Last modified by Mengting Qiu on 2025/06/04 18:42

From version 118.7
edited by Xiaoling
on 2023/05/17 11:09
Change comment: There is no comment for this version
To version 201.1
edited by Dilisi S
on 2024/11/19 06:06
Change comment: Nov 18 - AT Commands edit

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,36 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +{{info}}
27 +**This manual is also applicable to the LT-33222-L.**
28 +{{/info}}
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 -)))
30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The use environment includes:
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
37 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
41 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
44 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 +* Setup your own private LoRaWAN network.
46 +
47 +{{info}}
48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 +{{/info}}
48 48  )))
49 49  
50 50  (((
... ... @@ -53,317 +53,315 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
58 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
62 +* STM32L072xxxx MCU
63 +* SX1276/78 Wireless Chip 
64 +* Power Consumption:
65 +** Idle: 4mA@12V
66 +** 20dB Transmit: 34mA@12V
67 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
69 +(% style="color:#037691" %)**Interface for Model: LT22222-L:**
82 82  
83 -(((
84 -
71 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
72 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
73 +* 2 x Relay Output (5A@250VAC / 30VDC)
74 +* 2 x 0~~20mA Analog Input (res:0.01mA)
75 +* 2 x 0~~30V Analog Input (res:0.01V)
76 +* Power Input 7~~ 24V DC. 
85 85  
86 -(% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
78 +(% style="color:#037691" %)**LoRa Spec:**
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
80 +* Frequency Range:
81 +** Band 1 (HF): 862 ~~ 1020 MHz
82 +** Band 2 (LF): 410 ~~ 528 MHz
83 +* 168 dB maximum link budget.
84 +* +20 dBm - 100 mW constant RF output vs.
85 +* +14 dBm high-efficiency PA.
86 +* Programmable bit rate up to 300 kbps.
87 +* High sensitivity: down to -148 dBm.
88 +* Bullet-proof front end: IIP3 = -12.5 dBm.
89 +* Excellent blocking immunity.
90 +* Low RX current of 10.3 mA, 200 nA register retention.
91 +* Fully integrated synthesizer with a resolution of 61 Hz.
92 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
93 +* Built-in bit synchronizer for clock recovery.
94 +* Preamble detection.
95 +* 127 dB Dynamic Range RSSI.
96 +* Automatic RF Sense and CAD with ultra-fast AFC.
97 +* Packet engine up to 256 bytes with CRC.
107 107  
108 -(((
109 -
99 +== 1.3 Features ==
110 110  
111 -(% style="color:#037691" %)**LoRa Spec:**
112 -)))
101 +* LoRaWAN Class A & Class C modes
102 +* Optional Customized LoRa Protocol
103 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
104 +* AT Commands to change parameters
105 +* Remotely configure parameters via LoRaWAN Downlink
106 +* Firmware upgradable via program port
107 +* Counting
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
109 +== 1.4 Applications ==
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
111 +* Smart buildings & home automation
112 +* Logistics and supply chain management
113 +* Smart metering
114 +* Smart agriculture
115 +* Smart cities
116 +* Smart factory
170 170  
118 +== 1.5 Hardware Variants ==
171 171  
172 -
120 +(% style="width:524px" %)
121 +|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
122 +|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
123 +[[image:/xwiki/bin/downloadrev/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/image-20230424115112-1.png?rev=1.1&width=58&height=106||alt="image-20230424115112-1.png" height="106" width="58"]]
124 +)))|(% style="width:329px" %)(((
125 +* 2 x Digital Input (Bi-direction)
126 +* 2 x Digital Output
127 +* 2 x Relay Output (5A@250VAC / 30VDC)
128 +* 2 x 0~~20mA Analog Input (res:0.01mA)
129 +* 2 x 0~~30V Analog Input (res:0.01v)
130 +* 1 x Counting Port
173 173  )))
174 174  
175 -== 1.3 Features ==
176 176  
177 177  
178 -* LoRaWAN Class A & Class C protocol
135 +== 2. Assembling the device ==
179 179  
180 -* Optional Customized LoRa Protocol
137 +== 2.1 Connecting the antenna ==
181 181  
182 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
139 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
183 183  
184 -* AT Commands to change parameters
141 +{{warning}}
142 +Warning! Do not power on the device without connecting the antenna.
143 +{{/warning}}
185 185  
186 -* Remote configure parameters via LoRa Downlink
145 +== 2.2 Terminals ==
187 187  
188 -* Firmware upgradable via program port
147 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
189 189  
190 -* Counting
149 +Upper screw terminal block (from left to right):
191 191  
192 -== 1.4  Applications ==
151 +(% style="width:634px" %)
152 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
153 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
154 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
155 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
156 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
157 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
158 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
193 193  
160 +Lower screw terminal block (from left to right):
194 194  
195 -* Smart Buildings & Home Automation
162 +(% style="width:633px" %)
163 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
164 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
165 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
166 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
167 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
168 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
169 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
170 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
171 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
172 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
173 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
196 196  
197 -* Logistics and Supply Chain Management
175 +== 2.3 Powering the device ==
198 198  
199 -* Smart Metering
177 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
200 200  
201 -* Smart Agriculture
179 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
202 202  
203 -* Smart Cities
181 +{{warning}}
182 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
183 +{{/warning}}
204 204  
205 -* Smart Factory
206 206  
207 -== 1.5 Hardware Variants ==
186 +[[image:1653297104069-180.png]]
208 208  
209 209  
210 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 -(% style="text-align:center" %)
214 -[[image:image-20230424115112-1.png||height="106" width="58"]]
215 -)))|(% style="width:334px" %)(((
216 -* 2 x Digital Input (Bi-direction)
217 -* 2 x Digital Output
218 -* 2 x Relay Output (5A@250VAC / 30VDC)
219 -* 2 x 0~~20mA Analog Input (res:0.01mA)
220 -* 2 x 0~~30V Analog Input (res:0.01v)
221 -* 1 x Counting Port
222 -)))
189 += 3. Registering with a LoRaWAN Network Server =
223 223  
224 -= 2. Power ON Device =
191 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
225 225  
193 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
195 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
230 230  
231 -(((
232 -PWR will on when device is properly powered.
197 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
233 233  
234 -
235 -)))
199 +[[image:image-20220523172350-1.png||height="266" width="864"]]
236 236  
237 -[[image:1653297104069-180.png]]
201 +=== 3.2.1 Prerequisites ===
238 238  
203 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
239 239  
240 -= 3. Operation Mode =
205 +[[image:image-20230425173427-2.png||height="246" width="530"]]
241 241  
242 -== 3.1 How it works? ==
207 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
243 243  
209 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
211 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
213 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
214 +* Create an application with The Things Stack if you do not have one yet.
215 +* Go to your application page and click on the **End devices** in the left menu.
216 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
252 252  
218 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
220 +* On the **Register end device** page:
221 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
222 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
223 +*** **End device brand**: Dragino Technology Co., Limited
224 +*** **Model**: LT22222-L I/O Controller
225 +*** **Hardware ver**: Unknown
226 +*** **Firmware ver**: 1.6.0
227 +*** **Profile (Region)**: Select the region that matches your device.
228 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
255 255  
230 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259 259  
260 -
261 -)))
233 +* Register end device page continued...
234 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
235 +** In the **DevEUI** field, enter the **DevEUI**.
236 +** In the **AppKey** field, enter the **AppKey.**
237 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
238 +** Under **After registration**, select the **View registered end device** option.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
240 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
264 264  
242 +==== ====
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 +==== 3.2.2.2 Adding device manually ====
268 268  
269 -
270 -)))
246 +* On the **Register end device** page:
247 +** Select the option **Enter end device specifies manually** under **Input method**.
248 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
249 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
250 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
251 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
252 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
253 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
255 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
258 +* Register end device page continued...
259 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
260 +** In the **DevEUI** field, enter the **DevEUI**.
261 +** In the **AppKey** field, enter the **AppKey**.
262 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
263 +** Under **After registration**, select the **View registered end device** option.
264 +** Click the **Register end device** button.
281 281  
266 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 -**Add APP EUI in the application.**
269 +You will be navigated to the **Device overview** page.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
288 288  
272 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
289 289  
290 -**Add APP KEY and DEV EUI**
291 291  
292 -[[image:1653298023685-319.png]]
275 +==== 3.2.2.3 Joining ====
293 293  
277 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
294 294  
279 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298 298  
299 -
300 -)))
282 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
301 301  
302 -[[image:1653298044601-602.png||height="405" width="709"]]
303 303  
285 +By default, you will receive an uplink data message from the device every 10 minutes.
304 304  
305 -== 3.3 Uplink Payload ==
287 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
306 306  
289 +[[image:lt-22222-ul-payload-decoded.png]]
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
292 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
293 +
294 +{{info}}
295 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
296 +{{/info}}
297 +
298 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
299 +
300 +
301 +== 3.3 Working Modes and Uplink Payload formats ==
302 +
303 +
304 +The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
305 +
306 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
307 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
309 +
312 312  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
311 +
313 313  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
313 +
314 314  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 +
315 315  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316 316  
318 +The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
319 +
317 317  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318 318  
319 -
320 320  (((
321 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
323 +This is the default mode.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 +The uplink payload is 11 bytes long.
326 +
327 +(% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
328 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
329 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
330 +
331 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
325 325  |Value|(((
326 -AVI1
327 -voltage
334 +AVI1 voltage
328 328  )))|(((
329 -AVI2
330 -voltage
336 +AVI2 voltage
331 331  )))|(((
332 -ACI1
333 -Current
338 +ACI1 Current
334 334  )))|(((
335 -ACI2
336 -Current
337 -)))|DIDORO*|(((
340 +ACI2 Current
341 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 -
343 343  (((
344 -
347 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
345 345  
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347 -
348 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
351 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
354 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
355 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
356 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -* RO is for relay. ROx=1 : close,ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
358 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
360 +For example, if the payload is: [[image:image-20220523175847-2.png]]
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
361 361  
363 +**The interface values can be calculated as follows:  **
362 362  
363 -**The value for the interface is **
365 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 -
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
369 369  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -370,116 +370,113 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
373 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
375 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
376 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
377 +* **[1] DI3 - not used for LT-22222-L.**
378 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
379 +* [1] DI1 channel input state:
380 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
381 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
382 +** DI1 LED is ON in both cases.
