Last modified by Mengting Qiu on 2025/06/04 18:42

From version 118.5
edited by Xiaoling
on 2023/05/17 10:51
Change comment: There is no comment for this version
To version 201.1
edited by Dilisi S
on 2024/11/19 06:06
Change comment: Nov 18 - AT Commands edit

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa I/O Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,36 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +{{info}}
27 +**This manual is also applicable to the LT-33222-L.**
28 +{{/info}}
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
30 -)))
30 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
31 31  
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
32 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
34 34  )))
35 -
36 -(((
37 -The use environment includes:
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
37 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
42 42  )))
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
41 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
43 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
44 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
45 +* Setup your own private LoRaWAN network.
46 +
47 +{{info}}
48 + You can use a LoRaWAN gateway, such as the [[Dragino LG308>>https://www.dragino.com/products/lora-lorawan-gateway/item/140-lg308.html]], to expand or create LoRaWAN coverage in your area.
49 +{{/info}}
48 48  )))
49 49  
50 50  (((
... ... @@ -53,317 +53,315 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
58 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
62 +* STM32L072xxxx MCU
63 +* SX1276/78 Wireless Chip 
64 +* Power Consumption:
65 +** Idle: 4mA@12V
66 +** 20dB Transmit: 34mA@12V
67 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
69 +(% style="color:#037691" %)**Interface for Model: LT22222-L:**
82 82  
83 -(((
84 -
71 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50V, or 220V with optional external resistor)
72 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
73 +* 2 x Relay Output (5A@250VAC / 30VDC)
74 +* 2 x 0~~20mA Analog Input (res:0.01mA)
75 +* 2 x 0~~30V Analog Input (res:0.01V)
76 +* Power Input 7~~ 24V DC. 
85 85  
86 -(% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
78 +(% style="color:#037691" %)**LoRa Spec:**
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
80 +* Frequency Range:
81 +** Band 1 (HF): 862 ~~ 1020 MHz
82 +** Band 2 (LF): 410 ~~ 528 MHz
83 +* 168 dB maximum link budget.
84 +* +20 dBm - 100 mW constant RF output vs.
85 +* +14 dBm high-efficiency PA.
86 +* Programmable bit rate up to 300 kbps.
87 +* High sensitivity: down to -148 dBm.
88 +* Bullet-proof front end: IIP3 = -12.5 dBm.
89 +* Excellent blocking immunity.
90 +* Low RX current of 10.3 mA, 200 nA register retention.
91 +* Fully integrated synthesizer with a resolution of 61 Hz.
92 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
93 +* Built-in bit synchronizer for clock recovery.
94 +* Preamble detection.
95 +* 127 dB Dynamic Range RSSI.
96 +* Automatic RF Sense and CAD with ultra-fast AFC.
97 +* Packet engine up to 256 bytes with CRC.
107 107  
108 -(((
109 -
99 +== 1.3 Features ==
110 110  
111 -(% style="color:#037691" %)**LoRa Spec:**
112 -)))
101 +* LoRaWAN Class A & Class C modes
102 +* Optional Customized LoRa Protocol
103 +* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
104 +* AT Commands to change parameters
105 +* Remotely configure parameters via LoRaWAN Downlink
106 +* Firmware upgradable via program port
107 +* Counting
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
109 +== 1.4 Applications ==
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
111 +* Smart buildings & home automation
112 +* Logistics and supply chain management
113 +* Smart metering
114 +* Smart agriculture
115 +* Smart cities
116 +* Smart factory
170 170  
118 +== 1.5 Hardware Variants ==
171 171  
172 -
120 +(% style="width:524px" %)
121 +|(% style="width:94px" %)**Model**|(% style="width:98px" %)**Photo**|(% style="width:329px" %)**Description**
122 +|(% style="width:94px" %)**LT33222-L**|(% style="width:98px" %)(((
123 +[[image:/xwiki/bin/downloadrev/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LT-22222-L/WebHome/image-20230424115112-1.png?rev=1.1&width=58&height=106||alt="image-20230424115112-1.png" height="106" width="58"]]
124 +)))|(% style="width:329px" %)(((
125 +* 2 x Digital Input (Bi-direction)
126 +* 2 x Digital Output
127 +* 2 x Relay Output (5A@250VAC / 30VDC)
128 +* 2 x 0~~20mA Analog Input (res:0.01mA)
129 +* 2 x 0~~30V Analog Input (res:0.01v)
130 +* 1 x Counting Port
173 173  )))
174 174  
175 -== 1.3 Features ==
176 176  
177 177  
178 -* LoRaWAN Class A & Class C protocol
135 +== 2. Assembling the device ==
179 179  
180 -* Optional Customized LoRa Protocol
137 +== 2.1 Connecting the antenna ==
181 181  
182 -* Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
139 +Connect the LoRa antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper screw terminal block. Secure the antenna by tightening it clockwise.
183 183  
184 -* AT Commands to change parameters
141 +{{warning}}
142 +Warning! Do not power on the device without connecting the antenna.
143 +{{/warning}}
185 185  
186 -* Remote configure parameters via LoRa Downlink
145 +== 2.2 Terminals ==
187 187  
188 -* Firmware upgradable via program port
147 +The  LT-22222-L has two screw terminal blocks. The upper screw treminal block has 6 terminals and the lower screw terminal block has 10 terminals.
189 189  
190 -* Counting
149 +Upper screw terminal block (from left to right):
191 191  
192 -== 1.4  Applications ==
151 +(% style="width:634px" %)
152 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
153 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
154 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
155 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
156 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
157 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
158 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
193 193  
160 +Lower screw terminal block (from left to right):
194 194  
195 -* Smart Buildings & Home Automation
162 +(% style="width:633px" %)
163 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
164 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
165 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
166 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
167 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
168 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
169 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
170 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
171 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
172 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
173 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
196 196  
197 -* Logistics and Supply Chain Management
175 +== 2.3 Powering the device ==
198 198  
199 -* Smart Metering
177 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect your power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator **(PWR) LED** will turn on when the device is properly powered.
200 200  
201 -* Smart Agriculture
179 +Once powered, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** The Things Stack. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
202 202  
203 -* Smart Cities
181 +{{warning}}
182 +We recommend that you power on the LT-22222-L after configuring its registration information with a LoRaWAN network server. Otherwise, the device will continuously send join-request messages to attempt to join a LoRaWAN network but will fail.
