Last modified by Mengting Qiu on 2025/06/04 18:42

From version 118.6
edited by Xiaoling
on 2023/05/17 11:04
Change comment: There is no comment for this version
To version 180.1
edited by Dilisi S
on 2024/11/09 06:08
Change comment: Nov 8 edits - part 2

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,162 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
103 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 207  == 1.5 Hardware Variants ==
208 208  
209 209  
210 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
115 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
212 212  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 213  (% style="text-align:center" %)
214 214  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -221,149 +221,224 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
129 += 2. Assembling the Device =
225 225  
131 +== 2.1 What is included in the package? ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
133 +The package includes the following items:
230 230  
231 -(((
232 -PWR will on when device is properly powered.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
233 233  
234 -
235 -)))
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
142 +== 2.2 Terminals ==
143 +
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
237 237  [[image:1653297104069-180.png]]
238 238  
239 239  
240 240  = 3. Operation Mode =
241 241  
242 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
243 243  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
252 252  
188 +== 3.2 Registering with a LoRaWAN network server ==
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
255 255  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
259 259  
260 -
261 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
264 264  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
268 268  
269 -
270 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
208 +==== ====
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
281 281  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
288 288  
230 +==== ====
289 289  
290 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
291 291  
292 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
293 293  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
294 294  
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
298 298  
299 -
300 -)))
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
301 301  
302 -[[image:1653298044601-602.png||height="405" width="709"]]
303 303  
257 +You will be navigated to the **Device overview** page.
304 304  
305 -== 3.3 Uplink Payload ==
306 306  
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293 +
312 312  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
295 +
313 313  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297 +
314 314  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
299 +
315 315  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316 316  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
317 317  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318 318  
319 -
320 320  (((
321 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
311 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
325 325  |Value|(((
326 -AVI1
327 -voltage
314 +AVI1 voltage
328 328  )))|(((
329 -AVI2
330 -voltage
316 +AVI2 voltage
331 331  )))|(((
332 -ACI1
333 -Current
318 +ACI1 Current
334 334  )))|(((
335 -ACI2
336 -Current
337 -)))|DIDORO*|(((
320 +ACI2 Current
321 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 -
343 343  (((
344 -
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
345 345  
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347 -
348 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -* RO is for relay. ROx=1 : close,ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
361 361  
343 +**The interface values can be calculated as follows:  **
362 362  
363 -**The value for the interface is **
345 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 -
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
369 369  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -370,106 +370,92 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
402 402  
403 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 -|Size(bytes)|4|4|1|1|1
380 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
405 405  |Value|COUNT1|COUNT2 |DIDORO*|(((
406 -Reserve
407 -
408 -
383 +Reserve
409 409  )))|MOD
410 410  )))
411 411  
412 412  (((
413 -
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
414 414  
415 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420 -
421 -RO is for relay. ROx=1 : close,ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
422 422  )))
423 423  
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 -)))
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
430 430  
431 -(((
432 432  
404 +)))
433 433  
434 -**To use counting mode, please run:**
406 +(((
407 +**To activate this mode, run the following AT commands:**
435 435  )))
436 436  
410 +(((
437 437  (% class="box infomessage" %)
438 438  (((
439 -(((
440 -(((
441 441  **AT+MOD=2**
442 -)))
443 443  
444 -(((
445 445  **ATZ**
446 446  )))
447 447  )))
448 -)))
449 449  
450 450  (((
451 451  
452 452  
453 453  (% style="color:#4f81bd" %)**AT Commands for counting:**
454 -
455 -
456 456  )))
457 457  
458 458  (((
459 459  **For LT22222-L:**
460 460  
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
463 463  
464 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
465 465  
466 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
467 467  
468 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471 -
472 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
473 473  )))
474 474  
475 475  
... ... @@ -476,10 +476,10 @@
476 476  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477 477  
478 478  
479 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|Size(bytes)|4|2|2|1|1|1
447 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
483 483  |Value|COUNT1|(((
484 484  ACI1 Current
485 485  )))|(((
... ... @@ -487,44 +487,39 @@
487 487  )))|DIDORO*|Reserve|MOD
488 488  
489 489  (((
490 -
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
491 491  
492 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493 -
494 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
497 497  )))
498 498  
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
499 499  
500 -* RO is for relay. ROx=1 : close,ROx=0 always open.
501 -* FIRST: Indicate this is the first packet after join network.