383 +* **[0] DO3 - not used for LT-22222-L.**
384 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
385 +* [0] DO1 channel output state:
386 +** DO1 is FLOATING when there is no load between DO1 and V+.
387 +** DO1 is HIGH and there is a load between DO1 and V+.
388 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
390 +Reserve = 0
379 379  
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
392 +MOD = 1
382 382  
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
402 +The uplink payload is 11 bytes long.
402 402  
403 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 -|Size(bytes)|4|4|1|1|1
405 -|Value|COUNT1|COUNT2 |DIDORO*|(((
406 -Reserve
404 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
405 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
406 +It starts counting again when it reaches the maximum value.**
407 407  
408 -
408 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
409 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
410 +|Value|COUNT1|COUNT2 |DIDORO*|(((
411 +Reserve
409 409  )))|MOD
410 410  )))
411 411  
412 412  (((
413 -
416 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
414 414  
415 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
420 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420 -
421 -RO is for relay. ROx=1 : close,ROx=0 always open.
422 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
422 422  )))
423 423  
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
425 +* FIRST: Indicates that this is the first packet after joining the network.
426 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 -)))
429 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
430 430  
431 -(((
432 432  
432 +)))
433 433  
434 -**To use counting mode, please run:**
434 +(((
435 +**To activate this mode, run the following AT commands:**
435 435  )))
436 436  
438 +(((
437 437  (% class="box infomessage" %)
438 438  (((
439 -(((
440 -(((
441 441  **AT+MOD=2**
442 -)))
443 443  
444 -(((
445 445  **ATZ**
446 446  )))
447 447  )))
448 -)))
449 449  
450 450  (((
451 451  
452 452  
453 453  (% style="color:#4f81bd" %)**AT Commands for counting:**
454 -
455 -
456 456  )))
457 457  
458 458  (((
459 459  **For LT22222-L:**
460 460  
456 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
458 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
463 463  
464 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
460 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
465 465  
466 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
462 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
467 467  
468 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
464 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471 -
472 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
466 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
473 473  )))
474 474  
475 475  
476 476  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477 477  
472 +(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
473 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
474 +It starts counting again when it reaches the maximum value.**
478 478  
479 -**LT22222-L**: This mode the DI1 is used as a counting pin.
476 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|Size(bytes)|4|2|2|1|1|1
478 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
479 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
483 483  |Value|COUNT1|(((
484 484  ACI1 Current
485 485  )))|(((
... ... @@ -487,208 +487,191 @@
487 487  )))|DIDORO*|Reserve|MOD
488 488  
489 489  (((
490 -
487 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
491 491  
492 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493 -
494 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
490 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
491 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
497 497  )))
498 498  
494 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
495 +* FIRST: Indicates that this is the first packet after joining the network.
496 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
499 499  
500 -* RO is for relay. ROx=1 : close,ROx=0 always open.
501 -* FIRST: Indicate this is the first packet after join network.
502 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503 -
504 504  (((
505 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
499 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
506 506  )))
507 507  
508 508  
509 509  (((
510 -**To use counting mode, please run:**
504 +**To activate this mode, run the following AT commands:**
511 511  )))
512 512  
507 +(((
513 513  (% class="box infomessage" %)
514 514  (((
515 -(((
516 -(((
517 517  **AT+MOD=3**
518 -)))
519 519  
520 -(((
521 521  **ATZ**
522 522  )))
523 523  )))
524 -)))
525 525  
526 526  (((
527 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
517 +AT Commands for counting:
518 +
519 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
528 528  )))
529 529  
530 530  
531 531  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
532 532  
525 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
526 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
527 +It starts counting again when it reaches the maximum value.**
533 533  
529 +
534 534  (((
535 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
536 536  )))
537 537  
538 538  (((
539 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
535 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
540 540  
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|Size(bytes)|4|4|1|1|1
537 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
538 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
543 543  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 544  Reserve
545 -
546 -
547 547  )))|MOD
548 548  )))
549 549  
550 -
551 -
552 552  (((
553 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
554 554  
555 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
549 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
558 558  )))
559 559  
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
554 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
560 560  
561 -* RO is for relay. ROx=1 : close,ROx=0 always open.
562 -* FIRST: Indicate this is the first packet after join network.
563 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564 -
565 565  (((
566 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 -)))
557 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
568 568  
569 -(((
570 570  
560 +)))
571 571  
572 -**To use this mode, please run:**
562 +(((
563 +**To activate this mode, run the following AT commands:**
573 573  )))
574 574  
566 +(((
575 575  (% class="box infomessage" %)
576 576  (((
577 -(((
578 -(((
579 579  **AT+MOD=4**
580 -)))
581 581  
582 -(((
583 583  **ATZ**
584 584  )))
585 585  )))
586 -)))
587 587  
588 -
589 589  (((
590 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
591 591  )))
592 592  
593 593  (((
594 -
580 +**In addition to that, below are the commands for AVI1 Counting:**
595 595  
596 -**Plus below command for AVI1 Counting:**
582 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
597 597  
584 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
598 598  
599 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
586 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
600 600  
601 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602 -
603 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604 -
605 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
588 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
606 606  )))
607 607  
608 608  
609 609  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610 610  
594 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
595 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
596 +It starts counting again when it reaches the maximum value.**
611 611  
612 -**LT22222-L**: This mode the DI1 is used as a counting pin.
613 613  
614 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 -|Size(bytes)|2|2|2|2|1|1|1
599 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
600 +
601 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
602 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
616 616  |Value|(((
617 -AVI1
618 -voltage
604 +AVI1 voltage
619 619  )))|(((
620 -AVI2
621 -voltage
606 +AVI2 voltage
622 622  )))|(((
623 -ACI1
624 -Current
608 +ACI1 Current
625 625  )))|COUNT1|DIDORO*|(((
626 626  Reserve
627 627  )))|MOD
628 628  
629 629  (((
630 -
614 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
631 631  
632 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
633 -
634 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
635 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
616 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
617 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
636 636  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 637  )))
638 638  
639 -* RO is for relay. ROx=1 : closeROx=0 always open.
640 -* FIRST: Indicate this is the first packet after join network.
621 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
622 +* FIRST: Indicates that this is the first packet after joining the network.
641 641  * (((
642 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
624 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
643 643  )))
644 644  
645 645  (((
646 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
628 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
647 647  )))
648 648  
649 649  (((
650 -
651 -
652 -**To use this mode, please run:**
632 +**To activate this mode, run the following AT commands:**
653 653  )))
654 654  
635 +(((
655 655  (% class="box infomessage" %)
656 656  (((
657 -(((
658 -(((
659 659  **AT+MOD=5**
660 -)))
661 661  
662 -(((
663 663  **ATZ**
664 664  )))
665 665  )))
666 -)))
667 667  
668 668  (((
669 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
645 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
670 670  )))
671 671  
672 672  
673 -=== 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
649 +=== 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
674 674  
675 675  
676 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
652 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
677 677  
678 -For example, if user has configured below commands:
654 +For example, if you configure the following commands:
679 679  
680 -* **AT+MOD=1 ** **~-~->**  The normal working mode
681 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
656 +* **AT+MOD=1 ** **~-~->**  Sets the default working mode
657 +* **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
682 682  
683 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
659 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
684 684  
685 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
686 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
661 +1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
662 +1. (((
663 +Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
687 687  
688 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
665 +* The first uplink uses the payload specified in trigger mode (MOD=6).
666 +* The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
667 +)))
689 689  
669 +(% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
690 690  
691 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
671 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
692 692  
693 693  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
694 694  
... ... @@ -695,27 +695,25 @@
695 695  
696 696  **Example:**
697 697  
698 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
678 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
699 699  
700 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
680 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
701 701  
702 702  
683 +(% style="color:#4f81bd" %)**Trigger based on current**:
703 703  
704 -(% style="color:#4f81bd" %)**Trigger base on current**:
705 -
706 706  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707 707  
708 708  
709 709  **Example:**
710 710  
711 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
690 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
712 712  
713 713  
693 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
714 714  
715 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
695 +DI status triggers Flag.
716 716  
717 -DI status trigger Flag.
718 -
719 719  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720 720  
721 721  
... ... @@ -724,143 +724,117 @@
724 724  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725 725  
726 726  
727 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
705 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
728 728  
729 729  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730 730  
731 731  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732 732  
733 - AA: Code for this downlink Command:
711 + AA: Type Code for this downlink Command:
734 734  
735 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
713 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
736 736  
737 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
715 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
738 738  
739 - yy2 yy2: AC1 or AV1 high limit.
717 + yy2 yy2: AC1 or AV1 HIGH limit.
740 740  
741 - yy3 yy3: AC2 or AV2 low limit.
719 + yy3 yy3: AC2 or AV2 LOW limit.
742 742  
743 - Yy4 yy4: AC2 or AV2 high limit.
721 + Yy4 yy4: AC2 or AV2 HIGH limit.