183 +{{/warning}}
204 204  
205 -* Smart Factory
206 206  
207 -== 1.5 Hardware Variants ==
186 +[[image:1653297104069-180.png]]
208 208  
209 209  
210 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
212 -|(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 -(% style="text-align:center" %)
214 -[[image:image-20230424115112-1.png||height="106" width="58"]]
215 -)))|(% style="width:334px" %)(((
216 -* 2 x Digital Input (Bi-direction)
217 -* 2 x Digital Output
218 -* 2 x Relay Output (5A@250VAC / 30VDC)
219 -* 2 x 0~~20mA Analog Input (res:0.01mA)
220 -* 2 x 0~~30V Analog Input (res:0.01v)
221 -* 1 x Counting Port
222 -)))
189 += 3. Registering with a LoRaWAN Network Server =
223 223  
224 -= 2. Power ON Device =
191 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
225 225  
193 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LED** will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
195 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
230 230  
231 -(((
232 -PWR will on when device is properly powered.
197 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
233 233  
234 -
235 -)))
199 +[[image:image-20220523172350-1.png||height="266" width="864"]]
236 236  
237 -[[image:1653297104069-180.png]]
201 +=== 3.2.1 Prerequisites ===
238 238  
203 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
239 239  
240 -= 3. Operation Mode =
205 +[[image:image-20230425173427-2.png||height="246" width="530"]]
241 241  
242 -== 3.1 How it works? ==
207 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
243 243  
209 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
211 +The Things Stack Sandbox was formally called The Things Stack Community Edition.
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
213 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
214 +* Create an application with The Things Stack if you do not have one yet.
215 +* Go to your application page and click on the **End devices** in the left menu.
216 +* On the End devices page, click on **+ Register end device**. Two registration options are available:
252 252  
218 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
220 +* On the **Register end device** page:
221 +** Select the option **Select the end device in the LoRaWAN Device Repository **under **Input method**.
222 +** Select the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)** from the respective dropdown lists.
223 +*** **End device brand**: Dragino Technology Co., Limited
224 +*** **Model**: LT22222-L I/O Controller
225 +*** **Hardware ver**: Unknown
226 +*** **Firmware ver**: 1.6.0
227 +*** **Profile (Region)**: Select the region that matches your device.
228 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
255 255  
230 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
259 259  
260 -
261 -)))
233 +* Register end device page continued...
234 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'.
235 +** In the **DevEUI** field, enter the **DevEUI**.
236 +** In the **AppKey** field, enter the **AppKey.**
237 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
238 +** Under **After registration**, select the **View registered end device** option.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
240 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
264 264  
242 +==== ====
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
244 +==== 3.2.2.2 Adding device manually ====
268 268  
269 -
270 -)))
246 +* On the **Register end device** page:
247 +** Select the option **Enter end device specifies manually** under **Input method**.
248 +** Select the **Frequency plan** that matches your device from the **Frequency plan** dropdown list.
249 +** Select the **LoRaWAN version** as **LoRaWAN Specification 1.0.3**
250 +** Select the **Regional Parameters version** as** RP001 Regional Parameters 1.0.3 revision A**
251 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the hidden section.
252 +** Select the option **Over the air activation (OTAA)** under the **Activation mode.**
253 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities** dropdown list.
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
255 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
258 +* Register end device page continued...
259 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button. If The Things Stack accepts the JoinEUI you provided, it will display the message 'This end device can be registered on the network'
260 +** In the **DevEUI** field, enter the **DevEUI**.
261 +** In the **AppKey** field, enter the **AppKey**.
262 +** In the **End device ID** field, enter a unique name for your LT-22222-N within this application.
263 +** Under **After registration**, select the **View registered end device** option.
264 +** Click the **Register end device** button.
281 281  
266 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 -**Add APP EUI in the application.**
269 +You will be navigated to the **Device overview** page.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
288 288  
272 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
289 289  
290 -**Add APP KEY and DEV EUI**
291 291  
292 -[[image:1653298023685-319.png]]
275 +==== 3.2.2.3 Joining ====
293 293  
277 +On the Device overview page, click on **Live data** tab. The Live data panel for your device will display.
294 294  
279 +Now power on your LT-22222-L. It will begin joining The Things Stack. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
298 298  
299 -
300 -)))
282 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
301 301  
302 -[[image:1653298044601-602.png||height="405" width="709"]]
303 303  
285 +By default, you will receive an uplink data message from the device every 10 minutes.
304 304  
305 -== 3.3 Uplink Payload ==
287 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
306 306  
289 +[[image:lt-22222-ul-payload-decoded.png]]
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
292 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
293 +
294 +{{info}}
295 +The Things Stack provides two levels of payload formatters: application level and device level. The device-level payload formatters **override **the application-level payload formatters.
296 +{{/info}}
297 +
298 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
299 +
300 +
301 +== 3.3 Working Modes and Uplink Payload formats ==
302 +
303 +
304 +The LT-22222-L has 5 **working modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
305 +
306 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
307 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
309 +
312 312  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
311 +
313 313  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
313 +
314 314  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
315 +
315 315  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316 316  
318 +The uplink messages are sent over LoRaWAN FPort=2. By default, an uplink message is sent every 10 minutes.
319 +
317 317  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318 318  
319 -
320 320  (((
321 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
323 +This is the default mode.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
325 +The uplink payload is 11 bytes long.
326 +
327 +(% style="color:red" %)**Note:The maximum count depends on the bytes number of bytes.
328 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
329 +It starts counting again when it reaches the maximum value.**(% style="display:none" wfd-invisible="true" %)
330 +
331 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
332 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
325 325  |Value|(((
326 -AVI1
327 -voltage
334 +AVI1 voltage
328 328  )))|(((
329 -AVI2
330 -voltage
336 +AVI2 voltage
331 331  )))|(((
332 -ACI1
333 -Current
338 +ACI1 Current
334 334  )))|(((
335 -ACI2
336 -Current
337 -)))|DIDORO*|(((
340 +ACI2 Current
341 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 -
343 343  (((
344 -
347 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
345 345  
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347 -
348 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
349 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
350 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
351 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
354 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
355 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
356 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -* RO is for relay. ROx=1 : close,ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
358 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
360 +For example, if the payload is: [[image:image-20220523175847-2.png]]
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
361 361  
363 +**The interface values can be calculated as follows:  **
362 362  
363 -**The value for the interface is **
365 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 -
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
369 369  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -370,116 +370,113 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
373 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
375 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
376 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
377 +* **[1] DI3 - not used for LT-22222-L.**
378 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
379 +* [1] DI1 channel input state:
380 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
381 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
382 +** DI1 LED is ON in both cases.