502 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503 -
504 504  (((
505 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
506 506  )))
507 507  
508 508  
509 509  (((
510 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
511 511  )))
512 512  
476 +(((
513 513  (% class="box infomessage" %)
514 514  (((
515 -(((
516 -(((
517 517  **AT+MOD=3**
518 -)))
519 519  
520 -(((
521 521  **ATZ**
522 522  )))
523 523  )))
524 -)))
525 525  
526 526  (((
527 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
528 528  )))
529 529  
530 530  
... ... @@ -532,77 +532,64 @@
532 532  
533 533  
534 534  (((
535 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
536 536  )))
537 537  
538 538  (((
539 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
540 540  
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|Size(bytes)|4|4|1|1|1
502 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
543 543  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 544  Reserve
545 -
546 -
547 547  )))|MOD
548 548  )))
549 549  
550 -
551 -
552 552  (((
553 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
554 554  
555 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
558 558  )))
559 559  
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
560 560  
561 -* RO is for relay. ROx=1 : close,ROx=0 always open.
562 -* FIRST: Indicate this is the first packet after join network.
563 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564 -
565 565  (((
566 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 -)))
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
568 568  
569 -(((
570 570  
525 +)))
571 571  
572 -**To use this mode, please run:**
527 +(((
528 +**To activate this mode, run the following AT commands:**
573 573  )))
574 574  
531 +(((
575 575  (% class="box infomessage" %)
576 576  (((
577 -(((
578 -(((
579 579  **AT+MOD=4**
580 -)))
581 581  
582 -(((
583 583  **ATZ**
584 584  )))
585 585  )))
586 -)))
587 587  
588 -
589 589  (((
590 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
591 591  )))
592 592  
593 593  (((
594 -
545 +**In addition to that, below are the commands for AVI1 Counting:**
595 595  
596 -**Plus below command for AVI1 Counting:**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
597 597  
598 -
599 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600 -
601 601  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602 602  
603 603  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604 604  
605 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
606 606  )))
607 607  
608 608  
... ... @@ -609,65 +609,53 @@
609 609  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610 610  
611 611  
612 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
613 613  
614 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 -|Size(bytes)|2|2|2|2|1|1|1
562 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
616 616  |Value|(((
617 -AVI1
618 -voltage
565 +AVI1 voltage
619 619  )))|(((
620 -AVI2
621 -voltage
567 +AVI2 voltage
622 622  )))|(((
623 -ACI1
624 -Current
569 +ACI1 Current
625 625  )))|COUNT1|DIDORO*|(((
626 626  Reserve
627 627  )))|MOD
628 628  
629 -
630 630  (((
631 -
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
632 632  
633 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
634 -
635 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
636 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
577 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
637 637  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
638 638  )))
639 639  
640 -* RO is for relay. ROx=1 : closeROx=0 always open.
641 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
642 642  * (((
643 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
644 644  )))
645 645  
646 646  (((
647 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
648 648  )))
649 649  
650 650  (((
651 -
652 -
653 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
654 654  )))
655 655  
596 +(((
656 656  (% class="box infomessage" %)
657 657  (((
658 -(((
659 -(((
660 660  **AT+MOD=5**
661 -)))
662 662  
663 -(((
664 664  **ATZ**
665 665  )))
666 666  )))
667 -)))
668 668  
669 669  (((
670 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
671 671  )))
672 672  
673 673  
... ... @@ -674,49 +674,46 @@
674 674  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
675 675  
676 676  
677 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
678 678  
679 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
680 680  
681 681  * **AT+MOD=1 ** **~-~->**  The normal working mode
682 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
683 683  
684 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
685 685  
686 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
687 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
688 688  
689 689  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
690 690  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
691 691  
692 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
693 -
694 694  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
695 695  
696 696  
697 697  **Example:**
698 698  
699 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
700 700  
701 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
702 702  
703 703  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
704 704  
705 -(% style="color:#4f81bd" %)**Trigger base on current**:
706 -
707 707  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
708 708  
709 709  
710 710  **Example:**
711 711  
712 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
713 713  
714 714  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
715 715  
716 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
717 717  
718 -DI status trigger Flag.
719 -
720 720  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
721 721  
722 722  
... ... @@ -725,113 +725,116 @@
725 725  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
726 726  
727 727  
728 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
729 729  
730 730  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
731 731  
732 732  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
733 733  
734 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
735 735  
736 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
737 737  
738 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
739 739  
740 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
741 741  
742 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
743 743  
744 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
745 745  
746 746  
747 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
748 748  
749 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
750 750  
751 751  
752 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
753 753  
754 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
755 755  
756 756  
757 -
758 758  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
759 759  
760 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
761 761  
762 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
763 -|Size(bytes)|1|1|1|6|1|1
694 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
764 764  |Value|(((
765 -TRI_A
766 -FLAG
697 +TRI_A FLAG
767 767  )))|(((
768 -TRI_A
769 -Status
699 +TRI_A Status
770 770  )))|(((
771 -TRI_DI
772 -FLAG+STA
701 +TRI_DI FLAG+STA
773 773  )))|Reserve|Enable/Disable MOD6|(((
774 -MOD
775 -(6)
703 +MOD(6)
776 776  )))
777 777  
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
778 778  
779 -
780 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
781 -
782 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
783 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
784 784  |(((
785 -AV1_
786 -LOW
711 +AV1_LOW
787 787  )))|(((
788 -AV1_
789 -HIGH
713 +AV1_HIGH
790 790  )))|(((
791 -AV2_
792 -LOW
715 +AV2_LOW
793 793  )))|(((
794 -AV2_
795 -HIGH
717 +AV2_HIGH
796 796  )))|(((
797 -AC1_
798 -LOW
719 +AC1_LOW
799 799  )))|(((
800 -AC1_
801 -HIGH
721 +AC1_HIGH
802 802  )))|(((
803 -AC2_
804 -LOW
723 +AC2_LOW
805 805  )))|(((
806 -AC2_
807 -HIGH
725 +AC2_HIGH
808 808  )))
809 809  
728 +* Each bit shows if the corresponding trigger has been configured.
