)
932 932  
890 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
891 +)))
933 933  
893 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
934 934  
935 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
936 936  
896 +Sets the work mode.
937 937  
938 -Set work mode.
898 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
939 939  
940 -* (% style="color:#037691" %)**AT Command:**
900 +Where N is the work mode.
941 941  
942 -(% style="color:blue" %)**AT+MOD= **
902 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
943 943  
944 944  
945 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
905 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
946 946  
947 -
948 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
949 -
950 950  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
951 951  
952 952  
... ... @@ -953,35 +953,30 @@
953 953  
954 954  ==== 3.4.2.3 Poll an uplink ====
955 955  
913 +Requests the device to send an uplink.
956 956  
957 -* (% style="color:#037691" %)**AT Command:**
958 958  
959 -There is no AT Command to poll uplink
916 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
960 960  
918 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
961 961  
962 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
963 -
964 964  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
965 965  
966 -
967 967  **Example**: 0x08FF, ask device to send an Uplink
968 968  
969 969  
970 970  
971 -==== 3.4.2.4 Enable Trigger Mode ====
926 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
972 972  
928 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
973 973  
974 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
930 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
975 975  
976 -* (% style="color:#037691" %)**AT Command:**
932 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
977 977  
978 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
934 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
979 979  
980 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
981 981  
982 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
983 -
984 -
985 985  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
986 986  
987 987  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -990,34 +990,27 @@
990 990  
991 991  ==== 3.4.2.5 Poll trigger settings ====
992 992  
945 +Polls the trigger settings.
993 993  
994 -Poll trigger settings,
995 -
996 996  * (% style="color:#037691" %)**AT Command:**
997 997  
998 998  There is no AT Command for this feature.
999 999  
1000 -
1001 1001  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1002 1002  
1003 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
953 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
1004 1004  
1005 1005  
1006 1006  
1007 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
957 +==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as a trigger ====
1008 1008  
959 +Enable or disable DI1/DI2/DI2 as a trigger.
1009 1009  
1010 -Enable Disable DI1/DI2/DI2 as trigger,
961 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1011 1011  
1012 -* (% style="color:#037691" %)**AT Command:**
963 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
1013 1013  
1014 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1015 1015  
1016 -
1017 -**Example:**
1018 -
1019 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1020 -
1021 1021  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1022 1022  
1023 1023  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -1024,66 +1024,48 @@
1024 1024  
1025 1025  
1026 1026  
1027 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
972 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1028 1028  
974 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1029 1029  
1030 -Set DI1 or DI3(for LT-33222-L) trigger.
976 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1031 1031  
1032 -* (% style="color:#037691" %)**AT Command:**
1033 -
1034 -(% style="color:blue" %)**AT+TRIG1=a,b**
1035 -
1036 1036  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1037 1037  
1038 1038  (% style="color:red" %)**b :** (%%)delay timing.
1039 1039  
982 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1040 1040  
1041 -**Example:**
1042 1042  
1043 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1044 -
1045 -
1046 1046  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1047 1047  
1048 1048  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1049 1049  
1050 1050  
990 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1051 1051  
1052 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
992 +Sets DI2 as a trigger.
1053 1053  
994 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1054 1054  
1055 -Set DI2 trigger.
996 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1056 1056  
1057 -* (% style="color:#037691" %)**AT Command:**
1058 -
1059 -(% style="color:blue" %)**AT+TRIG2=a,b**
1060 -
1061 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1062 -
1063 1063  (% style="color:red" %)**b :** (%%)delay timing.