383 +* **[0] DO3 - not used for LT-22222-L.**
384 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
385 +* [0] DO1 channel output state:
386 +** DO1 is FLOATING when there is no load between DO1 and V+.
387 +** DO1 is HIGH and there is a load between DO1 and V+.
388 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
390 +Reserve = 0
379 379  
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
392 +MOD = 1
382 382  
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
398 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
402 +The uplink payload is 11 bytes long.
402 402  
403 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 -|Size(bytes)|4|4|1|1|1
405 -|Value|COUNT1|COUNT2 |DIDORO*|(((
406 -Reserve
404 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
405 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
406 +It starts counting again when it reaches the maximum value.**
407 407  
408 -
408 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
409 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
410 +|Value|COUNT1|COUNT2 |DIDORO*|(((
411 +Reserve
409 409  )))|MOD
410 410  )))
411 411  
412 412  (((
413 -
416 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
414 414  
415 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
420 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420 -
421 -RO is for relay. ROx=1 : close,ROx=0 always open.
422 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
422 422  )))
423 423  
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
425 +* FIRST: Indicates that this is the first packet after joining the network.
426 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 -)))
429 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
430 430  
431 -(((
432 432  
432 +)))
433 433  
434 -**To use counting mode, please run:**
434 +(((
435 +**To activate this mode, run the following AT commands:**
435 435  )))
436 436  
438 +(((
437 437  (% class="box infomessage" %)
438 438  (((
439 -(((
440 -(((
441 441  **AT+MOD=2**
442 -)))
443 443  
444 -(((
445 445  **ATZ**
446 446  )))
447 447  )))
448 -)))
449 449  
450 450  (((
451 451  
452 452  
453 453  (% style="color:#4f81bd" %)**AT Commands for counting:**
454 -
455 -
456 456  )))
457 457  
458 458  (((
459 459  **For LT22222-L:**
460 460  
456 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
458 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
463 463  
464 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
460 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
465 465  
466 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
462 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
467 467  
468 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
464 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471 -
472 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
466 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
473 473  )))
474 474  
475 475  
476 476  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477 477  
472 +(% style="color:red" %)**Note: The maximum count depends on the bytes it is.
473 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
474 +It starts counting again when it reaches the maximum value.**
478 478  
479 -**LT22222-L**: This mode the DI1 is used as a counting pin.
476 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|Size(bytes)|4|2|2|1|1|1
478 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
479 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
483 483  |Value|COUNT1|(((
484 484  ACI1 Current
485 485  )))|(((
... ... @@ -486,181 +486,192 @@
486 486  ACI2 Current
487 487  )))|DIDORO*|Reserve|MOD
488 488  
489 -[[image:image-20220523181246-5.png]]
490 -
491 491  (((
492 -
487 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
493 493  
494 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
490 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
491 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
495 495  )))
496 496  
497 -[[image:image-20220523181301-6.png]]
494 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
495 +* FIRST: Indicates that this is the first packet after joining the network.
496 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
498 498  
499 -* RO is for relay. ROx=1 : close,ROx=0 always open.
500 -* FIRST: Indicate this is the first packet after join network.
501 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
502 -
503 503  (((
504 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
499 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
505 505  )))
506 506  
507 507  
508 508  (((
509 -**To use counting mode, please run:**
504 +**To activate this mode, run the following AT commands:**
510 510  )))
511 511  
507 +(((
512 512  (% class="box infomessage" %)
513 513  (((
514 -(((
515 -(((
516 516  **AT+MOD=3**
517 -)))
518 518  
519 -(((
520 520  **ATZ**
521 521  )))
522 522  )))
523 -)))
524 524  
525 525  (((
526 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
517 +AT Commands for counting:
518 +
519 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
527 527  )))
528 528  
529 529  
530 530  === 3.3.4 AT+MOD~=4, Single DI Counting + 1 x Voltage Counting ===
531 531  
525 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
526 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
527 +It starts counting again when it reaches the maximum value.**
532 532  
529 +
533 533  (((
534 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
535 535  )))
536 536  
537 537  (((
538 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
535 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
536 +
537 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
538 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
539 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
540 +Reserve
541 +)))|MOD
539 539  )))
540 540  
541 -[[image:image-20220523181903-8.png]]
542 -
543 -
544 544  (((
545 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
545 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
546 +
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
548 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
549 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
546 546  )))
547 547  
548 -[[image:image-20220523181727-7.png]]
552 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
553 +* FIRST: Indicates that this is the first packet after joining the network.
554 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
549 549  
550 -* RO is for relay. ROx=1 : close,ROx=0 always open.
551 -* FIRST: Indicate this is the first packet after join network.
552 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
553 -
554 554  (((
555 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
556 -)))
557 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
557 557  
558 -(((
559 559  
560 +)))
560 560  
561 -**To use this mode, please run:**
562 +(((
563 +**To activate this mode, run the following AT commands:**
562 562  )))
563 563  
566 +(((
564 564  (% class="box infomessage" %)
565 565  (((
566 -(((
567 -(((
568 568  **AT+MOD=4**
569 -)))
570 570  
571 -(((
572 572  **ATZ**
573 573  )))
574 574  )))
575 -)))
576 576  
577 -
578 578  (((
579 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
576 +AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
580 580  )))
581 581  
582 582  (((
583 -
580 +**In addition to that, below are the commands for AVI1 Counting:**
584 584  
585 -**Plus below command for AVI1 Counting:**
582 +(% style="color:blue" %)**AT+SETCNT=3,60 **(%%)**(Sets AVI1 Count to 60)**
586 586  
584 +(% style="color:blue" %)**AT+VOLMAX=20000 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
587 587  
588 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
586 +(% style="color:blue" %)**AT+VOLMAX=20000,0 **(%%)**(If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
589 589  
590 -(% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
591 -
592 -(% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
593 -
594 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
588 +(% style="color:blue" %)**AT+VOLMAX=20000,1 **(%%)**(If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
595 595  )))
596 596  
597 597  
598 598  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
599 599  
594 +(% style="color:red" %)**Note:The maximum count depends on the bytes it is.