810 810  
811 -* Each bits shows if the corresponding trigger has been configured.
812 -
813 813  **Example:**
814 814  
815 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
816 816  
817 817  
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
818 818  
819 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
739 +|(((
740 +AV1_LOW
741 +)))|(((
742 +AV1_HIGH
743 +)))|(((
744 +AV2_LOW
745 +)))|(((
746 +AV2_HIGH
747 +)))|(((
748 +AC1_LOW
749 +)))|(((
750 +AC1_HIGH
751 +)))|(((
752 +AC2_LOW
753 +)))|(((
754 +AC2_HIGH
755 +)))
820 820  
821 -[[image:image-20220524090249-3.png]]
757 +* Each bit shows which status has been triggered on this uplink.
822 822  
823 -* Each bits shows which status has been trigger on this uplink.
824 -
825 825  **Example:**
826 826  
827 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
828 828  
829 829  
830 830  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
831 831  
832 -[[image:image-20220524090456-4.png]]
766 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
833 833  
834 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
835 835  
836 836  **Example:**
837 837  
... ... @@ -858,11 +858,11 @@
858 858  )))
859 859  
860 860  
861 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
862 862  
863 863  
864 864  (((
865 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
866 866  )))
867 867  
868 868  (((
... ... @@ -877,9 +877,8 @@
877 877  
878 878  === 3.4.1 Common Commands ===
879 879  
880 -
881 881  (((
882 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
883 883  )))
884 884  
885 885  
... ... @@ -887,38 +887,37 @@
887 887  
888 888  ==== 3.4.2.1 Set Transmit Interval ====
889 889  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
890 890  
891 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
892 892  
893 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
894 894  
895 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
896 896  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
897 897  
898 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
899 899  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
900 900  
901 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
902 -
903 903  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
904 904  
905 905  
906 906  
907 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
908 908  
909 909  
910 -Set work mode.
845 +Sets the work mode.
911 911  
912 -* (% style="color:#037691" %)**AT Command:**
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
913 913  
914 -(% style="color:blue" %)**AT+MOD=N  **
849 +Where N is the work mode.
915 915  
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
916 916  
917 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
918 918  
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
919 919  
920 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
921 -
922 922  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
923 923  
924 924  
... ... @@ -926,34 +926,30 @@
926 926  ==== 3.4.2.3 Poll an uplink ====
927 927  
928 928  
929 -* (% style="color:#037691" %)**AT Command:**
863 +Asks the device to send an uplink.
930 930  
931 -There is no AT Command to poll uplink
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
932 932  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
933 933  
934 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
935 -
936 936  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
937 937  
938 -
939 939  **Example**: 0x08FF, ask device to send an Uplink
940 940  
941 941  
942 942  
943 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
944 944  
945 945  
946 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
947 947  
948 -* (% style="color:#037691" %)**AT Command:**
880 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
949 949  
950 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
951 951  
952 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
953 953  
954 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
955 955  
956 -
957 957  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
958 958  
959 959  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -963,16 +963,15 @@
963 963  ==== 3.4.2.5 Poll trigger settings ====
964 964  
965 965  
966 -Poll trigger settings,
896 +Polls the trigger settings
967 967  
968 968  * (% style="color:#037691" %)**AT Command:**
969 969  
970 970  There is no AT Command for this feature.
971 971  
972 -
973 973  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
974 974  
975 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
976 976  
977 977  
978 978  
... ... @@ -979,17 +979,13 @@
979 979  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
980 980  
981 981  
982 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
983 983  
984 -* (% style="color:#037691" %)**AT Command:**
913 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
985 985  
986 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
987 987  
988 988  
989 -**Example:**
990 -
991 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
992 -
993 993  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
994 994  
995 995  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -1001,20 +1001,15 @@
1001 1001  
1002 1002  Set DI1 or DI3(for LT-33222-L) trigger.
1003 1003  
1004 -* (% style="color:#037691" %)**AT Command:**
929 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1005 1005  
1006 -(% style="color:blue" %)**AT+TRIG1=a,b**
1007 -
1008 1008  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1009 1009  
1010 1010  (% style="color:red" %)**b :** (%%)delay timing.