1064 1064  
1000 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
1065 1065  
1066 -**Example:**
1067 1067  
1068 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1069 -
1070 -
1071 1071  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1072 1072  
1073 1073  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1074 1074  
1075 1075  
1008 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1076 1076  
1077 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1010 +Sets the current trigger based on the AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1078 1078  
1012 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1079 1079  
1080 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1081 -
1082 -* (% style="color:#037691" %)**AT Command**
1083 -
1084 -(% style="color:blue" %)**AT+ACLIM**
1085 -
1086 -
1087 1087  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1088 1088  
1089 1089  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -1092,37 +1092,26 @@
1092 1092  
1093 1093  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1094 1094  
1022 +Sets the current trigger based on the AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1095 1095  
1096 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1024 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1097 1097  
1098 -* (% style="color:#037691" %)**AT Command**
1099 -
1100 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1101 -
1102 -
1103 1103  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1104 1104  
1105 1105  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1106 1106  
1107 1107  
1108 -
1109 1109  ==== 3.4.2.11 Trigger – Set minimum interval ====
1110 1110  
1033 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1111 1111  
1112 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1035 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1113 1113  
1114 -* (% style="color:#037691" %)**AT Command**
1115 -
1116 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1117 -
1118 -
1119 1119  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1120 1120  
1121 1121  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1122 1122  
1123 1123  (((
1124 -
1125 -
1126 1126  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1127 1127  )))
1128 1128  
... ... @@ -1130,6 +1130,7 @@
1130 1130  
1131 1131  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1132 1132  
1049 +Controls the digital outputs DO1, DO2, and DO3
1133 1133  
1134 1134  * (% style="color:#037691" %)**AT Command**
1135 1135  
... ... @@ -1137,8 +1137,9 @@
1137 1137  
1138 1138  
1139 1139  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1140 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1141 1141  
1058 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1059 +
1142 1142  (((
1143 1143  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1144 1144  )))
... ... @@ -1146,14 +1146,13 @@
1146 1146  (((
1147 1147  01: Low,  00: High ,  11: No action
1148 1148  
1149 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1150 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO2**|(% style="background-color:#d9e2f3; color:#0070c0" %)**DO3**
1067 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1068 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1151 1151  |02  01  00  11|Low|High|No Action
1152 1152  |02  00  11  01|High|No Action|Low
1153 1153  |02  11  01  00|No Action|Low|High
1154 1154  )))
1155 1155  
1156 -
1157 1157  (((
1158 1158  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1159 1159  )))
... ... @@ -1191,7 +1191,7 @@
1191 1191  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1192 1192  
1193 1193  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1194 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1111 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1195 1195  |0x01|DO1 set to low
1196 1196  |0x00|DO1 set to high
1197 1197  |0x11|DO1 NO Action
... ... @@ -1199,7 +1199,7 @@
1199 1199  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1200 1200  
1201 1201  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1202 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1119 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1203 1203  |0x01|DO2 set to low
1204 1204  |0x00|DO2 set to high
1205 1205  |0x11|DO2 NO Action
... ... @@ -1207,7 +1207,7 @@
1207 1207  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1208 1208  
1209 1209  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1210 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Second Byte**|(% style="background-color:#d9e2f3; color:#0070c0" %)**Status**
1127 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1211 1211  |0x01|DO3 set to low
1212 1212  |0x00|DO3 set to high
1213 1213  |0x11|DO3 NO Action
... ... @@ -1221,7 +1221,6 @@
1221 1221  
1222 1222   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1223 1223  
1224 -
1225 1225  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1226 1226  
1227 1227  
... ... @@ -1245,7 +1245,7 @@
1245 1245  
1246 1246  
1247 1247  
1248 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1164 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1249 1249  
1250 1250  
1251 1251  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1263,10 +1263,10 @@
1263 1263  )))
1264 1264  
1265 1265  (((
1266 -01: Close ,  00: Open , 11: No action
1182 +00: Closed ,  01: Open , 11: No action
1267 1267  
1268 1268  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1269 -|(% style="background-color:#d9e2f3; color:#0070c0" %)**Downlink Code**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO1**|(% style="background-color:#d9e2f3; color:#0070c0" %)**RO2**
1185 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1270 1270  |03  00  11|Open|No Action
1271 1271  |03  01  11|Close|No Action
1272 1272  |03  11  00|No Action|Open
... ... @@ -1277,10 +1277,6 @@
1277 1277  |03  00  01|Open|Close
1278 1278  )))
1279 1279  
1280 -(((
1281 -
1282 -)))
1283 -
1284 1284  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1285 1285  
1286 1286  
... ... @@ -1352,11 +1352,8 @@
1352 1352  
1353 1353  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1354 1354  
1355 -* (% style="color:#037691" %)**AT Command:**
1267 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1356 1356  
1357 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1358 -
1359 -
1360 1360  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1361 1361  
1362 1362  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1366,10 +1366,8 @@
1366 1366  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1367 1367  
1368 1368  
1369 -* (% style="color:#037691" %)**AT Command:**
1278 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1370 1370  
1371 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1372 -
1373 1373  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1374 1374  
1375 1375  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1386,11 +1386,8 @@
1386 1386  
1387 1387  Clear counting for counting mode
1388 1388  
1389 -* (% style="color:#037691" %)**AT Command:**
1296 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1390 1390  
1391 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1392 -
1393 -
1394 1394  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1395 1395  
1396 1396  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1397,7 +1397,7 @@
1397 1397  
1398 1398  
1399 1399  
1400 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1304 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1401 1401  
1402 1402  
1403 1403  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1518,75 +1518,145 @@
1518 1518  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1519 1519  
1520 1520  
1521 -== 3.5 Integrate with Mydevice ==
1425 +== 3.5 Integrating with ThingsEye.io ==
1522 1522  
1427 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1523 1523  
1524 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1429 +=== 3.5.1 Configuring The Things Stack ===
1525 1525  
1526 -(((
1527 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1528 -)))
1431 +We use The Things Stack Sandbox in this example:
1529 1529  
1530 -(((
1531 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1433 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1434 +* Select **MQTT** under **Integrations** in the left menu.