595 +The maximum count for four bytes is FFFFFFFF (hex) = 4294967295 (dec).
596 +It starts counting again when it reaches the maximum value.**
600 600  
601 -**LT22222-L**: This mode the DI1 is used as a counting pin.
602 602  
603 -[[image:image-20220523182334-9.png]]
599 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
604 604  
601 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
602 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
603 +|Value|(((
604 +AVI1 voltage
605 +)))|(((
606 +AVI2 voltage
607 +)))|(((
608 +ACI1 Current
609 +)))|COUNT1|DIDORO*|(((
610 +Reserve
611 +)))|MOD
612 +
605 605  (((
606 -
614 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
607 607  
608 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
616 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
617 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
618 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
609 609  )))
610 610  
611 -* RO is for relay. ROx=1 : closeROx=0 always open.
612 -* FIRST: Indicate this is the first packet after join network.
621 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
622 +* FIRST: Indicates that this is the first packet after joining the network.
613 613  * (((
614 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
624 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
615 615  )))
616 616  
617 617  (((
618 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
628 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
619 619  )))
620 620  
621 621  (((
622 -
623 -
624 -**To use this mode, please run:**
632 +**To activate this mode, run the following AT commands:**
625 625  )))
626 626  
635 +(((
627 627  (% class="box infomessage" %)
628 628  (((
629 -(((
630 -(((
631 631  **AT+MOD=5**
632 -)))
633 633  
634 -(((
635 635  **ATZ**
636 636  )))
637 637  )))
638 -)))
639 639  
640 640  (((
641 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
645 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
642 642  )))
643 643  
644 644  
645 -=== 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
649 +=== 3.3.6 AT+ADDMOD~=6 (Trigger Mode, Optional) ===
646 646  
647 647  
648 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
652 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate __alongside__ with other modes.**
649 649  
650 -For example, if user has configured below commands:
654 +For example, if you configure the following commands:
651 651  
652 -* **AT+MOD=1 ** **~-~->**  The normal working mode
653 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
656 +* **AT+MOD=1 ** **~-~->**  Sets the default working mode
657 +* **AT+ADDMOD6=1**   **~-~->**  Enables trigger mode
654 654  
655 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
659 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. It will send uplink packets in two cases:
656 656  
657 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
658 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
661 +1. Periodic uplink: Based on TDC time. The payload is the same as in normal mode (MOD=1 as set above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
662 +1. (((
663 +Trigger uplink: sent when a trigger condition is met. In this case, LT will send two packets
659 659  
660 -(% style="color:#037691" %)**AT Command to set Trigger Condition**:
665 +* The first uplink uses the payload specified in trigger mode (MOD=6).
666 +* The second packet uses the normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**confirmed uplinks.**
667 +)))
661 661  
669 +(% style="color:#037691" %)**AT Commands to set Trigger Conditions**:
662 662  
663 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
671 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
664 664  
665 665  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
666 666  
... ... @@ -667,27 +667,25 @@
667 667  
668 668  **Example:**
669 669  
670 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
678 +AT+AVLIM=3000,6000,0,2000 (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
671 671  
672 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
680 +AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
673 673  
674 674  
683 +(% style="color:#4f81bd" %)**Trigger based on current**:
675 675  
676 -(% style="color:#4f81bd" %)**Trigger base on current**:
677 -
678 678  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
679 679  
680 680  
681 681  **Example:**
682 682  
683 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
690 +AT+ACLIM=10000,15000,0,0 (triggers an uplink if AC1 current is lower than 10mA or higher than 15mA)
684 684  
685 685  
693 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
686 686  
687 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
695 +DI status triggers Flag.
688 688  
689 -DI status trigger Flag.
690 -
691 691  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
692 692  
693 693  
... ... @@ -696,71 +696,116 @@
696 696  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
697 697  
698 698  
699 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
705 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
700 700  
701 701  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
702 702  
703 703  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
704 704  
705 - AA: Code for this downlink Command:
711 + AA: Type Code for this downlink Command:
706 706  
707 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
713 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
708 708  
709 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
715 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
710 710  
711 - yy2 yy2: AC1 or AV1 high limit.
717 + yy2 yy2: AC1 or AV1 HIGH limit.
712 712  
713 - yy3 yy3: AC2 or AV2 low limit.
719 + yy3 yy3: AC2 or AV2 LOW limit.
714 714  
715 - Yy4 yy4: AC2 or AV2 high limit.
721 + Yy4 yy4: AC2 or AV2 HIGH limit.
716 716  
717 717  
718 -**Example1**: AA 00 13 88 00 00 00 00 00 00
724 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
719 719  
720 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
726 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
721 721  
722 722  
723 -**Example2**: AA 02 01 00
729 +**Example 2**: AA 02 01 00
724 724  
725 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
731 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
726 726  
727 727  
728 -
729 729  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
730 730  
731 -MOD6 Payload : total 11 bytes payload
736 +MOD6 Payload: total of 11 bytes
732 732  
733 -[[image:image-20220524085923-1.png]]
738 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
739 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
740 +|Value|(((
741 +TRI_A FLAG
742 +)))|(((
743 +TRI_A Status
744 +)))|(((
745 +TRI_DI FLAG+STA
746 +)))|Reserve|Enable/Disable MOD6|(((
747 +MOD(6)
748 +)))
734 734  
750 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
735 735  
736 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
752 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
753 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
754 +|(((
755 +AV1_LOW
756 +)))|(((
757 +AV1_HIGH
758 +)))|(((
759 +AV2_LOW
760 +)))|(((
761 +AV2_HIGH
762 +)))|(((
763 +AC1_LOW
764 +)))|(((
765 +AC1_HIGH
766 +)))|(((
767 +AC2_LOW
768 +)))|(((
769 +AC2_HIGH
770 +)))
737 737  
738 -[[image:image-20220524090106-2.png]]
772 +* Each bit shows if the corresponding trigger has been configured.
739 739  
740 -* Each bits shows if the corresponding trigger has been configured.