1011 1011  
935 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1012 1012  
1013 -**Example:**
1014 1014  
1015 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1016 -
1017 -
1018 1018  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1019 1019  
1020 1020  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -1024,22 +1024,17 @@
1024 1024  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1025 1025  
1026 1026  
1027 -Set DI2 trigger.
947 +Sets DI2 trigger.
1028 1028  
1029 -* (% style="color:#037691" %)**AT Command:**
949 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1030 1030  
1031 -(% style="color:blue" %)**AT+TRIG2=a,b**
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1032 1032  
1033 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1034 -
1035 1035  (% style="color:red" %)**b :** (%%)delay timing.
1036 1036  
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
1037 1037  
1038 -**Example:**
1039 1039  
1040 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1041 -
1042 -
1043 1043  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1044 1044  
1045 1045  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -1051,11 +1051,8 @@
1051 1051  
1052 1052  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1053 1053  
1054 -* (% style="color:#037691" %)**AT Command**
969 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1055 1055  
1056 -(% style="color:blue" %)**AT+ACLIM**
1057 -
1058 -
1059 1059  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1060 1060  
1061 1061  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -1067,11 +1067,8 @@
1067 1067  
1068 1068  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1069 1069  
1070 -* (% style="color:#037691" %)**AT Command**
982 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1071 1071  
1072 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1073 -
1074 -
1075 1075  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1076 1076  
1077 1077  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -1081,20 +1081,15 @@
1081 1081  ==== 3.4.2.11 Trigger – Set minimum interval ====
1082 1082  
1083 1083  
1084 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1085 1085  
1086 -* (% style="color:#037691" %)**AT Command**
995 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1087 1087  
1088 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1089 -
1090 -
1091 1091  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1092 1092  
1093 1093  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1094 1094  
1095 1095  (((
1096 -
1097 -
1098 1098  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1099 1099  )))
1100 1100  
... ... @@ -1109,8 +1109,9 @@
1109 1109  
1110 1110  
1111 1111  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1112 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1113 1113  
1017 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1018 +
1114 1114  (((
1115 1115  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1116 1116  )))
... ... @@ -1117,10 +1117,14 @@
1117 1117  
1118 1118  (((
1119 1119  01: Low,  00: High ,  11: No action
1025 +
1026 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1028 +|02  01  00  11|Low|High|No Action
1029 +|02  00  11  01|High|No Action|Low
1030 +|02  11  01  00|No Action|Low|High
1120 1120  )))
1121 1121  
1122 -[[image:image-20220524092754-5.png]]
1123 -
1124 1124  (((
1125 1125  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1126 1126  )))
... ... @@ -1157,24 +1157,31 @@
1157 1157  
1158 1158  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1159 1159  
1160 -[[image:image-20220524093238-6.png]]
1069 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1071 +|0x01|DO1 set to low
1072 +|0x00|DO1 set to high
1073 +|0x11|DO1 NO Action
1161 1161  
1162 -
1163 1163  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1164 1164  
1165 -[[image:image-20220524093328-7.png]]
1077 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1079 +|0x01|DO2 set to low
1080 +|0x00|DO2 set to high
1081 +|0x11|DO2 NO Action
1166 1166  
1167 -
1168 1168  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1169 1169  
1170 -[[image:image-20220524093351-8.png]]
1085 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1087 +|0x01|DO3 set to low
1088 +|0x00|DO3 set to high
1089 +|0x11|DO3 NO Action
1171 1171  
1091 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1172 1172  
1173 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1174 1174  
1175 - Latching time. Unit: ms
1176 -
1177 -
1178 1178  (% style="color:red" %)**Note: **
1179 1179  
1180 1180   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1181,7 +1181,6 @@
1181 1181  
1182 1182   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1183 1183  
1184 -
1185 1185  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1186 1186  
1187 1187  
... ... @@ -1205,7 +1205,7 @@
1205 1205  
1206 1206  
1207 1207  
1208 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1123 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1209 1209  
1210 1210  
1211 1211  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1223,11 +1223,18 @@
1223 1223  )))
1224 1224  
1225 1225  (((
1226 -01: Close ,  00: Open , 11: No action
1227 -)))
1141 +00: Closed ,  01: Open , 11: No action
1228 1228  
1229 -(((
1230 -[[image:image-20230426161322-1.png]]
1143 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1145 +|03  00  11|Open|No Action
1146 +|03  01  11|Close|No Action
1147 +|03  11  00|No Action|Open
1148 +|03  11  01|No Action|Close
1149 +|03  00  00|Open|Open
1150 +|03  01  01|Close|Close
1151 +|03  01  00|Close|Open
1152 +|03  00  01|Open|Close
1231 1231  )))
1232 1232  
1233 1233  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1301,11 +1301,8 @@
1301 1301  
1302 1302  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1303 1303  
1304 -* (% style="color:#037691" %)**AT Command:**
1226 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1305 1305  
1306 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1307 -
1308 -
1309 1309  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1310 1310  
1311 1311  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1315,10 +1315,8 @@
1315 1315  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1316 1316  
1317 1317  
1318 -* (% style="color:#037691" %)**AT Command:**
1237 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1319 1319  
1320 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1321 -
1322 1322  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1323 1323  
1324 1324  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1335,11 +1335,8 @@
1335 1335  
1336 1336  Clear counting for counting mode
1337 1337  
1338 -* (% style="color:#037691" %)**AT Command:**
1255 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1339 1339  
1340 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1341 -
1342 -
1343 1343  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1344 1344  
1345 1345  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1346,7 +1346,7 @@
1346 1346  
1347 1347  
1348 1348  
1349 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1350 1350  