1435 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1436 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1532 1532  
1533 -
1534 -)))
1438 +{{info}}
1439 +The username and  password (API key) you created here are required in the next section.
1440 +{{/info}}
1535 1535  
1536 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1442 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1537 1537  
1444 +=== 3.5.2 Configuring ThingsEye.io ===
1538 1538  
1446 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1447 +* Under the **Integrations center**, click **Integrations**.
1448 +* Click the **Add integration** button (the button with the **+** symbol).
1539 1539  
1540 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1450 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1541 1541  
1542 1542  
1543 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1453 +On the **Add integration** window, configure the following:
1544 1544  
1545 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L) and add DevEUI.(% style="display:none" %)
1455 +**Basic settings:**
1546 1546  
1547 -Search under The things network
1457 +* Select **The Things Stack Community** from the **Integration type** list.
1458 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1459 +* Ensure the following options are turned on.
1460 +** Enable integration
1461 +** Debug mode
1462 +** Allow create devices or assets
1463 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1548 1548  
1549 -[[image:1653356838789-523.png||height="337" width="740"]]
1465 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1550 1550  
1551 1551  
1468 +**Uplink data converter:**
1552 1552  
1553 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1470 +* Click the **Create new** button if it is not selected by default.
1471 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1472 +* Click the **JavaScript** button.
1473 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1474 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1554 1554  
1555 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1476 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1556 1556  
1557 1557  
1558 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1479 +**Downlink data converter (this is an optional step):**
1559 1559  
1481 +* Click the **Create new** button if it is not selected by default.
1482 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1483 +* Click the **JavaScript** button.
1484 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1485 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1560 1560  
1561 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1487 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1562 1562  
1563 1563  
1564 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1490 +**Connection:**
1565 1565  
1492 +* Choose **Region** from the **Host type**.
1493 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1494 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1495 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1566 1566  
1567 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1497 +[[image:message-1.png]]
1568 1568  
1569 1569  
1570 -== 3.6 Interface Detail ==
1500 +* Click the **Add** button.
1571 1571  
1502 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1503 +
1504 +
1505 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1506 +
1507 +
1508 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1509 +
1510 +
1511 +**Viewing integration details**:
1512 +
1513 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1514 +
1515 +[[image:integration-details.png||height="686" width="1000"]]
1516 +
1517 +
1518 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1519 +
1520 +{{info}}
1521 +See also ThingsEye documentation.
1522 +{{/info}}
1523 +
1524 +**Viewing events:**
1525 +
1526 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1527 +
1528 +* Select **Debug **from the **Event type** dropdown.
1529 +* Select the** time frame** from the **time window**.
1530 +
1531 +[[image:thingseye-events.png||height="686" width="1000"]]
1532 +
1533 +
1534 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1535 +
1536 +[[image:thingseye-json.png||width="1000"]]
1537 +
1538 +
1539 +**Deleting the integration**:
1540 +
1541 +If you want to delete this integration, click the **Delete integratio**n button.
1542 +
1543 +
1544 +== 3.6 Interface Details ==
1545 +
1572 1572  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1573 1573  
1574 1574  
1575 -Support NPN Type sensor
1549 +Support NPN-type sensor
1576 1576  
1577 1577  [[image:1653356991268-289.png]]
1578 1578  
1579 1579  
1580 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1554 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1581 1581  
1582 1582  
1583 1583  (((
1584 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1558 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1585 1585  )))
1586 1586  
1587 1587  (((
1588 1588  (((
1589 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1563 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1590 1590  
1591 1591  
1592 1592  )))
... ... @@ -1596,7 +1596,7 @@
1596 1596  
1597 1597  (((
1598 1598  (((
1599 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1573 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1600 1600  )))
1601 1601  )))
1602 1602  
... ... @@ -1605,22 +1605,22 @@
1605 1605  )))
1606 1606  
1607 1607  (((
1608 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1582 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1609 1609  )))
1610 1610  
1611 1611  (((
1612 -This type of sensor will output a low signal GND when active.
1586 +This type of sensor outputs a low (GND) signal when active.
1613 1613  )))
1614 1614  
1615 1615  * (((
1616 -Connect sensor's output to DI1-
1590 +Connect the sensor's output to DI1-
1617 1617  )))
1618 1618  * (((
1619 -Connect sensor's VCC to DI1+.