741 -
742 742  **Example:**
743 743  
744 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
776 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
745 745  
746 746  
779 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
747 747  
748 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
781 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
782 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
783 +|(((
784 +AV1_LOW
785 +)))|(((
786 +AV1_HIGH
787 +)))|(((
788 +AV2_LOW
789 +)))|(((
790 +AV2_HIGH
791 +)))|(((
792 +AC1_LOW
793 +)))|(((
794 +AC1_HIGH
795 +)))|(((
796 +AC2_LOW
797 +)))|(((
798 +AC2_HIGH
799 +)))
749 749  
750 -[[image:image-20220524090249-3.png]]
801 +* Each bit shows which status has been triggered on this uplink.
751 751  
752 -* Each bits shows which status has been trigger on this uplink.
753 -
754 754  **Example:**
755 755  
756 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
805 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
757 757  
758 758  
759 759  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
760 760  
761 -[[image:image-20220524090456-4.png]]
810 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:674px" %)
811 +|(% style="width:64px" %)**bit 7**|(% style="width:68px" %)**bit 6**|(% style="width:63px" %)**bit 5**|(% style="width:66px" %)**bit 4**|(% style="width:109px" %)**bit 3**|(% style="width:93px" %)**bit 2**|(% style="width:109px" %)**bit 1**|(% style="width:99px" %)**bit 0**
812 +|(% style="width:64px" %)N/A|(% style="width:68px" %)N/A|(% style="width:63px" %)N/A|(% style="width:66px" %)N/A|(% style="width:109px" %)DI2_STATUS|(% style="width:93px" %)DI2_FLAG|(% style="width:109px" %)DI1_STATUS|(% style="width:99px" %)DI1_FLAG
762 762  
763 -* Each bits shows which status has been trigger on this uplink.
814 +* Each bits shows which status has been triggered on this uplink.
764 764  
765 765  **Example:**
766 766  
... ... @@ -787,279 +787,503 @@
787 787  )))
788 788  
789 789  
790 -== 3.4 ​Configure LT via AT or Downlink ==
841 +== 3.4 ​Configure LT-22222-L via AT Commands or Downlinks ==
791 791  
792 -
793 793  (((
794 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
844 +You can configure LT-22222-L I/O Controller via AT Commands or LoRaWAN Downlinks.
795 795  )))
796 796  
797 797  (((
798 798  (((
799 -There are two kinds of Commands:
849 +There are two tytes of commands:
800 800  )))
801 801  )))
802 802  
803 -* (% style="color:blue" %)**Common Commands**(%%): They should be available for each sensor, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
853 +* (% style="color:blue" %)**Common commands**(%%):
804 804  
805 -* (% style="color:blue" %)**Sensor Related Commands**(%%): These commands are special designed for LT-22222-L.  User can see these commands below:
855 +* (% style="color:blue" %)**Sensor-related commands**(%%):
806 806  
807 -=== 3.4.1 Common Commands ===
857 +=== 3.4.1 Common commands ===
808 808  
809 -
810 810  (((
811 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
860 +These are available for each sensorand include actions such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]s.
812 812  )))
813 813  
863 +=== 3.4.2 Sensor-related commands ===
814 814  
815 -=== 3.4.2 Sensor related commands ===
865 +These commands are specially designed for the LT-22222-L. Commands can be sent to the device using options such as an AT command or a LoRaWAN downlink payload.
816 816  
867 +
817 817  ==== 3.4.2.1 Set Transmit Interval ====
818 818  
870 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
819 819  
820 -Set device uplink interval.
872 +(% style="color:#037691" %)**AT command**
821 821  
822 -* (% style="color:#037691" %)**AT Command:**
874 +(% border="2" style="width:500px" %)
875 +|**Command**|AT+TDC=<time>
876 +|**Response**|
877 +|**Parameters**|**time** : uplink interval is in milliseconds
878 +|**Example**|(((
879 +AT+TDC=30000
823 823  
824 -(% style="color:blue" %)**AT+TDC=N **
881 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
882 +)))
825 825  
884 +(% style="color:#037691" %)**Downlink payload**
826 826  
827 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
886 +(% border="2" style="width:500px" %)
887 +|**Payload**|(((
888 +<prefix><time>
889 +)))
890 +|**Parameters**|(((
891 +**prefix** : 0x01
828 828  
893 +**time** : uplink interval is in milliseconds, represented by 3  bytes in hexadecimal.
894 +)))
895 +|**Example**|(((
896 +01 **00 75 30**
829 829  
830 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
898 +Sets the uplink interval to 30,000 milliseconds (30 seconds)
831 831  
832 -(% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
900 +Conversion: 30000 (dec) = 00 75 30 (hex)
833 833  
902 +See [[RapidTables>>https://www.rapidtables.com/convert/number/decimal-to-hex.html?x=30000]]
903 +)))
834 834  
905 +==== 3.4.2.2 Set the Working Mode (AT+MOD) ====
835 835  
836 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
907 +Sets the working mode.
837 837  
909 +(% style="color:#037691" %)**AT command**
838 838  
839 -Set work mode.
911 +(% border="2" style="width:500px" %)
912 +|(% style="width:97px" %)**Command**|(% style="width:413px" %)AT+MODE=<working_mode>
913 +|(% style="width:97px" %)**Response**|(% style="width:413px" %)
914 +|(% style="width:97px" %)**Parameters**|(% style="width:413px" %)(((
915 +**working_mode** :
840 840  
841 -* (% style="color:#037691" %)**AT Command:**
917 +1 = (Default mode/factory set):  2ACI + 2AVI + DI + DO + RO
842 842  
843 -(% style="color:blue" %)**AT+MOD=N  **
919 +2 = Double DI Counting + DO + RO
844 844  
921 +3 = Single DI Counting + 2 x ACI + DO + RO
845 845  
846 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
923 +4 = Single DI Counting + 1 x Voltage Counting + DO + RO
847 847  
925 +5 = Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
848 848  
849 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
927 +6 = Trigger Mode, Optional, used together with MOD1 ~~ MOD5
928 +)))
929 +|(% style="width:97px" %)**Example**|(% style="width:413px" %)(((
930 +AT+MOD=2
850 850  
851 -(% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
932 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
933 +)))
852 852  
935 +(% class="wikigeneratedid" %)
936 +(% style="color:#037691" %)**Downlink payload**
853 853  
938 +(% border="2" style="width:500px" %)
939 +|(% style="width:98px" %)**Payload**|(% style="width:400px" %)<prefix><working_mode>
940 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
941 +**prefix** : 0x0A
854 854  
855 -==== 3.4.2.3 Poll an uplink ====
943 +**working_mode** : Working mode, represented by 1 byte in hexadecimal.