1351 1351  
1352 1352  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1467,75 +1467,144 @@
1467 1467  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1468 1468  
1469 1469  
1470 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1471 1471  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1472 1472  
1473 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1474 1474  
1475 -(((
1476 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1477 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1478 1478  
1479 -(((
1480 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1481 1481  
1482 -
1483 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1484 1484  
1485 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1486 1486  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1487 1487  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1488 1488  
1489 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1490 1490  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1491 1491  
1492 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1493 1493  
1494 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1495 1495  
1496 -Search under The things network
1414 +**Basic settings:**
1497 1497  
1498 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1499 1499  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1500 1500  
1501 1501  
1502 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1427 +**Uplink data converter:**
1503 1503  
1504 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1505 1505  
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1506 1506  
1507 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1508 1508  
1438 +**Downlink data converter (this is an optional step):**
1509 1509  
1510 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1511 1511  
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1512 1512  
1513 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1514 1514  
1449 +**Connection:**
1515 1515  
1516 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1517 1517  
1456 +[[image:message-1.png]]
1518 1518  
1519 -== 3.6 Interface Detail ==
1520 1520  
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1521 1521  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1522 1522  
1523 1523  
1524 -Support NPN Type sensor
1507 +Support NPN-type sensor
1525 1525  
1526 1526  [[image:1653356991268-289.png]]
1527 1527  
1528 1528  
1529 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1530 1530  
1531 1531  
1532 1532  (((
1533 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1534 1534  )))
1535 1535  
1536 1536  (((
1537 1537  (((
1538 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1539 1539  
1540 1540  
1541 1541  )))
... ... @@ -1545,7 +1545,7 @@
1545 1545  
1546 1546  (((
1547 1547  (((
1548 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1549 1549  )))
1550 1550  )))
1551 1551  
... ... @@ -1554,22 +1554,22 @@
1554 1554  )))
1555 1555  
1556 1556  (((
1557 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1558 1558  )))
1559 1559  
1560 1560  (((
1561 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1562 1562  )))
1563 1563  
1564 1564  * (((
1565 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1566 1566  )))
1567 1567  * (((
1568 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1569 1569  )))
1570 1570  
1571 1571  (((
1572 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1573 1573  )))
1574 1574  
1575 1575  (((
... ... @@ -1577,7 +1577,7 @@
1577 1577  )))
1578 1578  
1579 1579  (((
1580 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1581 1581  )))
1582 1582  
1583 1583  (((
... ... @@ -1585,22 +1585,22 @@
1585 1585  )))
1586 1586  
1587 1587  (((
1588 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1589 1589  )))
1590 1590  
1591 1591  (((
1592 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1593 1593  )))
1594 1594  
1595 1595  * (((
1596 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1597 1597  )))
1598 1598  * (((
1599 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1600 1600  )))
1601 1601  
1602 1602  (((
1603 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1604 1604  )))
1605 1605  
1606 1606  (((
... ... @@ -1608,7 +1608,7 @@
1608 1608  )))
1609 1609  
1610 1610  (((
1611 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1612 1612  )))
1613 1613  
1614 1614  (((
... ... @@ -1616,22 +1616,22 @@
1616 1616  )))
1617 1617  
1618 1618  (((
1619 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1620 1620  )))
1621 1621  
1622 1622  (((
1623 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1624 1624  )))
1625 1625  
1626 1626  * (((
1627 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1628 1628  )))
1629 1629  * (((
1630 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1631 1631  )))
1632 1632  
1633 1633  (((
1634 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1635 1635  )))
1636 1636  
1637 1637  (((
... ... @@ -1639,24 +1639,37 @@
1639 1639  )))
1640 1640  
1641 1641  (((
1642 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1643 1643  )))
1644 1644  
1645 1645  
1646 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1647 1647  
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1648 1648  
1649 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1650 1650  
1651 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1635 +[[image:image-20230616235145-1.png]]
1652 1652  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1638 +
1639 +[[image:image-20240219115718-1.png]]
1640 +
1641 +
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1643 +
1644 +
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 +
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1653 1653  [[image:1653357531600-905.png]]
1654 1654  
1655 1655  
1656 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1657 1657  
1658 1658  
1659 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1660 1660  
1661 1661  
1662 1662  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1663,20 +1663,19 @@
1663 1663  
1664 1664  [[image:1653357592296-182.png]]
1665 1665  
1666 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1667 1667  
1668 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1669 1669  
1670 1670  
1671 1671  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1672 1672  
1673 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1674 1674  
1675 1675  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1676 1676  
1677 1677  **Black:  GND**
1678 1678  
1679 -
1680 1680  **Connection diagram:**
1681 1681  
1682 1682  [[image:1653357640609-758.png]]
... ... @@ -1684,239 +1684,146 @@
1684 1684  [[image:1653357648330-671.png||height="155" width="733"]]
1685 1685  
1686 1686  
1687 -=== 3.6.5 Relay Output ===
1682 +Example: Connecting to a regulated power supply to measure voltage
1688 1688  
1684 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1689 1689  
1690 -(((
1691 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1686 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1692 1692  
1693 -**Note**: RO pins go to Open(NO) when device is power off.