1593 +Connect the sensor's VCC to DI1+.
1620 1620  )))
1621 1621  
1622 1622  (((
1623 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1597 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1624 1624  )))
1625 1625  
1626 1626  (((
... ... @@ -1628,7 +1628,7 @@
1628 1628  )))
1629 1629  
1630 1630  (((
1631 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1605 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1632 1632  )))
1633 1633  
1634 1634  (((
... ... @@ -1636,22 +1636,22 @@
1636 1636  )))
1637 1637  
1638 1638  (((
1639 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1613 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1640 1640  )))
1641 1641  
1642 1642  (((
1643 -This type of sensor will output a high signal (example 24v) when active.
1617 +This type of sensor outputs a high signal (e.g., 24V) when active.
1644 1644  )))
1645 1645  
1646 1646  * (((
1647 -Connect sensor's output to DI1+
1621 +Connect the sensor's output to DI1+
1648 1648  )))
1649 1649  * (((
1650 -Connect sensor's GND DI1-.
1624 +Connect the sensor's GND DI1-.
1651 1651  )))
1652 1652  
1653 1653  (((
1654 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1628 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1655 1655  )))
1656 1656  
1657 1657  (((
... ... @@ -1659,7 +1659,7 @@
1659 1659  )))
1660 1660  
1661 1661  (((
1662 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1636 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1663 1663  )))
1664 1664  
1665 1665  (((
... ... @@ -1667,22 +1667,22 @@
1667 1667  )))
1668 1668  
1669 1669  (((
1670 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1644 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1671 1671  )))
1672 1672  
1673 1673  (((
1674 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1648 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1675 1675  )))
1676 1676  
1677 1677  * (((
1678 -Connect sensor's output to DI1+ with a serial 50K resistor
1652 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1679 1679  )))
1680 1680  * (((
1681 -Connect sensor's GND DI1-.
1655 +Connect the sensor's GND DI1-.
1682 1682  )))
1683 1683  
1684 1684  (((
1685 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1659 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1686 1686  )))
1687 1687  
1688 1688  (((
... ... @@ -1690,24 +1690,37 @@
1690 1690  )))
1691 1691  
1692 1692  (((
1693 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1667 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1694 1694  )))
1695 1695  
1696 1696  
1697 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1671 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1698 1698  
1673 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1699 1699  
1700 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1675 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1701 1701  
1702 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1677 +[[image:image-20230616235145-1.png]]
1703 1703  
1679 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1680 +
1681 +[[image:image-20240219115718-1.png]]
1682 +
1683 +
1684 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1685 +
1686 +
1687 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1688 +
1689 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1690 +
1704 1704  [[image:1653357531600-905.png]]
1705 1705  
1706 1706  
1707 -=== 3.6.4 Analog Input Interface ===
1694 +=== 3.6.4 Analog Input Interfaces ===
1708 1708  
1709 1709  
1710 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1697 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1711 1711  
1712 1712  
1713 1713  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1714,14 +1714,14 @@
1714 1714  
1715 1715  [[image:1653357592296-182.png]]
1716 1716  
1717 -Example to connect a 4~~20mA sensor
1704 +Example: Connecting a 4~~20mA sensor
1718 1718  
1719 -We take the wind speed sensor as an example for reference only.
1706 +We will use the wind speed sensor as an example for reference only.
1720 1720  
1721 1721  
1722 1722  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1723 1723  
1724 -(% style="color:red" %)**Red:  12~~24v**
1711 +(% style="color:red" %)**Red:  12~~24V**
1725 1725  
1726 1726  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1727 1727  
... ... @@ -1734,7 +1734,7 @@
1734 1734  [[image:1653357648330-671.png||height="155" width="733"]]
1735 1735  
1736 1736  
1737 -Example connected to a regulated power supply to measure voltage
1724 +Example: Connecting to a regulated power supply to measure voltage
1738 1738  
1739 1739  [[image:image-20230608101532-1.png||height="606" width="447"]]
1740 1740  
... ... @@ -1743,7 +1743,7 @@
1743 1743  [[image:image-20230608101722-3.png||height="102" width="1139"]]
1744 1744  
1745 1745  
1746 -(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:**
1733 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1747 1747  
1748 1748  (% style="color:red" %)**Red:  12~~24v**
1749 1749  
... ... @@ -1754,9 +1754,9 @@
1754 1754  
1755 1755  
1756 1756  (((
1757 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1744 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1758 1758  
1759 -**Note**: RO pins go to Open(NO) when device is power off.