944 +)))
945 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
946 +0A **02**
856 856  
948 +Sets the device to working mode 2 (Double DI Counting + DO + RO)
949 +)))
857 857  
858 -* (% style="color:#037691" %)**AT Command:**
951 +==== 3.4.2.3 Poll an uplink ====
859 859  
860 -There is no AT Command to poll uplink
953 +Requests an uplink from LT-22222-L.
861 861  
955 +(% style="color:#037691" %)**AT command**
862 862  
863 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
957 +There is no AT Command to request an uplink from LT-22222-L
864 864  
865 -(% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
959 +(% style="color:#037691" %)**Downlink payload**
866 866  
961 +(% border="2" style="width:500px" %)
962 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix>FF
963 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)**prefix** : 0x08
964 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
965 +08 FF
867 867  
868 -**Example**: 0x08FF, ask device to send an Uplink
967 +Requests an uplink from LT-22222-L.
968 +)))
869 869  
970 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
870 870  
972 +Enable or disable the trigger mode for the current working mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
871 871  
872 -==== 3.4.2.4 Enable Trigger Mode ====
974 +(% style="color:#037691" %)**AT Command**
873 873  
976 +(% border="2" style="width:500px" %)
977 +|(% style="width:95px" %)**Command**|(% style="width:403px" %)AT+ADDMOD6=<enable/disable trigger_mode>
978 +|(% style="width:95px" %)**Response**|(% style="width:403px" %)
979 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)(((
980 +**enable/disable trigger_mode** :
874 874  
875 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982 +1 = enable trigger mode
876 876  
877 -* (% style="color:#037691" %)**AT Command:**
984 +0 = disable trigger mode
985 +)))
986 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
987 +AT+ADDMOD6=1
878 878  
879 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
989 +Enable trigger mode for the current working mode
990 +)))
880 880  
881 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
992 +(% style="color:#037691" %)**Downlink payload**
882 882  
883 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
994 +(% border="2" style="width:500px" %)
995 +|(% style="width:97px" %)**Payload**|(% style="width:401px" %)<prefix><enable/disable trigger_mode>
996 +|(% style="width:97px" %)**Parameters**|(% style="width:401px" %)(((
997 +**prefix** : 0x0A 06 (two bytes in hexadecimal)
884 884  
999 +**working mode** : enable (1) or disable (0), represented by 1 byte in hexadecimal.
1000 +)))
1001 +|(% style="width:97px" %)**Example**|(% style="width:401px" %)(((
1002 +0A 06 **01**
885 885  
886 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
1004 +Enable trigger mode for the current working mode
1005 +)))
887 887  
888 -(% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
1007 +==== 3.4.2.5 Poll trigger settings ====
889 889  
1009 +Polls the trigger settings.
890 890  
1011 +(% style="color:#037691" %)**AT Command:**
891 891  
892 -==== 3.4.2.5 Poll trigger settings ====
1013 +There is no AT Command for this feature.
893 893  
1015 +(% style="color:#037691" %)**Downlink Payload**
894 894  
895 -Poll trigger settings,
1017 +(% border="2" style="width:500px" %)
1018 +|(% style="width:95px" %)**Payload**|(% style="width:403px" %)<prefix>
1019 +|(% style="width:95px" %)**Parameters**|(% style="width:403px" %)**prefix **: AB 06 (two bytes in hexadecimal)
1020 +|(% style="width:95px" %)**Example**|(% style="width:403px" %)(((
1021 +AB 06
896 896  
897 -* (% style="color:#037691" %)**AT Command:**
1023 +Uplinks the trigger settings.
1024 +)))
898 898  
899 -There is no AT Command for this feature.
1026 +==== 3.4.2.6 Enable/Disable DI1/DI2/DI3 as a trigger ====
900 900  
1028 +Enable or disable DI1/DI2/DI3 as a trigger.
901 901  
902 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
1030 +(% style="color:#037691" %)**AT Command**
903 903  
904 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
1032 +(% border="2" style="width:500px" %)
1033 +|(% style="width:98px" %)**Command**|(% style="width:400px" %)AT+DTRI=<DI1_trigger>,<DI2_trigger>
1034 +|(% style="width:98px" %)**Response**|(% style="width:400px" %)
1035 +|(% style="width:98px" %)**Parameters**|(% style="width:400px" %)(((
1036 +**DI1_trigger:**
905 905  
1038 +1 = enable DI1 trigger
906 906  
1040 +0 = disable DI1 trigger
907 907  
908 -==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1042 +**DI2 _trigger**
909 909  
1044 +1 = enable DI2 trigger
910 910  
911 -Enable Disable DI1/DI2/DI2 as trigger,
1046 +0 = disable DI2 trigger
1047 +)))
1048 +|(% style="width:98px" %)**Example**|(% style="width:400px" %)(((
1049 +AT+DTRI=1,0
912 912  
913 -* (% style="color:#037691" %)**AT Command:**
1051 +Enable DI1 trigger, disable DI2 trigger
1052 +)))
914 914  
915 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1054 +(% class="wikigeneratedid" %)
1055 +(% style="color:#037691" %)**Downlink Payload**
916 916  
1057 +(% border="2" style="width:500px" %)
1058 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><DI1_trigger><DI2_trigger>
1059 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1060 +**prefix :** AA 02 (two bytes in hexadecimal)
917 917  
918 -**Example:**
1062 +**DI1_trigger:**
919 919  
920 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1064 +1 = enable DI1 trigger, represented by 1 byte in hexadecimal.
921 921  
922 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1066 +0 = disable DI1 trigger, represented by 1 byte in hexadecimal.
923 923  
924 -(% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
1068 +**DI2 _trigger**
925 925  
1070 +1 = enable DI2 trigger, represented by 1 byte in hexadecimal.
926 926  
1072 +0 = disable DI2 trigger, represented by 1 byte in hexadecimal.