744 744  
745 745  
746 -**Example1**: AA 00 13 88 00 00 00 00 00 00
724 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
747 747  
748 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
726 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
749 749  
750 750  
751 -**Example2**: AA 02 01 00
729 +**Example 2**: AA 02 01 00
752 752  
753 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
731 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
754 754  
755 755  
756 -
757 757  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
758 758  
759 -MOD6 Payload : total 11 bytes payload
736 +MOD6 Payload: total of 11 bytes
760 760  
761 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
762 -|Size(bytes)|1|1|1|6|1|1
738 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
739 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
763 763  |Value|(((
764 -TRI_A
765 -FLAG
741 +TRI_A FLAG
766 766  )))|(((
767 -TRI_A
768 -Status
743 +TRI_A Status
769 769  )))|(((
770 -TRI_DI
771 -FLAG+STA
745 +TRI_DI FLAG+STA
772 772  )))|Reserve|Enable/Disable MOD6|(((
773 -MOD
774 -(6)
747 +MOD(6)
775 775  )))
776 776  
750 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
777 777  
778 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
779 -
780 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
781 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
752 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
753 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
782 782  |(((
783 -AV1_
784 -LOW
755 +AV1_LOW
785 785  )))|(((
786 -AV1_
787 -HIGH
757 +AV1_HIGH
788 788  )))|(((
789 -AV2_
790 -LOW
759 +AV2_LOW
791 791  )))|(((
792 -AV2_
793 -HIGH
761 +AV2_HIGH
794 794  )))|(((
795 -AC1_
796 -LOW
763 +AC1_LOW
797 797  )))|(((
798 -AC1_
799 -HIGH
765 +AC1_HIGH
800 800  )))|(((
801 -AC2_
802 -LOW
767 +AC2_LOW
803 803  )))|(((
804 -AC2_
805 -HIGH
769 +AC2_HIGH
806 806  )))
807 807  
808 -* Each bits shows if the corresponding trigger has been configured.
772 +* Each bit shows if the corresponding trigger has been configured.
809 809  
810 810  **Example:**
811 811  
812 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
776 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
813 813  
814 814  
779 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
815 815  
816 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
817 -
818 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
819 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
781 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
782 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
820 820  |(((
821 -AV1_
822 -LOW
784 +AV1_LOW
823 823  )))|(((
824 -AV1_
825 -HIGH
786 +AV1_HIGH
826 826  )))|(((
827 -AV2_
828 -LOW
788 +AV2_LOW
829 829  )))|(((
830 -AV2_
831 -HIGH
790 +AV2_HIGH
832 832  )))|(((
833 -AC1_
834 -LOW
792 +AC1_LOW
835 835  )))|(((
836 -AC1_
837 -HIGH
794 +AC1_HIGH
838 838  )))|(((
839 -AC2_
840 -LOW
796 +AC2_LOW
841 841  )))|(((
842 -AC2_
843 -HIGH
798 +AC2_HIGH
844 844  )))
845 845  
846 -[[image:image-20220524090249-3.png]]
801 +* Each bit shows which status has been triggered on this uplink.
847 847  
848 -* Each bits shows which status has been trigger on this uplink.
849 -
850 850  **Example:**
851 851  
852 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
805 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
853 853  
854 854  
855 855  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
856 856  
857 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
858 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
859 -|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
810 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
811 +|(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
812 +|(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
860 860  
814 +* Each bits shows which status has been triggered on this uplink.
861 861  
862 -* Each bits shows which status has been trigger on this uplink.
863 -
864 864  **Example:**
865 865  
866 866  00000111: Means both DI1 and DI2 trigger are enabled and this packet is trigger by DI1.
... ... @@ -886,279 +886,503 @@
886 886  )))
887 887  
888 888  
889 -== 3.4 ​Configure LT via AT or Downlink ==
841 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
890 890  
891 -
892 892  (((
893 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
844 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
894 894  )))
895 895  
896 896  (((
897 897  (((
898 -There are two kinds of Commands:
849 +There are two tytes of commands:
899 899  )))
900 900  )))
901 901  
902 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
853 +* (% style="color:blue" %)**Common commands**(%%):
903 903  
904 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
855 +* (% style="color:blue" %)**Sensor-related commands**(%%):
905 905  
906 -=== 3.4.1 Common Commands ===
857 +=== 3.4.1 Common commands ===
907 907  
908 -
909 909  (((
910 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
860 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
911 911  )))
912 912  
863 +=== 3.4.2 Sensor-related commands ===
913 913  
914 -=== 3.4.2 Sensor related commands ===
865 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
915 915  
867 +
916 916  ==== 3.4.2.1 Set Transmit Interval ====
917 917  
870 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
918 918  
919 -Set device uplink interval.
872 +(% style="color:#037691" %)**AT command**
920 920  
921 -* (% style="color:#037691" %)**AT Command:**
874 +(% border="2" style="width:500px" %)
875 +|**Command**|AT+TDC=<time>
876 +|**Response**|
877 +|**Parameters**|**time** : uplink interval is in milliseconds
878 +|**Example**|(((
879 +AT+TDC=30000
922 922  
923 -(% style="color:blue" %)**AT+TDC=N **
881 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
882 +)))
924 924  
884 +(% style="color:#037691" %)**Downlink payload**
925 925  
926 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
886 +(% border="2" style="width:500px" %)
887 +|**Payload**|(((
888 +<prefix><time>
889 +)))
890 +|**Parameters**|(((
891 +**prefix** : 0x01
927 927  
893 +**time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
894 +)))
895 +|**Example**|(((
896 +01 **00 75 30**
928 928  
929 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
898 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
930 930  
931 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
900 +Conversion: 30000 (dec) = 00 75 30 (hex)
932 932  
902 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
903 +)))
933 933  
905 +==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
934 934  
935 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
907 +Sets the working mode.
936 936  
909 +(% style="color:#037691" %)**AT command**
937 937  
938 -Set work mode.
911 +(% border="2" style="width:500px" %)
912 +|(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
913 +|(% style="width:97px" %)**Response**|(% style="width:413px" %)
914 +|(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
915 +**working_mode** :
939 939  
940 -* (% style="color:#037691" %)**AT Command:**
917 +1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
941 941  
942 -(% style="color:blue" %)**AT+MOD=N  **
919 +2 = Double DI Counting + DO + RO
943 943  
921 +3 = Single DI Counting + 2 x ACI + DO + RO
944 944  
945 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
923 +4 = Single DI Counting + 1 x Voltage Counting + DO + RO
946 946  
925 +5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
947 947  
948 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
927 +6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
928 +)))
929 +|(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
930 +AT+MOD=2
949 949  
950 -(% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
932 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
933 +)))
951 951  
935 +(% class="wikigeneratedid" %)
936 +(% style="color:#037691" %)**Downlink payload**
952 952  
938 +(% border="2" style="width:500px" %)
939 +|(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
940 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
941 +**prefix** : 0x0A
953 953  
954 -==== 3.4.2.3 Poll an uplink ====
943 +**working_mode** : Working mode, represented by 1 byte in hexadecimal.
944 +)))
945 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
946 +0A **02**
955 955  
948 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
949 +)))
956 956  
957 -* (% style="color:#037691" %)**AT Command:**
951 +==== 3.4.2.3 Poll an uplink ====
958 958  
959 -There is no AT Command to poll uplink
953 +Requests an uplink from LT-22222-L.
960 960  
955 +(% style="color:#037691" %)**AT command**
961 961  
962 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
957 +There is no AT Command to request an uplink from LT-22222-L
963 963  
964 -(% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
959 +(% style="color:#037691" %)**Downlink payload**
965 965  
961 +(% border="2" style="width:500px" %)
962 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
963 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
964 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
965 +08 FF
966 966  
967 -**Example**: 0x08FF, ask device to send an Uplink
967 +Requests an uplink from LT-22222-L.
968 +)))
968 968  
970 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
969 969  
972 +Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
970 970  
971 -==== 3.4.2.4 Enable Trigger Mode ====
974 +(% style="color:#037691" %)**AT Command**
972 972  
976 +(% border="2" style="width:500px" %)
977 +|(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
978 +|(% style="width:95px" %)**Response**|(% style="width:403px" %)
979 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
980 +**enable/disable trigger_mode** :
973 973  
974 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982 +1 = enable trigger mode
975 975  
976 -* (% style="color:#037691" %)**AT Command:**
984 +0 = disable trigger mode
985 +)))
986 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
987 +AT+ADDMOD6=1
977 977  
978 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
989 +Enable trigger mode for the current working mode
990 +)))
979 979  
980 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
992 +(% style="color:#037691" %)**Downlink payload**
981 981  
982 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
994 +(% border="2" style="width:500px" %)
995 +|(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
996 +|(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
997 +**prefix** : 0x0A 06 (two bytes in hexadecimal)
983 983  
999 +**working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1000 +)))
1001 +|(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1002 +0A 06 **01**
984 984  
985 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
1004 +Enable trigger mode for the current working mode
1005 +)))
986 986  
987 -(% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
1007 +==== 3.4.2.5 Poll trigger settings ====
988 988  
1009 +Polls the trigger settings.
989 989  
1011 +(% style="color:#037691" %)**AT Command:**
990 990  
991 -==== 3.4.2.5 Poll trigger settings ====
1013 +There is no AT Command for this feature.
992 992  
1015 +(% style="color:#037691" %)**Downlink Payload**
993 993  
994 -Poll trigger settings,
1017 +(% border="2" style="width:500px" %)
1018 +|(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1019 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1020 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1021 +AB 06
995 995  
996 -* (% style="color:#037691" %)**AT Command:**
1023 +Uplinks the trigger settings.
1024 +)))
997 997  
998 -There is no AT Command for this feature.
1026 +==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
999 999  
1028 +Enable or disable DI1/DI2/DI3 as a trigger.