1746 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1760 1760  )))
1761 1761  
1762 1762  [[image:image-20220524100215-9.png]]
... ... @@ -1767,13 +1767,11 @@
1767 1767  
1768 1768  == 3.7 LEDs Indicators ==
1769 1769  
1757 +The table below lists the behavior of LED indicators for each port function.
1770 1770  
1771 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1772 -|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**LEDs**|(% style="background-color:#d9e2f3; color:#0070c0; width:470px" %)**Feature**
1773 -|**PWR**|Always on if there is power
1774 -|**SYS**|(((
1775 -After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1776 -)))
1759 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1760 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1761 +|**PWR**|Always on when there is power
1777 1777  |**TX**|(((
1778 1778  (((
1779 1779  Device boot: TX blinks 5 times.
... ... @@ -1780,7 +1780,7 @@
1780 1780  )))
1781 1781  
1782 1782  (((
1783 -Successful join network: TX ON for 5 seconds.
1768 +Successful network join: TX remains ON for 5 seconds.
1784 1784  )))
1785 1785  
1786 1786  (((
... ... @@ -1787,40 +1787,33 @@
1787 1787  Transmit a LoRa packet: TX blinks once
1788 1788  )))
1789 1789  )))
1790 -|**RX**|RX blinks once when receive a packet.
1791 -|**DO1**|
1792 -|**DO2**|
1793 -|**DO3**|
1794 -|**DI2**|(((
1795 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1775 +|**RX**|RX blinks once when a packet is received.
1776 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1777 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1778 +|**DI1**|(((
1779 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1796 1796  )))
1797 1797  |**DI2**|(((
1798 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1782 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1799 1799  )))
1800 -|**DI2**|(((
1801 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1802 -)))
1803 -|**RO1**|
1804 -|**RO2**|
1784 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1785 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1805 1805  
1806 -= 4. Use AT Command =
1787 += 4. Using AT Commands =
1807 1807  
1808 -== 4.1 Access AT Command ==
1789 +The LT-22222-L supports programming using AT Commands.
1809 1809  
1791 +== 4.1 Connecting the LT-22222-L to a PC ==
1810 1810  
1811 1811  (((
1812 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1794 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1813 1813  )))
1814 1814  
1815 -(((
1816 -
1817 -)))
1818 -
1819 1819  [[image:1653358238933-385.png]]
1820 1820  
1821 1821  
1822 1822  (((
1823 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1801 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1824 1824  )))
1825 1825  
1826 1826  [[image:1653358355238-883.png]]
... ... @@ -1827,194 +1827,63 @@
1827 1827  
1828 1828  
1829 1829  (((
1830 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1831 -)))
1808 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1832 1832  
1833 -(((
1834 -AT+<CMD>?        : Help on <CMD>
1810 +== 4.2 LT-22222-L related AT commands ==
1835 1835  )))
1836 1836  
1837 1837  (((
1838 -AT+<CMD>         : Run <CMD>
1839 -)))
1814 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1840 1840  
1841 -(((
1842 -AT+<CMD>=<value> : Set the value
1816 +* AT+<CMD>? : Help on <CMD>
1817 +* AT+<CMD> : Run <CMD>
1818 +* AT+<CMD>=<value> : Set the value
1819 +* AT+<CMD>=? : Get the value
1820 +* ATZ: Trigger a reset of the MCU
1821 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1822 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1823 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1824 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1825 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1826 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1827 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1828 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1829 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1830 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1831 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1832 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1833 +* AT+RX2FQ: Get or set the Rx2 window frequency
1834 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1835 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1836 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1837 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1838 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1839 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1840 +* AT+NWKID: Get or set the Network ID
1841 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1842 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1843 +* AT+CLASS: Get or set the Device Class
1844 +* AT+JOIN: Join network
1845 +* AT+NJS: Get OTAA Join Status
1846 +* AT+SENDB: Send hexadecimal data along with the application port
1847 +* AT+SEND: Send text data along with the application port
1848 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1849 +* AT+RECV: Print last received data in raw format
1850 +* AT+VER: Get current image version and Frequency Band
1851 +* AT+CFM: Get or Set the confirmation mode (0-1)
1852 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1853 +* AT+SNR: Get the SNR of the last received packet
1854 +* AT+RSSI: Get the RSSI of the last received packet
1855 +* AT+TDC: Get or set the application data transmission interval in ms
1856 +* AT+PORT: Get or set the application port
1857 +* AT+DISAT: Disable AT commands
1858 +* AT+PWORD: Set password, max 9 digits
1859 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1860 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1861 +* AT+CFG: Print all settings