1694 -)))
1688 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1695 1695  
1696 -[[image:image-20220524100215-9.png]]
1697 1697  
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1698 1698  
1699 -[[image:image-20220524100215-10.png||height="382" width="723"]]
1693 +(% style="color:red" %)**Red:  12~~24v**
1700 1700  
1695 +**Black:  GND**
1701 1701  
1702 -== 3.7 LEDs Indicators ==
1703 1703  
1698 +=== 3.6.5 Relay Output ===
1704 1704  
1705 -[[image:image-20220524100748-11.png]]
1706 1706  
1707 -
1708 -= 4. Use AT Command =
1709 -
1710 -== 4.1 Access AT Command ==
1711 -
1712 -
1713 1713  (((
1714 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1715 -)))
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1716 1716  
1717 -(((
1718 -
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1719 1719  )))
1720 1720  
1721 -[[image:1653358238933-385.png]]
1707 +[[image:image-20220524100215-9.png]]
1722 1722  
1723 1723  
1724 -(((
1725 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1726 -)))
1710 +[[image:image-20220524100215-10.png||height="382" width="723"]]
1727 1727  
1728 -[[image:1653358355238-883.png]]
1729 1729  
1713 +== 3.7 LEDs Indicators ==
1730 1730  
1731 -(((
1732 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1733 -)))
1734 1734  
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1718 +|**PWR**|Always on if there is power
1719 +|**TX**|(((
1735 1735  (((
1736 -AT+<CMD>?        : Help on <CMD>
1721 +Device boot: TX blinks 5 times.
1737 1737  )))
1738 1738  
1739 1739  (((
1740 -AT+<CMD>         : Run <CMD>
1725 +Successful join network: TX ON for 5 seconds.
1741 1741  )))
1742 1742  
1743 1743  (((
1744 -AT+<CMD>=<value> : Set the value
1729 +Transmit a LoRa packet: TX blinks once
1745 1745  )))
1746 -
1747 -(((
1748 -AT+<CMD>=?       :  Get the value
1749 1749  )))
1750 -
1751 -(((
1752 -ATZ: Trig a reset of the MCU
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1753 1753  )))
1754 -
1755 -(((
1756 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1738 +|**DI2**|(((
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1757 1757  )))
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1758 1758  
1759 -(((
1760 -AT+DEUI: Get or Set the Device EUI
1761 -)))
1744 += 4. Using AT Commands =
1762 1762  
1763 -(((
1764 -AT+DADDR: Get or Set the Device Address
1765 -)))
1746 +The LT-22222-L supports programming using AT Commands.