1000 1000  
1001 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1030 +(% style="color:#037691" %)**AT Command**
1002 1002  
1003 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1032 +(% border="2" style="width:500px" %)
1033 +|(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1034 +|(% style="width:98px" %)**Response**|(% style="width:400px" %)
1035 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1036 +**DI1_trigger:**
1004 1004  
1038 +1 = enable DI1 trigger
1005 1005  
1040 +0 = disable DI1 trigger
1006 1006  
1007 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1042 +**DI2 _trigger**
1008 1008  
1044 +1 = enable DI2 trigger
1009 1009  
1010 -Enable Disable DI1/DI2/DI2 as trigger,
1046 +0 = disable DI2 trigger
1047 +)))
1048 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1049 +AT+DTRI=1,0
1011 1011  
1012 -* (% style="color:#037691" %)**AT Command:**
1051 +Enable DI1 trigger, disable DI2 trigger
1052 +)))
1013 1013  
1014 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1054 +(% class="wikigeneratedid" %)
1055 +(% style="color:#037691" %)**Downlink Payload**
1015 1015  
1057 +(% border="2" style="width:500px" %)
1058 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1059 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1060 +**prefix :** AA 02 (two bytes in hexadecimal)
1016 1016  
1017 -**Example:**
1062 +**DI1_trigger:**
1018 1018  
1019 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1064 +1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
1020 1020  
1021 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1066 +0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
1022 1022  
1023 -(% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1068 +**DI2 _trigger**
1024 1024  
1070 +1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
1025 1025  
1072 +0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1073 +)))
1074 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1075 +AA 02 **01 00**
1026 1026  
1027 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1077 +Enable DI1 trigger, disable DI2 trigger
1078 +)))
1028 1028  
1080 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
1029 1029  
1030 -Set DI1 or DI3(for LT-33222-L) trigger.
1082 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
1031 1031  
1032 -* (% style="color:#037691" %)**AT Command:**
1033 1033  
1034 -(% style="color:blue" %)**AT+TRIG1=a,b**
1085 +(% style="color:#037691" %)**AT Command**
1035 1035  
1036 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1087 +(% border="2" style="width:500px" %)
1088 +|(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1089 +|(% style="width:101px" %)**Response**|(% style="width:397px" %)
1090 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1091 +**interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1037 1037  
1038 -(% style="color:red" %)**b :** (%%)delay timing.
1093 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1094 +)))
1095 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1096 +AT+TRIG1=1,100
1039 1039  
1098 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1099 +)))
1040 1040  
1041 -**Example:**
1101 +(% class="wikigeneratedid" %)
1102 +(% style="color:#037691" %)**Downlink Payload**
1042 1042  
1043 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1104 +(% border="2" style="width:500px" %)
1105 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1106 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1107 +**prefix** : 09 01 (hexadecimal)
1044 1044  
1109 +**interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1045 1045  
1046 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1111 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1112 +)))
1113 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1114 +09 01 **01 00 64**
1047 1047  
1048 -(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1116 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1117 +)))
1049 1049  
1119 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
1050 1050  
1121 +Sets DI2 as a trigger.
1051 1051  
1052 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1053 1053  
1124 +(% style="color:#037691" %)**AT Command**
1054 1054  
1055 -Set DI2 trigger.
1126 +(% border="2" style="width:500px" %)
1127 +|(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1128 +|(% style="width:94px" %)**Response**|(% style="width:404px" %)
1129 +|(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1130 +**interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1056 1056  
1057 -* (% style="color:#037691" %)**AT Command:**
1132 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1133 +)))
1134 +|(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1135 +AT+TRIG2=0,100
1058 1058  
1059 -(% style="color:blue" %)**AT+TRIG2=a,b**
1137 +Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1138 +)))
1060 1060  
1061 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1140 +(% style="color:#037691" %)**Downlink Payload**
1062 1062  
1063 -(% style="color:red" %)**b :** (%%)delay timing.
1142 +(% border="2" style="width:500px" %)
1143 +|(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1144 +|(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1145 +**prefix** : 09 02 (hexadecimal)
1064 1064  
1147 +**interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
1065 1065  
1066 -**Example:**
1149 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1150 +)))
1151 +|(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
1067 1067  
1068 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1153 +==== ====
1069 1069  
1155 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
1070 1070  
1071 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1157 +Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1072 1072  
1073 -(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1159 +(% style="color:#037691" %)**AT Command**
1074 1074  
1161 +(% border="2" style="width:500px" %)
1162 +|(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1163 +AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1164 +)))
1165 +|(% style="width:104px" %)**Response**|(% style="width:394px" %)
1166 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1167 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
1075 1075  
1169 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1076 1076  
1077 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1171 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1078 1078  
1173 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1174 +)))
1175 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1176 +AT+ACLIM=10000,15000,0,0
1079 1079  
1080 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1178 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1179 +)))
1180 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1081 1081  
1082 -* (% style="color:#037691" %)**AT Command**
1182 +(% style="color:#037691" %)**Downlink Payload**
1083 1083  
1084 -(% style="color:blue" %)**AT+ACLIM**
1184 +(% border="2" style="width:500px" %)
1185 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1186 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1187 +**prefix **: AA 01 (hexadecimal)
1085 1085  
1189 +**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
1086 1086  
1087 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1191 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
1088 1088  
1089 -(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1193 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
1090 1090  
1195 +**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1196 +)))
1197 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1198 +AA 01 **27** **10 3A** **98** 00 00 00 00
1091 1091  
1200 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1201 +)))
1202 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1092 1092  
1093 1093  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
1094 1094  
1206 +Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1095 1095  
1096 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1208 +(% style="color:#037691" %)**AT Command**
1097 1097  
1098 -* (% style="color:#037691" %)**AT Command**
1210 +(% border="2" style="width:500px" %)
1211 +|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1212 +|(% style="width:104px" %)**Response**|(% style="width:387px" %)
1213 +|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1214 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
1099 1099  
1100 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1216 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1101 1101  
1218 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1102 1102  
1103 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1220 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1221 +)))
1222 +|(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1223 +AT+AVLIM=3000,6000,0,2000
1104 1104  
1105 -(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1226 +)))
1227 +|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1106 1106  
1229 +(% style="color:#037691" %)**Downlink Payload**
1107 1107  
1231 +(% border="2" style="width:500px" %)
1232 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1233 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1234 +**prefix **: AA 00 (hexadecimal)
1108 1108  
1109 -==== 3.4.2.11 Trigger Set minimum interval ====
1236 +**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1110 1110  
1238 +**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1111 1111  
1112 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1240 +**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1113 1113  
1114 -* (% style="color:#037691" %)**AT Command**
1242 +**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1243 +)))
1244 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1245 +AA 00 **0B B8 17 70 00 00 07 D0**
1115 1115  
1116 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1247 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1248 +)))
1249 +|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1117 1117  
1251 +==== 3.4.2.11 Trigger – Set minimum interval ====
1118 1118  
1119 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1253 +Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1120 1120  
1121 -(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1255 +(% style="color:#037691" %)**AT Command**
1122 1122  
1123 -(((
1124 -
1257 +(% border="2" style="width:500px" %)
1258 +|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1259 +|(% style="width:113px" %)**Response**|(% style="width:385px" %)
1260 +|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1261 +**time** : in minutes
1262 +)))
1263 +|(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1264 +AT+ATDC=5
1125 1125  
1126 -(% style="color:red" %)**Note: ATDC setting must be more than 5min**
1266 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1127 1127  )))
1268 +|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1128 1128  
1270 +(% style="color:#037691" %)**Downlink Payload**
1129 1129  
1272 +(% border="2" style="width:500px" %)
1273 +|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1274 +|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1275 +**prefix** : AC (hexadecimal)
1130 1130  
1277 +**time **: in minutes (two bytes in hexadecimal)
1278 +)))
1279 +|(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1280 +AC **00 05**
1281 +
1282 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1283 +)))
1284 +|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1285 +
1131 1131  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1132 1132  
1288 +Controls the digital outputs DO1, DO2, and DO3
1133 1133  
1134 -* (% style="color:#037691" %)**AT Command**
1290 +(% style="color:#037691" %)**AT Command**
1135 1135  
1136 -There is no AT Command to control Digital Output
1292 +There is no AT Command to control the Digital Output.
1137 1137  
1138 1138  
1139 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1140 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1295 +(% style="color:#037691" %)**Downlink Payload**
1141 1141  
1142 -(((
1143 -If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1297 +(% border="2" style="width:500px" %)
1298 +|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1299 +|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1300 +**prefix** : 02 (hexadecimal)
1301 +
1302 +**DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1303 +
1304 +**DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1305 +
1306 +**DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1144 1144  )))
1308 +|(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1309 +02 **01 00 01**
1145 1145  
1311 +If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1312 +
1313 +**More examples:**
1314 +
1146 1146  (((
1147 -01: Low,  00: High ,  11: No action
1316 +01: Low,  00: High,  11: No action
1317 +
1318 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1319 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1320 +|02  01  00  11|Low|High|No Action
1321 +|02  00  11  01|High|No Action|Low
1322 +|02  11  01  00|No Action|Low|High
1148 1148  )))
1149 1149  
1150 -[[image:image-20220524092754-5.png]]
1151 -
1152 1152  (((
1153 -(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1326 +(((
1327 +(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1154 1154  )))
1155 1155  
1156 1156  (((
1157 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1331 +(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1158 1158  )))
1333 +)))
1334 +)))
1159 1159  
1336 +==== ====
1160 1160  
1161 -
1162 1162  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1163 1163  
1164 1164  
... ... @@ -1183,59 +1183,64 @@
1183 1183  00: DO pins will change to an inverter state after timeout 
1184 1184  
1185 1185  
1186 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1362 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1187 1187  
1188 -[[image:image-20220524093238-6.png]]
1364 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1365 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1366 +|0x01|DO1 set to low
1367 +|0x00|DO1 set to high
1368 +|0x11|DO1 NO Action
1189 1189  
1370 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1190 1190  
1191 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1372 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1373 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1374 +|0x01|DO2 set to low
1375 +|0x00|DO2 set to high
1376 +|0x11|DO2 NO Action
1192 1192  
1193 -[[image:image-20220524093328-7.png]]
1378 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1194 1194  
1380 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1381 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1382 +|0x01|DO3 set to low
1383 +|0x00|DO3 set to high
1384 +|0x11|DO3 NO Action
1195 1195  
1196 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1386 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1197 1197  
1198 -[[image:image-20220524093351-8.png]]
1199 1199  
1200 -
1201 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1202 -
1203 - Latching time. Unit: ms
1204 -
1205 -
1206 1206  (% style="color:red" %)**Note: **
1207 1207  
1208 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1391 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1209 1209  
1210 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1393 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1211 1211  
1395 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1212 1212  
1213 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1214 1214  
1215 -
1216 1216  **Example payload:**
1217 1217  
1218 1218  **~1. A9 01 01 01 01 07 D0**
1219 1219  
1220 -DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1402 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1221 1221  
1222 1222  **2. A9 01 00 01 11 07 D0**
1223 1223  
1224 -DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1406 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1225 1225  
1226 1226  **3. A9 00 00 00 00 07 D0**
1227 1227  
1228 -DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1410 +DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1229 1229  
1230 1230  **4. A9 00 11 01 00 07 D0**
1231 1231  
1232 -DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1414 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1233 1233  
1234 1234  
1417 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1235 1235  
1236 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1237 1237  
1238 -
1239 1239  * (% style="color:#037691" %)**AT Command:**
1240 1240  
1241 1241  There is no AT Command to control Relay Output
... ... @@ -1247,23 +1247,30 @@
1247 1247  
1248 1248  
1249 1249  (((
1250 -If payload = 0x030100, it means set RO1 to close and RO2 to open.