1073 +)))
1074 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1075 +AA 02 **01 00**
927 927  
928 -==== 3.4.2.7 Trigger1 – Set DI1 or DI3 as trigger ====
1077 +Enable DI1 trigger, disable DI2 trigger
1078 +)))
929 929  
1080 +==== 3.4.2.7 Trigger1 – Set DI or DI3 as a trigger ====
930 930  
931 -Set DI1 or DI3(for LT-33222-L) trigger.
1082 +Sets DI1 or DI3 (for LT-33222-L) as a trigger.
932 932  
933 -* (% style="color:#037691" %)**AT Command:**
934 934  
935 -(% style="color:blue" %)**AT+TRIG1=a,b**
1085 +(% style="color:#037691" %)**AT Command**
936 936  
937 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1087 +(% border="2" style="width:500px" %)
1088 +|(% style="width:101px" %)**Command**|(% style="width:397px" %)AT+TRIG1=<interrupt_mode>,<minimum_signal_duration>
1089 +|(% style="width:101px" %)**Response**|(% style="width:397px" %)
1090 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1091 +**interrupt_mode** :  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
938 938  
939 -(% style="color:red" %)**b :** (%%)delay timing.
1093 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1094 +)))
1095 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1096 +AT+TRIG1=1,100
940 940  
1098 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1099 +)))
941 941  
942 -**Example:**
1101 +(% class="wikigeneratedid" %)
1102 +(% style="color:#037691" %)**Downlink Payload**
943 943  
944 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1104 +(% border="2" style="width:500px" %)
1105 +|(% style="width:101px" %)**Payload**|(% style="width:397px" %)<prefix><interrupt_mode><minimum_signal_duration>
1106 +|(% style="width:101px" %)**Parameters**|(% style="width:397px" %)(((
1107 +**prefix** : 09 01 (hexadecimal)
945 945  
1109 +**interrupt_mode** : 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
946 946  
947 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1111 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal.
1112 +)))
1113 +|(% style="width:101px" %)**Example**|(% style="width:397px" %)(((
1114 +09 01 **01 00 64**
948 948  
949 -(% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
1116 +Set the DI1 port to trigger on a rising edge; the valid signal duration is 100 ms.
1117 +)))
950 950  
1119 +==== 3.4.2.8 Trigger2 – Set DI2 as a trigger ====
951 951  
1121 +Sets DI2 as a trigger.
952 952  
953 -==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
954 954  
1124 +(% style="color:#037691" %)**AT Command**
955 955  
956 -Set DI2 trigger.
1126 +(% border="2" style="width:500px" %)
1127 +|(% style="width:94px" %)**Command**|(% style="width:404px" %)AT+TRIG2=<interrupt_mode>,<minimum_signal_duration>
1128 +|(% style="width:94px" %)**Response**|(% style="width:404px" %)
1129 +|(% style="width:94px" %)**Parameters**|(% style="width:404px" %)(((
1130 +**interrupt_mode **:  0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
957 957  
958 -* (% style="color:#037691" %)**AT Command:**
1132 +**minimum_signal_duration** : the **minimum signal duration** required for the DI1 port to recognize a valid trigger.
1133 +)))
1134 +|(% style="width:94px" %)**Example**|(% style="width:404px" %)(((
1135 +AT+TRIG2=0,100
959 959  
960 -(% style="color:blue" %)**AT+TRIG2=a,b**
1137 +Set the DI1 port to trigger on a falling edge; the valid signal duration is 100 ms.
1138 +)))
961 961  
962 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1140 +(% style="color:#037691" %)**Downlink Payload**
963 963  
964 -(% style="color:red" %)**b :** (%%)delay timing.
1142 +(% border="2" style="width:500px" %)
1143 +|(% style="width:96px" %)**Payload**|(% style="width:402px" %)<prefix><interrupt_mode><minimum_signal_duration>
1144 +|(% style="width:96px" %)**Parameters**|(% style="width:402px" %)(((
1145 +**prefix** : 09 02 (hexadecimal)
965 965  
1147 +**interrupt_mode **: 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1), represented by 1 byte in hexadecimal.
966 966  
967 -**Example:**
1149 +**minimum_signal_duration** : in milliseconds, represented two bytes in hexadecimal
1150 +)))
1151 +|(% style="width:96px" %)**Example**|(% style="width:402px" %)09 02 **00 00 64**
968 968  
969 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1153 +==== ====
970 970  
1155 +==== 3.4.2.9 Trigger – Set AC (current) as a trigger ====
971 971  
972 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1157 +Sets the current trigger based on the AC port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
973 973  
974 -(% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
1159 +(% style="color:#037691" %)**AT Command**
975 975  
1161 +(% border="2" style="width:500px" %)
1162 +|(% style="width:104px" %)**Command**|(% style="width:394px" %)(((
1163 +AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1164 +)))
1165 +|(% style="width:104px" %)**Response**|(% style="width:394px" %)
1166 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1167 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
976 976  
1169 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
977 977  
978 -==== 3.4.2.9 Trigger – Set AC (current) as trigger ====
1171 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
979 979  
1173 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1174 +)))
1175 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1176 +AT+ACLIM=10000,15000,0,0
980 980  
981 -Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1178 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA
1179 +)))
1180 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
982 982  
983 -* (% style="color:#037691" %)**AT Command**
1182 +(% style="color:#037691" %)**Downlink Payload**
984 984  
985 -(% style="color:blue" %)**AT+ACLIM**
1184 +(% border="2" style="width:500px" %)
1185 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
1186 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1187 +**prefix **: AA 01 (hexadecimal)
986 986  
1189 +**AC1_LIMIT_LOW** : lower limit of the current to be checked, two bytes in hexadecimal
987 987  
988 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1191 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked, two bytes in hexadecimal
989 989  
990 -(% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1193 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked, two bytes in hexadecimal
991 991  
1195 +**AC2_LIMIT_LOW** : higher limit of the current to be checked, two bytes in hexadecimal
1196 +)))
1197 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1198 +AA 01 **27** **10 3A** **98** 00 00 00 00
992 992  
1200 +Triggers an uplink if AC1 current is lower than 10mA or higher than 15mA. Set all values to zero for AC2 limits because we are only checking AC1 limits.