1843 1843  )))
1844 1844  
1845 -(((
1846 -AT+<CMD>=?       :  Get the value
1847 -)))
1848 1848  
1849 -(((
1850 -ATZ: Trig a reset of the MCU
1851 -)))
1852 -
1853 -(((
1854 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1855 -)))
1856 -
1857 -(((
1858 -AT+DEUI: Get or Set the Device EUI
1859 -)))
1860 -
1861 -(((
1862 -AT+DADDR: Get or Set the Device Address
1863 -)))
1864 -
1865 -(((
1866 -AT+APPKEY: Get or Set the Application Key
1867 -)))
1868 -
1869 -(((
1870 -AT+NWKSKEY: Get or Set the Network Session Key
1871 -)))
1872 -
1873 -(((
1874 -AT+APPSKEY:  Get or Set the Application Session Key
1875 -)))
1876 -
1877 -(((
1878 -AT+APPEUI:  Get or Set the Application EUI
1879 -)))
1880 -
1881 -(((
1882 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1883 -)))
1884 -
1885 -(((
1886 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1887 -)))
1888 -
1889 -(((
1890 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1891 -)))
1892 -
1893 -(((
1894 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1895 -)))
1896 -
1897 -(((
1898 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1899 -)))
1900 -
1901 -(((
1902 -AT+RX2FQ: Get or Set the Rx2 window frequency
1903 -)))
1904 -
1905 -(((
1906 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1907 -)))
1908 -
1909 -(((
1910 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1911 -)))
1912 -
1913 -(((
1914 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1915 -)))
1916 -
1917 -(((
1918 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1919 -)))
1920 -
1921 -(((
1922 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1923 -)))
1924 -
1925 -(((
1926 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1927 -)))
1928 -
1929 -(((
1930 -AT+NWKID: Get or Set the Network ID
1931 -)))
1932 -
1933 -(((
1934 -AT+FCU: Get or Set the Frame Counter Uplink
1935 -)))
1936 -
1937 -(((
1938 -AT+FCD: Get or Set the Frame Counter Downlink
1939 -)))
1940 -
1941 -(((
1942 -AT+CLASS: Get or Set the Device Class
1943 -)))
1944 -
1945 -(((
1946 -AT+JOIN: Join network
1947 -)))
1948 -
1949 -(((
1950 -AT+NJS: Get OTAA Join Status
1951 -)))
1952 -
1953 -(((
1954 -AT+SENDB: Send hexadecimal data along with the application port
1955 -)))
1956 -
1957 -(((
1958 -AT+SEND: Send text data along with the application port
1959 -)))
1960 -
1961 -(((
1962 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1963 -)))
1964 -
1965 -(((
1966 -AT+RECV: Print last received data in raw format
1967 -)))
1968 -
1969 -(((
1970 -AT+VER:  Get current image version and Frequency Band
1971 -)))
1972 -
1973 -(((
1974 -AT+CFM: Get or Set the confirmation mode (0-1)
1975 -)))
1976 -
1977 -(((
1978 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1979 -)))
1980 -
1981 -(((
1982 -AT+SNR: Get the SNR of the last received packet
1983 -)))
1984 -
1985 -(((
1986 -AT+RSSI: Get the RSSI of the last received packet
1987 -)))
1988 -
1989 -(((
1990 -AT+TDC: Get or set the application data transmission interval in ms
1991 -)))
1992 -
1993 -(((
1994 -AT+PORT: Get or set the application port
1995 -)))
1996 -
1997 -(((
1998 -AT+DISAT: Disable AT commands
1999 -)))
2000 -
2001 -(((
2002 -AT+PWORD: Set password, max 9 digits
2003 -)))
2004 -
2005 -(((
2006 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
2007 -)))
2008 -
2009 -(((
2010 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
2011 -)))
2012 -
2013 -(((
2014 -AT+CFG: Print all settings
2015 -)))
2016 -
2017 -
2018 2018  == 4.2 Common AT Command Sequence ==
2019 2019  
2020 2020  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -2023,41 +2023,41 @@
2023 2023  
2024 2024  
2025 2025  (((
2026 -(% style="color:blue" %)**If device has not joined network yet:**
1873 +(% style="color:blue" %)**If the device has not joined the network yet:**
2027 2027  )))
2028 2028  )))
2029 2029  
2030 2030  (((
2031 -(% style="background-color:#dcdcdc" %)**123456**
1878 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2032 2032  )))
2033 2033  
2034 2034  (((
2035 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1882 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
2036 2036  )))
2037 2037  
2038 2038  (((
2039 -(% style="background-color:#dcdcdc" %)**123456**
1886 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2040 2040  )))
2041 2041  
2042 2042  (((
2043 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1890 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
2044 2044  )))
2045 2045  
2046 2046  (((
2047 -(% style="background-color:#dcdcdc" %)**ATZ**
1894 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
2048 2048  )))
2049 2049  
2050 2050  
2051 2051  (((
2052 -(% style="color:blue" %)**If device already joined network:**
1899 +(% style="color:blue" %)**If the device has already joined the network:**
2053 2053  )))
2054 2054  
2055 2055  (((
2056 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1903 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2057 2057  )))
2058 2058  
2059 2059  (((
2060 -(% style="background-color:#dcdcdc" %)**ATZ**
1907 +(% style="background-color:#dcdcdc" %)##**ATZ**##
2061 2061  )))
2062 2062  
2063 2063  
... ... @@ -2134,8 +2134,6 @@
2134 2134  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2135 2135  
2136 2136  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2137 -
2138 -
2139 2139  )))
2140 2140  
2141 2141  (((
... ... @@ -2142,9 +2142,6 @@
2142 2142  [[image:1653359097980-169.png||height="188" width="729"]]
2143 2143  )))
2144 2144  
2145 -(((
2146 -
2147 -)))
2148 2148  
2149 2149  === 4.2.3 Change to Class A ===
2150 2150  
... ... @@ -2152,44 +2152,58 @@
2152 2152  (((