1431 +If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1251 1251  )))
1252 1252  
1253 1253  (((
1254 -01: Close ,  00: Open , 11: No action
1255 -)))
1435 +00: Close ,  01: Open , 11: No action
1256 1256  
1257 -(((
1258 -[[image:image-20230426161322-1.png]]
1437 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1438 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1439 +|03  00  11|Open|No Action
1440 +|03  01  11|Close|No Action
1441 +|03  11  00|No Action|Open
1442 +|03  11  01|No Action|Close
1443 +|03  00  00|Open|Open
1444 +|03  01  01|Close|Close
1445 +|03  01  00|Close|Open
1446 +|03  00  01|Open|Close
1259 1259  )))
1260 1260  
1261 1261  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1262 1262  
1263 1263  
1264 -
1265 1265  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1266 1266  
1454 +Controls the relay output time.
1267 1267  
1268 1268  * (% style="color:#037691" %)**AT Command:**
1269 1269  
... ... @@ -1275,15 +1275,15 @@
1275 1275  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1276 1276  
1277 1277  
1278 -This is to control the relay output time of relay. Include four bytes:
1466 +This is to control the relay output time. It includes four bytes:
1279 1279  
1280 1280  (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1281 1281  
1282 1282  (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1283 1283  
1284 -01: Relays will change back to original state after timeout.
1472 +01: Relays will change back to their original state after timeout.
1285 1285  
1286 -00: Relays will change to an inverter state after timeout
1474 +00: Relays will change to the inverter state after timeout.
1287 1287  
1288 1288  
1289 1289  (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
... ... @@ -1296,12 +1296,12 @@
1296 1296  
1297 1297  (% style="color:red" %)**Note:**
1298 1298  
1299 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1487 + Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1300 1300  
1301 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1489 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1302 1302  
1303 1303  
1304 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1492 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1305 1305  
1306 1306  
1307 1307  **Example payload:**
... ... @@ -1308,19 +1308,19 @@
1308 1308  
1309 1309  **~1. 05 01 11 07 D0**
1310 1310  
1311 -Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1499 +Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1312 1312  
1313 1313  **2. 05 01 10 07 D0**
1314 1314  
1315 -Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1503 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1316 1316  
1317 1317  **3. 05 00 01 07 D0**
1318 1318  
1319 -Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1507 +Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1320 1320  
1321 1321  **4. 05 00 00 07 D0**
1322 1322  
1323 -Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1511 +Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1324 1324  
1325 1325  
1326 1326  
... ... @@ -1327,29 +1327,85 @@
1327 1327  ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1328 1328  
1329 1329  
1330 -When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1518 +When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1331 1331  
1332 -* (% style="color:#037691" %)**AT Command:**
1520 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1333 1333  
1334 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1335 -
1336 -
1337 1337  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1338 1338  
1339 1339  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1340 1340  
1341 1341  
1527 +(% style="color:#037691" %)**AT Command**
1342 1342  
1343 -==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1529 +(% border="2" style="width:500px" %)
1530 +|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1531 +|(% style="width:137px" %)**Response**|(% style="width:361px" %)
1532 +|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1533 +**voltage** : voltage threshold in mV
1344 1344  
1535 +**logic**:
1345 1345  
1346 -* (% style="color:#037691" %)**AT Command:**
1537 +0 : lower than
1347 1347  
1348 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1539 +1: higher than
1349 1349  
1541 +if you leave logic parameter blank, it is considered 0
1542 +)))
1543 +|(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1544 +AT+VOLMAX=20000
1545 +
1546 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1547 +
1548 +AT+VOLMAX=20000,0
1549 +
1550 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1551 +
1552 +AT+VOLMAX=20000,1
1553 +
1554 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1555 +)))
1556 +
1557 +(% style="color:#037691" %)**Downlink Payload**
1558 +
1559 +(% border="2" style="width:500px" %)
1560 +|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1561 +|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1562 +**prefix** : A5 (hex)
1563 +
1564 +**voltage** : voltage threshold in mV (2 bytes in hex)
1565 +
1566 +**logic**: (1 byte in hexadecimal)
1567 +
1568 +0 : lower than
1569 +
1570 +1: higher than
1571 +
1572 +if you leave logic parameter blank, it is considered 1 (higher than)
1573 +)))
1574 +|(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1575 +A5 **4E 20**
1576 +
1577 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1578 +
1579 +A5 **4E 20 00**
1580 +
1581 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1582 +
1583 +A5 **4E 20 01**
1584 +
1585 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1586 +)))
1587 +
1588 +==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1589 +
1590 +This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1591 +
1592 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1593 +
1350 1350  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1351 1351  
1352 -(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1596 +(% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1353 1353  
1354 1354  
1355 1355  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
... ... @@ -1357,29 +1357,85 @@
1357 1357  (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1358 1358  
1359 1359  
1604 +(% style="color:#037691" %)**AT Command**
1360 1360  
1361 -==== 3.4.2.18 Counting ~-~- Clear Counting ====
1606 +(% border="2" style="width:500px" %)
1607 +|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1608 +|(% style="width:134px" %)**Response**|(% style="width:364px" %)
1609 +|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1610 +**counting_parameter** :
1362 1362  
1612 +1: COUNT1
1363 1363  
1364 -Clear counting for counting mode
1614 +2: COUNT2
1365 1365  
1366 -* (% style="color:#037691" %)**AT Command:**
1616 +3: AVI1 Count
1367 1367  
1368 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1618 +**number** : Start number
1619 +)))
1620 +|(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1621 +AT+SETCNT=1,10
1369 1369  
1623 +Sets the COUNT1 to 10.
1624 +)))
1370 1370  
1626 +(% style="color:#037691" %)**Downlink Payload**
1627 +
1628 +(% border="2" style="width:500px" %)
1629 +|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1630 +|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1631 +prefix : A8 (hex)
1632 +
1633 +**counting_parameter** : (1 byte in hexadecimal)
1634 +
1635 +1: COUNT1
1636 +
1637 +2: COUNT2
1638 +
1639 +3: AVI1 Count
1640 +
1641 +**number** : Start number, 4 bytes in hexadecimal
1642 +)))
1643 +|(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1644 +A8 **01 00 00 00 0A**
1645 +
1646 +Sets the COUNT1 to 10.
1647 +)))
1648 +
1649 +==== 3.4.2.18 Counting ~-~- Clear Counting ====
1650 +
1651 +This feature clears the counting in counting mode.
1652 +
1653 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1654 +
1371 1371  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1372 1372  
1373 1373  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1374 1374  
1659 +(% style="color:#037691" %)**AT Command**
1375 1375  
1661 +(% border="2" style="width:500px" %)
1662 +|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1663 +|(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1376 1376  
1377 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1665 +(% style="color:#037691" %)**Downlink Payload**
1378 1378  
1667 +(% border="2" style="width:500px" %)
1668 +|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1669 +|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1670 +prefix : A6 (hex)
1379 1379  
1672 +clear? : 01 (hex)
1673 +)))
1674 +|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1675 +
1676 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1677 +
1678 +This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1679 +
1380 1380  * (% style="color:#037691" %)**AT Command:**
1381 1381  
1382 -(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1682 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1383 1383  
1384 1384  
1385 1385  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
... ... @@ -1387,7 +1387,7 @@
1387 1387  (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1388 1388  
1389 1389  (((
1390 -range: aa bb cc:0 to 16777215,  (unit:second)
1690 +Range: aa bb cc:0 to 16777215,  (unit: seconds)
1391 1391  )))
1392 1392  
1393 1393  
... ... @@ -1394,12 +1394,13 @@
1394 1394  
1395 1395  ==== 3.4.2.20 Reset save RO DO state ====
1396 1396  
1697 +This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1397 1397  
1398 1398  * (% style="color:#037691" %)**AT Command:**
1399 1399  
1400 1400  (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1401 1401  
1402 -(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1703 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1403 1403  
1404 1404  
1405 1405  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
... ... @@ -1410,6 +1410,7 @@
1410 1410  
1411 1411  ==== 3.4.2.21 Encrypted payload ====
1412 1412  
1714 +This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1413 1413  
1414 1414  * (% style="color:#037691" %)**AT Command:**
1415 1415  
... ... @@ -1424,9 +1424,9 @@
1424 1424  
1425 1425  * (% style="color:#037691" %)**AT Command:**
1426 1426  
1427 -(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1729 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1428 1428  
1429 -(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1731 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1430 1430  
1431 1431  
1432 1432  
... ... @@ -1495,75 +1495,145 @@
1495 1495  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1496 1496  
1497 1497  
1498 -== 3.5 Integrate with Mydevice ==
1800 +== 3.5 Integrating with ThingsEye.io ==
1499 1499  
1802 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1500 1500  
1501 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1804 +=== 3.5.1 Configuring The Things Stack ===
1502 1502  
1503 -(((
1504 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1505 -)))
1806 +We use The Things Stack Sandbox in this example:
1506 1506  
1507 -(((
1508 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1808 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1809 +* Select **MQTT** under **Integrations** in the left menu.