1766 1766  
1767 -(((
1768 -AT+APPKEY: Get or Set the Application Key
1769 -)))
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1770 1770  
1771 1771  (((
1772 -AT+NWKSKEY: Get or Set the Network Session Key
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1773 1773  )))
1774 1774  
1775 -(((
1776 -AT+APPSKEY:  Get or Set the Application Session Key
1777 -)))
1754 +[[image:1653358238933-385.png]]
1778 1778  
1779 -(((
1780 -AT+APPEUI:  Get or Set the Application EUI
1781 -)))
1782 1782  
1783 1783  (((
1784 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1785 1785  )))
1786 1786  
1787 -(((
1788 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1789 -)))
1761 +[[image:1653358355238-883.png]]
1790 1790  
1791 -(((
1792 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1793 -)))
1794 1794  
1795 1795  (((
1796 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1797 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1798 1798  
1799 -(((
1800 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1767 +== 4.2 LT-22222-L related AT commands ==
1801 1801  )))
1802 1802  
1803 1803  (((
1804 -AT+RX2FQ: Get or Set the Rx2 window frequency
1805 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1806 1806  
1807 -(((
1808 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1809 1809  )))
1810 1810  
1811 -(((
1812 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1813 -)))
1814 1814  
1815 -(((
1816 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1817 -)))
1818 -
1819 -(((
1820 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1821 -)))
1822 -
1823 -(((
1824 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1825 -)))
1826 -
1827 -(((
1828 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1829 -)))
1830 -
1831 -(((
1832 -AT+NWKID: Get or Set the Network ID
1833 -)))
1834 -
1835 -(((
1836 -AT+FCU: Get or Set the Frame Counter Uplink
1837 -)))
1838 -
1839 -(((
1840 -AT+FCD: Get or Set the Frame Counter Downlink
1841 -)))
1842 -
1843 -(((
1844 -AT+CLASS: Get or Set the Device Class
1845 -)))
1846 -
1847 -(((
1848 -AT+JOIN: Join network
1849 -)))
1850 -
1851 -(((
1852 -AT+NJS: Get OTAA Join Status
1853 -)))
1854 -
1855 -(((
1856 -AT+SENDB: Send hexadecimal data along with the application port
1857 -)))
1858 -
1859 -(((
1860 -AT+SEND: Send text data along with the application port
1861 -)))
1862 -
1863 -(((
1864 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1865 -)))
1866 -
1867 -(((
1868 -AT+RECV: Print last received data in raw format
1869 -)))
1870 -
1871 -(((
1872 -AT+VER:  Get current image version and Frequency Band
1873 -)))
1874 -
1875 -(((
1876 -AT+CFM: Get or Set the confirmation mode (0-1)
1877 -)))
1878 -
1879 -(((
1880 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1881 -)))
1882 -
1883 -(((
1884 -AT+SNR: Get the SNR of the last received packet
1885 -)))
1886 -
1887 -(((
1888 -AT+RSSI: Get the RSSI of the last received packet
1889 -)))
1890 -
1891 -(((
1892 -AT+TDC: Get or set the application data transmission interval in ms
1893 -)))
1894 -
1895 -(((
1896 -AT+PORT: Get or set the application port
1897 -)))
1898 -
1899 -(((
1900 -AT+DISAT: Disable AT commands
1901 -)))
1902 -
1903 -(((
1904 -AT+PWORD: Set password, max 9 digits
1905 -)))
1906 -
1907 -(((
1908 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1909 -)))
1910 -
1911 -(((
1912 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1913 -)))
1914 -
1915 -(((
1916 -AT+CFG: Print all settings
1917 -)))
1918 -
1919 -
1920 1920  == 4.2 Common AT Command Sequence ==
1921 1921  
1922 1922  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1925,41 +1925,41 @@
1925 1925  
1926 1926  
1927 1927  (((
1928 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
1929 1929  )))
1930 1930  )))
1931 1931  
1932 1932  (((
1933 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1934 1934  )))
1935 1935  
1936 1936  (((
1937 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
1938 1938  )))
1939 1939  
1940 1940  (((
1941 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
1942 1942  )))
1943 1943  
1944 1944  (((
1945 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
1946 1946  )))
1947 1947  
1948 1948  (((
1949 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
1950 1950  )))
1951 1951  
1952 1952  
1953 1953  (((
1954 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
1955 1955  )))
1956 1956  
1957 1957  (((
1958 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1959 1959  )))
1960 1960  
1961 1961  (((
1962 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1963 1963  )))
1964 1964  
1965 1965  
... ... @@ -2036,8 +2036,6 @@
2036 2036  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2037 2037  
2038 2038  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2039 -
2040 -
2041 2041  )))
2042 2042  
2043 2043  (((
... ... @@ -2044,9 +2044,6 @@
2044 2044  [[image:1653359097980-169.png||height="188" width="729"]]
2045 2045  )))
2046 2046  
2047 -(((
2048 -
2049 -)))
2050 2050  
2051 2051  === 4.2.3 Change to Class A ===
2052 2052  
... ... @@ -2054,44 +2054,58 @@
2054 2054  (((
2055 2055  (% style="color:blue" %)**If sensor JOINED:**
2056 2056  
2057 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2058 -ATZ**
1954 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1955 +
1956 +(% style="background-color:#dcdcdc" %)**ATZ**
2059 2059  )))
2060 2060  
2061 2061  
2062 2062  = 5. Case Study =
2063 2063  
2064 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2065 2065  
2066 2066  
2067 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2068 2068  
2069 2069  
2070 2070  = 6. FAQ =
2071 2071  
2072 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2073 2073  
1972 +== 6.1 How to update the firmware? ==
2074 2074  
2075 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2076 2076  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
2077 2077  * Support new features
2078 -* For bug fix
2079 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
2080 2080  
2081 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
2082 2082  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
2083 2083  [[image:1653359603330-121.png]]
2084 2084  
2085 2085  
2086 -(((
2087 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2088 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2089 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2090 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2091 2091  
2092 2092  (((
2002 +(((