2153 2153  (% style="color:blue" %)**If sensor JOINED:**
2154 2154  
2155 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2156 -ATZ**
1997 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1998 +
1999 +(% style="background-color:#dcdcdc" %)**ATZ**
2157 2157  )))
2158 2158  
2159 2159  
2160 2160  = 5. Case Study =
2161 2161  
2162 -== 5.1 Counting how many objects pass in Flow Line ==
2005 +== 5.1 Counting how many objects pass through the flow Line ==
2163 2163  
2007 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2164 2164  
2165 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2166 2166  
2167 -
2168 2168  = 6. FAQ =
2169 2169  
2170 -== 6.1 How to upgrade the image? ==
2012 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2171 2171  
2172 2172  
2173 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2015 +== 6.1 How to update the firmware? ==
2174 2174  
2017 +Dragino frequently releases firmware updates for the LT-22222-L.
2018 +
2019 +Updating your LT-22222-L with the latest firmware version helps to:
2020 +
2175 2175  * Support new features
2176 -* For bug fix
2177 -* Change LoRaWAN bands.
2022 +* Fix bugs
2023 +* Change LoRaWAN frequency bands
2178 2178  
2179 -Below shows the hardware connection for how to upload an image to the LT:
2025 +You will need the following things before proceeding:
2180 2180  
2027 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2028 +* USB to TTL adapter
2029 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2030 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2031 +
2032 +{{info}}
2033 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2034 +{{/info}}
2035 +
2036 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2037 +
2038 +
2181 2181  [[image:1653359603330-121.png]]
2182 2182  
2183 2183  
2184 -(((
2185 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2186 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2187 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2188 -
2042 +Start the STM32 Flash Loader and choose the correct COM port to update.
2189 2189  
2190 2190  (((
2045 +(((
2191 2191  (% style="color:blue" %)**For LT-22222-L**(%%):
2192 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2047 +
2048 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2193 2193  )))
2194 2194  
2195 2195  
... ... @@ -2204,41 +2204,36 @@
2204 2204  [[image:image-20220524104033-15.png]]
2205 2205  
2206 2206  
2207 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2063 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2208 2208  
2209 -
2210 2210  [[image:1653360054704-518.png||height="186" width="745"]]
2211 2211  
2212 2212  
2213 2213  (((
2214 2214  (((
2215 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2216 -
2217 -
2070 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2218 2218  )))
2219 2219  )))
2220 2220  
2221 2221  (((
2222 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2075 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2223 2223  )))
2224 2224  
2225 2225  (((
2226 2226  
2227 2227  
2228 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2229 -
2230 -
2081 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2231 2231  )))
2232 2232  
2233 2233  (((
2234 2234  (((
2235 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2086 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2236 2236  )))
2237 2237  )))
2238 2238  
2239 2239  (((
2240 2240  (((
2241 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2092 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2242 2242  
2243 2243  
2244 2244  )))
... ... @@ -2245,7 +2245,7 @@
2245 2245  )))
2246 2246  
2247 2247  (((
2248 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2099 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2249 2249  
2250 2250  
2251 2251  )))
... ... @@ -2270,13 +2270,21 @@
2270 2270  
2271 2271  (((
2272 2272  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2124 +
2273 2273  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2126 +
2274 2274  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2128 +
2275 2275  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2130 +
2276 2276  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2132 +
2277 2277  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2134 +
2278 2278  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2136 +
2279 2279  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2138 +
2280 2280  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2281 2281  )))
2282 2282  
... ... @@ -2288,145 +2288,139 @@
2288 2288  [[image:1653360498588-932.png||height="485" width="726"]]
2289 2289  
2290 2290  
2291 -== 6.4 How to change the uplink interval ==
2150 +== 6.4 How to change the uplink interval? ==
2292 2292  
2293 -
2294 2294  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2295 2295  
2296 2296  
2297 -== 6.5 Can I see counting event in Serial? ==
2155 +== 6.5 Can I see the counting event in the serial output? ==
2298 2298  
2299 -
2300 2300  (((
2301 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2158 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2302 2302  
2303 2303  
2304 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2161 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2305 2305  
2163 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2306 2306  
2307 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2308 -
2309 2309  
2310 2310  )))
2311 2311  
2312 2312  (((
2313 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2169 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2314 2314  
2171 +* If the device is not properly shut down and is directly powered off.