1810 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1811 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1509 1509  
1510 -
1511 -)))
1813 +{{info}}
1814 +The username and  password (API key) you created here are required in the next section.
1815 +{{/info}}
1512 1512  
1513 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1817 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1514 1514  
1819 +=== 3.5.2 Configuring ThingsEye.io ===
1515 1515  
1821 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1822 +* Under the **Integrations center**, click **Integrations**.
1823 +* Click the **Add integration** button (the button with the **+** symbol).
1516 1516  
1517 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1825 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1518 1518  
1519 1519  
1520 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1828 +On the **Add integration** window, configure the following:
1521 1521  
1522 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1830 +**Basic settings:**
1523 1523  
1524 -Search under The things network
1832 +* Select **The Things Stack Community** from the **Integration type** list.
1833 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1834 +* Ensure the following options are turned on.
1835 +** Enable integration
1836 +** Debug mode
1837 +** Allow create devices or assets
1838 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1525 1525  
1526 -[[image:1653356838789-523.png||height="337" width="740"]]
1840 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1527 1527  
1528 1528  
1843 +**Uplink data converter:**
1529 1529  
1530 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1845 +* Click the **Create new** button if it is not selected by default.
1846 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1847 +* Click the **JavaScript** button.
1848 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1849 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1531 1531  
1532 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1851 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1533 1533  
1534 1534  
1535 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1854 +**Downlink data converter (this is an optional step):**
1536 1536  
1856 +* Click the **Create new** button if it is not selected by default.
1857 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1858 +* Click the **JavaScript** button.
1859 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1860 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1537 1537  
1538 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1862 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1539 1539  
1540 1540  
1541 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1865 +**Connection:**
1542 1542  
1867 +* Choose **Region** from the **Host type**.
1868 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1869 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1870 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1543 1543  
1544 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1872 +[[image:message-1.png]]
1545 1545  
1546 1546  
1547 -== 3.6 Interface Detail ==
1875 +* Click the **Add** button.
1548 1548  
1549 -=== 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1877 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1550 1550  
1551 1551  
1552 -Support NPN Type sensor
1880 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1553 1553  
1882 +
1883 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1884 +
1885 +
1886 +==== 3.5.2.1 Viewing integration details ====
1887 +
1888 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1889 +
1890 +[[image:integration-details.png||height="686" width="1000"]]
1891 +
1892 +
1893 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1894 +
1895 +{{info}}
1896 +See also ThingsEye documentation.
1897 +{{/info}}
1898 +
1899 +==== **3.5.2.2 Viewing events** ====
1900 +
1901 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1902 +
1903 +* Select **Debug **from the **Event type** dropdown.
1904 +* Select the** time frame** from the **time window**.
1905 +
1906 +[[image:thingseye-events.png||height="686" width="1000"]]
1907 +
1908 +
1909 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1910 +
1911 +[[image:thingseye-json.png||width="1000"]]
1912 +
1913 +
1914 +==== **3.5.2.3 Deleting an integration** ====
1915 +
1916 +If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
1917 +
1918 +
1919 +== 3.6 Interface Details ==
1920 +
1921 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
1922 +
1923 +
1924 +Supports NPN-type sensors.
1925 +
1554 1554  [[image:1653356991268-289.png]]
1555 1555  
1556 1556  
1557 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1929 +=== 3.6.2 Digital Input Ports: DI1/DI2 ===
1558 1558  
1559 1559  
1560 1560  (((
1561 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1933 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1562 1562  )))
1563 1563  
1564 1564  (((
1565 1565  (((
1566 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1938 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1567 1567  
1568 1568  
1569 1569  )))
... ... @@ -1573,7 +1573,7 @@
1573 1573  
1574 1574  (((
1575 1575  (((
1576 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1948 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1577 1577  )))
1578 1578  )))
1579 1579  
... ... @@ -1582,22 +1582,22 @@
1582 1582  )))
1583 1583  
1584 1584  (((
1585 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1957 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1586 1586  )))
1587 1587  
1588 1588  (((
1589 -This type of sensor will output a low signal GND when active.
1961 +This type of sensor outputs a low (GND) signal when active.
1590 1590  )))
1591 1591  
1592 1592  * (((
1593 -Connect sensor's output to DI1-
1965 +Connect the sensor's output to DI1-
1594 1594  )))
1595 1595  * (((
1596 -Connect sensor's VCC to DI1+.
1968 +Connect the sensor's VCC to DI1+.
1597 1597  )))
1598 1598  
1599 1599  (((
1600 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1972 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1601 1601  )))
1602 1602  
1603 1603  (((
... ... @@ -1605,7 +1605,7 @@
1605 1605  )))
1606 1606  
1607 1607  (((
1608 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1980 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1609 1609  )))
1610 1610  
1611 1611  (((
... ... @@ -1613,22 +1613,22 @@
1613 1613  )))
1614 1614  
1615 1615  (((
1616 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1988 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1617 1617  )))
1618 1618  
1619 1619  (((
1620 -This type of sensor will output a high signal (example 24v) when active.
1992 +This type of sensor outputs a high signal (e.g., 24V) when active.
1621 1621  )))
1622 1622  
1623 1623  * (((
1624 -Connect sensor's output to DI1+
1996 +Connect the sensor's output to DI1+
1625 1625  )))
1626 1626  * (((
1627 -Connect sensor's GND DI1-.
1999 +Connect the sensor's GND DI1-.
1628 1628  )))
1629 1629  
1630 1630  (((
1631 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2003 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1632 1632  )))
1633 1633  
1634 1634  (((
... ... @@ -1636,7 +1636,7 @@
1636 1636  )))
1637 1637  
1638 1638  (((
1639 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
2011 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1640 1640  )))
1641 1641  
1642 1642  (((
... ... @@ -1644,22 +1644,22 @@
1644 1644  )))
1645 1645  
1646 1646  (((
1647 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
2019 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1648 1648  )))
1649 1649  
1650 1650  (((
1651 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
2023 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1652 1652  )))
1653 1653  
1654 1654  * (((
1655 -Connect sensor's output to DI1+ with a serial 50K resistor
2027 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1656 1656  )))
1657 1657  * (((
1658 -Connect sensor's GND DI1-.
2030 +Connect the sensor's GND DI1-.
1659 1659  )))
1660 1660  
1661 1661  (((
1662 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2034 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1663 1663  )))
1664 1664  
1665 1665  (((
... ... @@ -1667,24 +1667,37 @@
1667 1667  )))
1668 1668  
1669 1669  (((
1670 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
2042 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1671 1671  )))
1672 1672  
1673 1673  
1674 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
2046 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1675 1675  
2048 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1676 1676  
1677 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
2050 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1678 1678  
1679 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
2052 +[[image:image-20230616235145-1.png]]
1680 1680  
2054 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2055 +
2056 +[[image:image-20240219115718-1.png]]
2057 +
2058 +
2059 +=== 3.6.3 Digital Output Ports: DO1/DO2 ===
2060 +
2061 +
2062 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2063 +
2064 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2065 +
1681 1681  [[image:1653357531600-905.png]]
1682 1682  
1683 1683  
1684 -=== 3.6.4 Analog Input Interface ===
2069 +=== 3.6.4 Analog Input Interfaces ===
1685 1685  
1686 1686  
1687 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
2072 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1688 1688  
1689 1689  
1690 1690  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1691,20 +1691,19 @@
1691 1691  
1692 1692  [[image:1653357592296-182.png]]
1693 1693  
1694 -Example to connect a 4~~20mA sensor
2079 +Example: Connecting a 4~~20mA sensor
1695 1695  
1696 -We take the wind speed sensor as an example for reference only.
2081 +We will use the wind speed sensor as an example for reference only.
1697 1697  
1698 1698  
1699 1699  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1700 1700  
1701 -(% style="color:red" %)**Red:  12~~24v**
2086 +(% style="color:red" %)**Red:  12~~24V**
1702 1702  
1703 1703  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1704 1704  
1705 1705  **Black:  GND**
1706 1706  
1707 -
1708 1708  **Connection diagram:**
1709 1709  
1710 1710  [[image:1653357640609-758.png]]
... ... @@ -1712,239 +1712,148 @@
1712 1712  [[image:1653357648330-671.png||height="155" width="733"]]
1713 1713  
1714 1714  
1715 -=== 3.6.5 Relay Output ===
2099 +Example: Connecting to a regulated power supply to measure voltage
1716 1716  
2101 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1717 1717  
1718 -(((
1719 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
2103 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1720 1720  
1721 -**Note**: RO pins go to Open(NO) when device is power off.