2093 2093  (% style="color:blue" %)**For LT-22222-L**(%%):
2094 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2095 2095  )))
2096 2096  
2097 2097  
... ... @@ -2106,15 +2106,14 @@
2106 2106  [[image:image-20220524104033-15.png]]
2107 2107  
2108 2108  
2109 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2110 2110  
2111 -
2112 2112  [[image:1653360054704-518.png||height="186" width="745"]]
2113 2113  
2114 2114  
2115 2115  (((
2116 2116  (((
2117 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2118 2118  
2119 2119  
2120 2120  )))
... ... @@ -2121,13 +2121,13 @@
2121 2121  )))
2122 2122  
2123 2123  (((
2124 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2125 2125  )))
2126 2126  
2127 2127  (((
2128 2128  
2129 2129  
2130 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2131 2131  
2132 2132  
2133 2133  )))
... ... @@ -2134,13 +2134,13 @@
2134 2134  
2135 2135  (((
2136 2136  (((
2137 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2138 2138  )))
2139 2139  )))
2140 2140  
2141 2141  (((
2142 2142  (((
2143 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2144 2144  
2145 2145  
2146 2146  )))
... ... @@ -2147,7 +2147,7 @@
2147 2147  )))
2148 2148  
2149 2149  (((
2150 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2151 2151  
2152 2152  
2153 2153  )))
... ... @@ -2172,13 +2172,21 @@
2172 2172  
2173 2173  (((
2174 2174  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2085 +
2175 2175  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2087 +
2176 2176  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2089 +
2177 2177  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2091 +
2178 2178  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2093 +
2179 2179  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2095 +
2180 2180  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2097 +
2181 2181  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2099 +
2182 2182  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2183 2183  )))
2184 2184  
... ... @@ -2190,61 +2190,61 @@
2190 2190  [[image:1653360498588-932.png||height="485" width="726"]]
2191 2191  
2192 2192  
2193 -== 6.4 How to change the uplink interval ==
2111 +== 6.4 How to change the uplink interval? ==
2194 2194  
2195 2195  
2196 2196  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2197 2197  
2198 2198  
2199 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2200 2200  
2201 2201  
2202 2202  (((
2203 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2204 2204  
2205 2205  
2206 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2207 2207  
2208 2208  
2209 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2210 -
2211 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2212 2212  )))
2213 2213  
2214 2214  (((
2215 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2216 2216  
2217 2217  
2218 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2219 2219  
2220 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2221 2221  
2222 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2223 2223  
2224 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2225 2225  
2226 2226  
2227 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2145 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2228 2228  
2229 2229  
2230 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2231 2231  
2232 2232  
2233 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2151 +The firmware version must be at least 1.6.0.
2234 2234  
2235 2235  
2236 -== 6.9 Can LT22222-L save RO state? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2237 2237  
2238 2238  
2239 -Firmware version needs to be no less than 1.6.0.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2240 2240  
2241 2241  
2242 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2243 2243  )))
2244 2244  
2245 2245  (((
2246 2246  (((
2247 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2248 2248  
2249 2249  
2250 2250  )))
... ... @@ -2251,78 +2251,84 @@
2251 2251  )))
2252 2252  
2253 2253  (((
2254 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2255 2255  )))
2256 2256  
2257 2257  (((
2258 2258  
2259 2259  
2260 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2261 2261  
2262 2262  
2263 2263  )))
2264 2264  
2265 2265  (((
2266 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2267 2267  )))
2268 2268  
2269 2269  (((
2270 2270  
2271 2271  
2272 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2273 2273  
2274 2274  
2275 2275  )))
2276 2276  
2277 2277  (((
2278 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2279 2279  )))
2280 2280  
2281 2281  
2282 -= 8. Order Info =
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2283 2283  
2284 2284  
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2205 +
2206 +
2207 += 8. Ordering information =
2208 +
2209 +
2285 2285  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2286 2286  
2287 2287  (% style="color:#4f81bd" %)**XXX:**
2288 2288  
2289 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2290 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2291 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2292 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2293 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2294 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2295 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2296 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2297 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2298 2298  
2299 -= 9. Packing Info =
2224 += 9. Packing information =
2300 2300  
2301 2301  
2302 -**Package Includes**:
2227 +**Package includes**:
2303 2303  
2304 2304  * LT-22222-L I/O Controller x 1
2305 2305  * Stick Antenna for LoRa RF part x 1
2306 2306  * Bracket for controller x1
2307 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2308 2308  
2309 2309  **Dimension and weight**:
2310 2310  
2311 2311  * Device Size: 13.5 x 7 x 3 cm
2312 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2313 2313  * Package Size / pcs : 14.5 x 8 x 5 cm
2314 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2315 2315  
2316 2316  = 10. Support =
2317 2317  
2318 2318  
2319 2319  * (((
2320 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2321 2321  )))
2322 2322  * (((
2323 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2324 2324  
2325 -
2326 2326  
2327 2327  )))
2328 2328  
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content