2172 +* It will default to a power-off state.
2173 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2174 +* After a restart, the status before the power failure will be read from flash.
2315 2315  
2316 -If the device is not shut down, but directly powered off.
2176 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2317 2317  
2318 -It will default that this is a power-off state.
2178 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2319 2319  
2320 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2321 2321  
2322 -After restart, the status before power failure will be read from flash.
2181 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2323 2323  
2324 2324  
2325 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2184 +== 6.9 Can the LT-22222-L save the RO state? ==
2326 2326  
2186 +The firmware version must be at least 1.6.0.
2327 2327  
2328 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2329 2329  
2189 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2330 2330  
2331 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2191 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2332 2332  
2333 2333  
2334 -== 6.9 Can LT22222-L save RO state? ==
2194 += 7. Troubleshooting =
2335 2335  
2196 +This section provides some known troubleshooting tips.
2336 2336  
2337 -Firmware version needs to be no less than 1.6.0.
2338 -
2339 -
2340 -= 7. Trouble Shooting =
2198 +
2341 2341  )))
2342 2342  
2343 2343  (((
2344 2344  (((
2345 -== 7.1 Downlink doesn't work, how to solve it? ==
2346 -
2347 -
2203 +== 7.1 Downlink isn't working. How can I solve this? ==
2348 2348  )))
2349 2349  )))
2350 2350  
2351 2351  (((
2352 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2208 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2353 2353  )))
2354 2354  
2355 2355  (((
2356 2356  
2357 2357  
2358 -== 7.2 Have trouble to upload image. ==
2359 -
2360 -
2214 +== 7.2 Having trouble uploading an image? ==
2361 2361  )))
2362 2362  
2363 2363  (((
2364 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2218 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2365 2365  )))
2366 2366  
2367 2367  (((
2368 2368  
2369 2369  
2370 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2371 -
2372 -
2224 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2373 2373  )))
2374 2374  
2375 2375  (((
2376 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2228 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2377 2377  )))
2378 2378  
2379 2379  
2380 -= 8. Order Info =
2232 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2381 2381  
2234 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2235 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2382 2382  
2237 +
2238 += 8. Ordering information =
2239 +
2383 2383  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2384 2384  
2385 2385  (% style="color:#4f81bd" %)**XXX:**
2386 2386  
2387 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2388 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2389 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2390 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2391 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2392 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2393 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2394 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2395 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2244 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2245 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2246 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2247 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2248 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2249 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2250 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2251 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2252 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2396 2396  
2397 -= 9. Packing Info =
2254 += 9. Packing information =
2398 2398  
2256 +**Package includes**:
2399 2399  
2400 -**Package Includes**:
2258 +* 1 x LT-22222-L I/O Controller
2259 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2260 +* 1 x bracket for DIN rail mounting
2261 +* 1 x 3.5mm programming cable
2401 2401  
2402 -* LT-22222-L I/O Controller x 1
2403 -* Stick Antenna for LoRa RF part x 1
2404 -* Bracket for controller x1
2405 -* Program cable x 1
2406 -
2407 2407  **Dimension and weight**:
2408 2408  
2409 2409  * Device Size: 13.5 x 7 x 3 cm
2410 -* Device Weight: 105g
2266 +* Device Weight: 105 g
2411 2411  * Package Size / pcs : 14.5 x 8 x 5 cm
2412 -* Weight / pcs : 170g
2268 +* Weight / pcs : 170 g
2413 2413  
2414 2414  = 10. Support =
2415 2415  
2416 -
2417 2417  * (((
2418 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2273 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2419 2419  )))
2420 2420  * (((
2421 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2276 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2422 2422  
2423 -
2424 2424  
2425 2425  )))
2426 2426  
2427 2427  = 11. Reference​​​​​ =
2428 2428  
2429 -
2430 2430  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2431 2431  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2432 2432  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content