1722 -)))
2105 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1723 1723  
1724 -[[image:image-20220524100215-9.png]]
1725 1725  
2108 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1726 1726  
1727 -[[image:image-20220524100215-10.png||height="382" width="723"]]
2110 +(% style="color:red" %)**Red:  12~~24v**
1728 1728  
2112 +**Black:  GND**
1729 1729  
1730 -== 3.7 LEDs Indicators ==
1731 1731  
2115 +=== 3.6.5 Relay Output ===
1732 1732  
1733 -[[image:image-20220524100748-11.png]]
1734 1734  
1735 -
1736 -= 4. Use AT Command =
1737 -
1738 -== 4.1 Access AT Command ==
1739 -
1740 -
1741 1741  (((
1742 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1743 -)))
2119 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1744 1744  
1745 -(((
1746 -
2121 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1747 1747  )))
1748 1748  
1749 -[[image:1653358238933-385.png]]
2124 +[[image:image-20220524100215-9.png]]
1750 1750  
1751 1751  
1752 -(((
1753 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1754 -)))
2127 +[[image:image-20220524100215-10.png||height="382" width="723"]]
1755 1755  
1756 -[[image:1653358355238-883.png]]
1757 1757  
2130 +== 3.7 LEDs Indicators ==
1758 1758  
1759 -(((
1760 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1761 -)))
2132 +The table below lists the behavior of LED indicators for each port function.
1762 1762  
2134 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2135 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2136 +|**PWR**|Always on when there is power
2137 +|**TX**|(((
1763 1763  (((
1764 -AT+<CMD>?        : Help on <CMD>
2139 +Device boot: TX blinks 5 times.
1765 1765  )))
1766 1766  
1767 1767  (((
1768 -AT+<CMD>         : Run <CMD>
2143 +Successful network join: TX remains ON for 5 seconds.
1769 1769  )))
1770 1770  
1771 1771  (((
1772 -AT+<CMD>=<value> : Set the value
2147 +Transmit a LoRa packet: TX blinks once
1773 1773  )))
1774 -
1775 -(((
1776 -AT+<CMD>=?       :  Get the value
1777 1777  )))
1778 -
1779 -(((
1780 -ATZ: Trig a reset of the MCU
2150 +|**RX**|RX blinks once when a packet is received.
2151 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2152 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2153 +|**DI1**|(((
2154 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1781 1781  )))
1782 -
1783 -(((
1784 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
2156 +|**DI2**|(((
2157 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1785 1785  )))
2159 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2160 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1786 1786  
1787 -(((
1788 -AT+DEUI: Get or Set the Device EUI
1789 -)))
2162 += 4. Using AT Commands =
1790 1790  
1791 -(((
1792 -AT+DADDR: Get or Set the Device Address
1793 -)))
2164 +The LT-22222-L supports programming using AT Commands.
1794 1794  
1795 -(((
1796 -AT+APPKEY: Get or Set the Application Key
1797 -)))
2166 +== 4.1 Connecting the LT-22222-L to a PC ==
1798 1798  
1799 1799  (((
1800 -AT+NWKSKEY: Get or Set the Network Session Key
1801 -)))
2169 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1802 1802  
1803 -(((
1804 -AT+APPSKEY:  Get or Set the Application Session Key
2171 +[[image:usb-ttl-programming.png]]
1805 1805  )))
1806 1806  
1807 -(((
1808 -AT+APPEUI:  Get or Set the Application EUI
1809 -)))
1810 1810  
1811 -(((
1812 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1813 -)))
1814 1814  
1815 1815  (((
1816 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2177 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1817 1817  )))
1818 1818  
1819 -(((
1820 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1821 -)))
2180 +[[image:1653358355238-883.png]]
1822 1822  
1823 -(((
1824 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1825 -)))
1826 1826  
1827 1827  (((
1828 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1829 -)))
2184 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1830 1830  
1831 -(((
1832 -AT+RX2FQ: Get or Set the Rx2 window frequency
2186 +== 4.2 LT-22222-L related AT commands ==
1833 1833  )))
1834 1834  
1835 1835  (((
1836 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1837 -)))
2190 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1838 1838  
1839 -(((
1840 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2192 +* **##AT##+<CMD>?** : Help on <CMD>
2193 +* **##AT##+<CMD>** : Run <CMD>
2194 +* **##AT##+<CMD>=<value>** : Set the value
2195 +* **##AT##+<CMD>=?** : Get the value
2196 +* ##**ATZ**##: Trigger a reset of the MCU
2197 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2198 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2199 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2200 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2201 +* ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2202 +* **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2203 +* **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2204 +* **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2205 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2206 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2207 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2208 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
2209 +* AT+RX2FQ: Get or set the Rx2 window frequency
2210 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2211 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2212 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2213 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2214 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2215 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2216 +* AT+NWKID: Get or set the Network ID
2217 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2218 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2219 +* AT+CLASS: Get or set the Device Class
2220 +* AT+JOIN: Join network
2221 +* AT+NJS: Get OTAA Join Status
2222 +* AT+SENDB: Send hexadecimal data along with the application port
2223 +* AT+SEND: Send text data along with the application port
2224 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
2225 +* AT+RECV: Print last received data in raw format
2226 +* AT+VER: Get current image version and Frequency Band
2227 +* AT+CFM: Get or Set the confirmation mode (0-1)
2228 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2229 +* AT+SNR: Get the SNR of the last received packet
2230 +* AT+RSSI: Get the RSSI of the last received packet
2231 +* AT+TDC: Get or set the application data transmission interval in ms
2232 +* AT+PORT: Get or set the application port
2233 +* AT+DISAT: Disable AT commands
2234 +* AT+PWORD: Set password, max 9 digits
2235 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2236 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2237 +* AT+CFG: Print all settings
1841 1841  )))
1842 1842  
1843 -(((
1844 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1845 -)))
1846 1846  
1847 -(((
1848 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1849 -)))
1850 -
1851 -(((
1852 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1853 -)))
1854 -
1855 -(((
1856 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1857 -)))
1858 -
1859 -(((
1860 -AT+NWKID: Get or Set the Network ID
1861 -)))
1862 -
1863 -(((
1864 -AT+FCU: Get or Set the Frame Counter Uplink
1865 -)))
1866 -
1867 -(((
1868 -AT+FCD: Get or Set the Frame Counter Downlink
1869 -)))
1870 -
1871 -(((
1872 -AT+CLASS: Get or Set the Device Class
1873 -)))
1874 -
1875 -(((
1876 -AT+JOIN: Join network
1877 -)))
1878 -
1879 -(((
1880 -AT+NJS: Get OTAA Join Status
1881 -)))
1882 -
1883 -(((
1884 -AT+SENDB: Send hexadecimal data along with the application port
1885 -)))
1886 -
1887 -(((
1888 -AT+SEND: Send text data along with the application port
1889 -)))
1890 -
1891 -(((
1892 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1893 -)))
1894 -
1895 -(((
1896 -AT+RECV: Print last received data in raw format
1897 -)))
1898 -
1899 -(((
1900 -AT+VER:  Get current image version and Frequency Band
1901 -)))
1902 -
1903 -(((
1904 -AT+CFM: Get or Set the confirmation mode (0-1)
1905 -)))
1906 -
1907 -(((
1908 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1909 -)))
1910 -
1911 -(((
1912 -AT+SNR: Get the SNR of the last received packet
1913 -)))
1914 -
1915 -(((
1916 -AT+RSSI: Get the RSSI of the last received packet
1917 -)))
1918 -
1919 -(((
1920 -AT+TDC: Get or set the application data transmission interval in ms
1921 -)))
1922 -
1923 -(((
1924 -AT+PORT: Get or set the application port
1925 -)))
1926 -
1927 -(((
1928 -AT+DISAT: Disable AT commands
1929 -)))
1930 -
1931 -(((
1932 -AT+PWORD: Set password, max 9 digits
1933 -)))
1934 -
1935 -(((
1936 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1937 -)))
1938 -
1939 -(((
1940 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1941 -)))
1942 -
1943 -(((
1944 -AT+CFG: Print all settings
1945 -)))
1946 -
1947 -
1948 1948  == 4.2 Common AT Command Sequence ==
1949 1949  
1950 1950  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1953,41 +1953,41 @@
1953 1953  
1954 1954  
1955 1955  (((
1956 -(% style="color:blue" %)**If device has not joined network yet:**
2249 +(% style="color:blue" %)**If the device has not yet joined the network:**
1957 1957  )))
1958 1958  )))
1959 1959  
1960 1960  (((
1961 -(% style="background-color:#dcdcdc" %)**123456**
2254 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1962 1962  )))
1963 1963  
1964 1964  (((
1965 -(% style="background-color:#dcdcdc" %)**AT+FDR**
2258 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
1966 1966  )))
1967 1967  
1968 1968  (((
1969 -(% style="background-color:#dcdcdc" %)**123456**
2262 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1970 1970  )))
1971 1971  
1972 1972  (((
1973 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2266 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
1974 1974  )))
1975 1975  
1976 1976  (((
1977 -(% style="background-color:#dcdcdc" %)**ATZ**
2270 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
1978 1978  )))
1979 1979  
1980 1980  
1981 1981  (((
1982 -(% style="color:blue" %)**If device already joined network:**
2275 +(% style="color:blue" %)**If the device has already joined the network:**
1983 1983  )))
1984 1984  
1985 1985  (((
1986 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2279 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1987 1987  )))
1988 1988  
1989 1989  (((
1990 -(% style="background-color:#dcdcdc" %)**ATZ**
2283 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1991 1991  )))
1992 1992  
1993 1993  
... ... @@ -1997,20 +1997,20 @@
1997 1997  
1998 1998  
1999 1999  (((
2000 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2293 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
2001 2001  )))
2002 2002  )))
2003 2003  
2004 2004  (((
2005 -(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2298 +(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
2006 2006  )))
2007 2007  
2008 2008  (((
2009 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2302 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
2010 2010  )))
2011 2011  
2012 2012  (((
2013 -(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2306 +(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
2014 2014  )))
2015 2015  
2016 2016  (((
... ... @@ -2030,19 +2030,19 @@
2030 2030  )))
2031 2031  
2032 2032  (((
2033 -(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2326 +(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
2034 2034  )))
2035 2035  
2036 2036  (((
2037 -(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2330 +(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
2038 2038  )))
2039 2039  
2040 2040  (((
2041 -(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2334 +(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
2042 2042  )))
2043 2043  
2044 2044  (((
2045 -(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2338 +(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
2046 2046  )))
2047 2047  
2048 2048  (((
... ... @@ -2056,16 +2056,14 @@
2056 2056  )))
2057 2057  
2058 2058  (((
2059 -**~1. Make sure the device is set to ABP mode in the IoT Server.**
2352 +**~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
2060 2060  
2061 -**2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2354 +**2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
2062 2062  
2063 -**3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2356 +**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
2064 2064  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2065 2065  
2066 -**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2067 -
2068 -
2359 +**4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
2069 2069  )))
2070 2070  
2071 2071  (((
... ... @@ -2072,54 +2072,63 @@
2072 2072  [[image:1653359097980-169.png||height="188" width="729"]]
2073 2073  )))
2074 2074  
2075 -(((
2076 -
2077 -)))
2078 2078  
2079 2079  === 4.2.3 Change to Class A ===
2080 2080  
2081 2081  
2082 2082  (((
2083 -(% style="color:blue" %)**If sensor JOINED:**
2371 +(% style="color:blue" %)**If the sensor has JOINED:**
2084 2084  
2085 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2086 -ATZ**
2373 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2374 +
2375 +(% style="background-color:#dcdcdc" %)**ATZ**
2087 2087  )))
2088 2088  
2089 2089  
2090 2090  = 5. Case Study =
2091 2091  
2092 -== 5.1 Counting how many objects pass in Flow Line ==
2381 +== 5.1 Counting how many objects pass through the flow line ==
2093 2093  
2383 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2094 2094  
2095 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2096 2096  
2097 -
2098 2098  = 6. FAQ =
2099 2099  
2100 -== 6.1 How to upgrade the image? ==
2388 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2101 2101  
2102 2102  
2103 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2391 +== 6.1 How to update the firmware? ==
2104 2104  
2393 +Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2394 +
2105 2105  * Support new features
2106 -* For bug fix
2107 -* Change LoRaWAN bands.
2396 +* Fix bugs
2397 +* Change LoRaWAN frequency bands
2108 2108  
2109 -Below shows the hardware connection for how to upload an image to the LT:
2399 +You will need the following things before proceeding:
2110 2110  
2111 -[[image:1653359603330-121.png]]
2401 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2402 +* USB to TTL adapter
2403 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2404 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2112 2112  
2406 +{{info}}
2407 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2408 +{{/info}}
2113 2113  
2114 -(((
2115 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2116 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2117 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2118 -
2410 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2119 2119  
2412 +[[image:usb-ttl-programming.png]]
2413 +
2414 +
2415 +
2416 +Start the STM32 Flash Loader and choose the correct COM port to update.
2417 +
2120 2120  (((
2419 +(((
2121 2121  (% style="color:blue" %)**For LT-22222-L**(%%):
2122 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2421 +
2422 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2123 2123  )))
2124 2124  
2125 2125  
... ... @@ -2134,41 +2134,36 @@
2134 2134  [[image:image-20220524104033-15.png]]
2135 2135  
2136 2136  
2137 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2437 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2138 2138  
2139 -
2140 2140  [[image:1653360054704-518.png||height="186" width="745"]]
2141 2141  
2142 2142  
2143 2143  (((
2144 2144  (((
2145 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2146 -
2147 -
2444 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2148 2148  )))
2149 2149  )))
2150 2150  
2151 2151  (((
2152 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2449 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2153 2153  )))
2154 2154  
2155 2155  (((
2156 2156  
2157 2157  
2158 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2159 -
2160 -
2455 +== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2161 2161  )))
2162 2162  
2163 2163  (((
2164 2164  (((
2165 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2460 +In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2166 2166  )))
2167 2167  )))
2168 2168  
2169 2169  (((
2170 2170  (((
2171 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2466 +We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2172 2172  
2173 2173  
2174 2174  )))
... ... @@ -2175,188 +2175,193 @@
2175 2175  )))
2176 2176  
2177 2177  (((
2178 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2473 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2179 2179  
2180 -
2475 +[[image:lt-22222-l-abp.png||height="686" width="1000"]]
2181 2181  )))
2182 2182  
2183 2183  (((
2184 -[[image:1653360231087-571.png||height="401" width="727"]]
2185 -
2186 2186  
2187 2187  )))
2188 2188  
2189 -(((
2190 -(% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2191 -)))
2482 +{{warning}}
2483 +Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2484 +{{/warning}}
2192 2192  
2193 2193  
2194 -
2195 2195  (((
2196 -(% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2488 +(% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2197 2197  
2198 2198  
2199 2199  )))
2200 2200  
2201 2201  (((
2202 -(% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2203 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2204 -(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2205 -(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2206 -(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2207 -(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2208 -(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2209 -(% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2210 -(% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2494 +(% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2495 +
2496 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2497 +
2498 +(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2499 +
2500 +(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2501 +
2502 +(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2503 +
2504 +(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2505 +
2506 +(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2507 +
2508 +(% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2509 +
2510 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2511 +
2512 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2513 +
2514 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2515 +
2516 +(% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2211 2211  )))
2212 2212  
2213 2213  
2214 2214  (((
2215 -As shown in below:
2521 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2216 2216  )))
2217 2217  
2218 2218  [[image:1653360498588-932.png||height="485" width="726"]]
2219 2219  
2220 2220  
2221 -== 6.4 How to change the uplink interval ==
2527 +== 6.4 How to change the uplink interval? ==
2222 2222  
2223 -
2224 2224  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2225 2225  
2226 2226  
2227 -== 6.5 Can I see counting event in Serial? ==
2532 +== 6.5 Can I see the counting event in the serial output? ==
2228 2228  
2229 -
2230 2230  (((
2231 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2535 +You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2232 2232  
2233 2233  
2234 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2538 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2235 2235  
2540 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2236 2236  
2237 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2238 -
2239 2239  
2240 2240  )))
2241 2241  
2242 2242  (((
2243 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2546 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2244 2244  
2548 +* If the device is not properly shut down and is directly powered off.
2549 +* It will default to a power-off state.
2550 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2551 +* After a restart, the status before the power failure will be read from flash.
2245 2245  
2246 -If the device is not shut down, but directly powered off.
2553 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2247 2247  
2248 -It will default that this is a power-off state.
2555 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2249 2249  
2250 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2251 2251  
2252 -After restart, the status before power failure will be read from flash.
2558 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2253 2253  
2254 2254  
2255 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2561 +== 6.9 Can the LT-22222-L save the RO state? ==
2256 2256  
2563 +To enable this feature, the firmware version must be 1.6.0 or higher.
2257 2257  
2258 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2259 2259  
2566 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2260 2260  
2261 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2568 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2262 2262  
2263 2263  
2264 -== 6.9 Can LT22222-L save RO state? ==
2571 += 7. Troubleshooting =
2265 2265  
2573 +This section provides some known troubleshooting tips.
2266 2266  
2267 -Firmware version needs to be no less than 1.6.0.
2268 -
2269 -
2270 -= 7. Trouble Shooting =
2575 +
2271 2271  )))
2272 2272  
2273 2273  (((
2274 2274  (((
2275 -== 7.1 Downlink doesn't work, how to solve it? ==
2276 -
2277 -
2580 +== 7.1 Downlink isn't working. How can I solve this? ==
2278 2278  )))
2279 2279  )))
2280 2280  
2281 2281  (((
2282 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2585 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2283 2283  )))
2284 2284  
2285 2285  (((
2286 2286  
2287 2287  
2288 -== 7.2 Have trouble to upload image. ==
2289 -
2290 -
2591 +== 7.2 Having trouble uploading an image? ==
2291 2291  )))
2292 2292  
2293 2293  (((
2294 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2595 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2295 2295  )))
2296 2296  
2297 2297  (((
2298 2298  
2299 2299  
2300 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2301 -
2302 -
2601 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2303 2303  )))
2304 2304  
2305 2305  (((
2306 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2605 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2307 2307  )))
2308 2308  
2309 2309  
2310 -= 8. Order Info =
2609 +== 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2311 2311  
2611 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2612 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2312 2312  
2614 +
2615 += 8. Ordering information =
2616 +
2313 2313  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2314 2314  
2315 2315  (% style="color:#4f81bd" %)**XXX:**
2316 2316  
2317 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2318 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2319 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2320 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2321 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2322 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2323 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2324 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2325 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2621 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2622 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2623 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2624 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2625 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2626 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2627 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2628 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2629 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2326 2326  
2327 -= 9. Packing Info =
2631 += 9. Package information =
2328 2328  
2633 +**Package includes**:
2329 2329  
2330 -**Package Includes**:
2635 +* 1 x LT-22222-L I/O Controller
2636 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2637 +* 1 x bracket for DIN rail mounting
2638 +* 1 x 3.5 mm programming cable
2331 2331  
2332 -* LT-22222-L I/O Controller x 1
2333 -* Stick Antenna for LoRa RF part x 1
2334 -* Bracket for controller x1
2335 -* Program cable x 1
2336 -
2337 2337  **Dimension and weight**:
2338 2338  
2339 2339  * Device Size: 13.5 x 7 x 3 cm
2340 -* Device Weight: 105g
2643 +* Device Weight: 105 g
2341 2341  * Package Size / pcs : 14.5 x 8 x 5 cm
2342 -* Weight / pcs : 170g
2645 +* Weight / pcs : 170 g
2343 2343  
2344 2344  = 10. Support =
2345 2345  
2346 -
2347 2347  * (((
2348 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2650 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2349 2349  )))
2350 2350  * (((
2351 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2653 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2352 2352  
2353 -
2354 2354  
2355 2355  )))
2356 2356  
2357 2357  = 11. Reference​​​​​ =
2358 2358  
2359 -
2360 2360  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2361 2361  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2362 2362  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-abp.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +321.4 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
usb-ttl-programming.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +462.9 KB
Content