1201 +)))
1202 +|(% style="width:104px" %)Note|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
993 993  
994 994  ==== 3.4.2.10 Trigger – Set AV (voltage) as trigger ====
995 995  
1206 +Sets the current trigger based on the AV port. See also [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
996 996  
997 -Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1208 +(% style="color:#037691" %)**AT Command**
998 998  
999 -* (% style="color:#037691" %)**AT Command**
1210 +(% border="2" style="width:500px" %)
1211 +|(% style="width:104px" %)**Command**|(% style="width:387px" %)AT+AVLIM= AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1212 +|(% style="width:104px" %)**Response**|(% style="width:387px" %)
1213 +|(% style="width:104px" %)**Parameters**|(% style="width:387px" %)(((
1214 +**AC1_LIMIT_LOW** : lower limit of the current to be checked
1000 1000  
1001 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1216 +**AC1_LIMIT_HIGH **: higher limit of the current to be checked
1002 1002  
1218 +**AC2_LIMIT_HIGH **: lower limit of the current to be checked
1003 1003  
1004 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1220 +**AC2_LIMIT_LOW** : higher limit of the current to be checked
1221 +)))
1222 +|(% style="width:104px" %)**Example**|(% style="width:387px" %)(((
1223 +AT+AVLIM=3000,6000,0,2000
1005 1005  
1006 -(% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1225 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V
1226 +)))
1227 +|(% style="width:104px" %)**Note**|(% style="width:387px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1007 1007  
1229 +(% style="color:#037691" %)**Downlink Payload**
1008 1008  
1231 +(% border="2" style="width:500px" %)
1232 +|(% style="width:104px" %)**Payload**|(% style="width:394px" %)<prefix><AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
1233 +|(% style="width:104px" %)**Parameters**|(% style="width:394px" %)(((
1234 +**prefix **: AA 00 (hexadecimal)
1009 1009  
1010 -==== 3.4.2.11 Trigger Set minimum interval ====
1236 +**AV1_LIMIT_LOW** : lower limit of the voltage to be checked, two bytes in hexadecimal
1011 1011  
1238 +**AV1_LIMIT_HIGH **: higher limit of the voltage to be checked, two bytes in hexadecimal
1012 1012  
1013 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
1240 +**AV2_LIMIT_HIGH **: lower limit of the voltage to be checked, two bytes in hexadecimal
1014 1014  
1015 -* (% style="color:#037691" %)**AT Command**
1242 +**AV2_LIMIT_LOW** : higher limit of the voltage to be checked, two bytes in hexadecimal
1243 +)))
1244 +|(% style="width:104px" %)**Example**|(% style="width:394px" %)(((
1245 +AA 00 **0B B8 17 70 00 00 07 D0**
1016 1016  
1017 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1247 +Triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V.
1248 +)))
1249 +|(% style="width:104px" %)**Note**|(% style="width:394px" %)See also, [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1018 1018  
1251 +==== 3.4.2.11 Trigger – Set minimum interval ====
1019 1019  
1020 -* (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1253 +Sets the AV and AC trigger minimum interval. The device won't respond to a second trigger within this set time after the first trigger.
1021 1021  
1022 -(% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1255 +(% style="color:#037691" %)**AT Command**
1023 1023  
1024 -(((
1025 -
1257 +(% border="2" style="width:500px" %)
1258 +|(% style="width:113px" %)**Command**|(% style="width:385px" %)AT+ATDC=<time>
1259 +|(% style="width:113px" %)**Response**|(% style="width:385px" %)
1260 +|(% style="width:113px" %)**Parameters**|(% style="width:385px" %)(((
1261 +**time** : in minutes
1262 +)))
1263 +|(% style="width:113px" %)**Example**|(% style="width:385px" %)(((
1264 +AT+ATDC=5
1026 1026  
1027 -(% style="color:red" %)**Note: ATDC setting must be more than 5min**
1266 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1028 1028  )))
1268 +|(% style="width:113px" %)Note|(% style="width:385px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1029 1029  
1270 +(% style="color:#037691" %)**Downlink Payload**
1030 1030  
1272 +(% border="2" style="width:500px" %)
1273 +|(% style="width:112px" %)**Payload**|(% style="width:386px" %)<prefix><time>
1274 +|(% style="width:112px" %)**Parameters**|(% style="width:386px" %)(((
1275 +**prefix** : AC (hexadecimal)
1031 1031  
1277 +**time **: in minutes (two bytes in hexadecimal)
1278 +)))
1279 +|(% style="width:112px" %)**Example**|(% style="width:386px" %)(((
1280 +AC **00 05**
1281 +
1282 +The device won't respond to the second trigger within 5 minutes after the first trigger.
1283 +)))
1284 +|(% style="width:112px" %)Note|(% style="width:386px" %)(% style="color:red" %)**The time must be greater than 5 minutes.**
1285 +
1032 1032  ==== 3.4.2.12 DO ~-~- Control Digital Output DO1/DO2/DO3 ====
1033 1033  
1288 +Controls the digital outputs DO1, DO2, and DO3
1034 1034  
1035 -* (% style="color:#037691" %)**AT Command**
1290 +(% style="color:#037691" %)**AT Command**
1036 1036  
1037 -There is no AT Command to control Digital Output
1292 +There is no AT Command to control the Digital Output.
1038 1038  
1039 1039  
1040 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1041 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1295 +(% style="color:#037691" %)**Downlink Payload**
1042 1042  
1043 -(((
1044 -If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1297 +(% border="2" style="width:500px" %)
1298 +|(% style="width:115px" %)**Payload**|(% style="width:383px" %)<prefix><DO1><DO2><DO3>
1299 +|(% style="width:115px" %)**Parameters**|(% style="width:383px" %)(((
1300 +**prefix** : 02 (hexadecimal)
1301 +
1302 +**DOI** : 01: Low,  00: High, 11: No action (1 byte in hex)
1303 +
1304 +**DO2** : 01: Low,  00: High, 11: No action (1 byte in hex)
1305 +
1306 +**DO3 **: 01: Low,  00: High, 11: No action (1 byte in hex)
1045 1045  )))
1308 +|(% style="width:115px" %)**Examples**|(% style="width:383px" %)(((
1309 +02 **01 00 01**
1046 1046  
1311 +If there is a load between V+ and DOx, it means DO1 is set to low, DO2 is set to high, and DO3 is set to low.
1312 +
1313 +**More examples:**
1314 +
1047 1047  (((
1048 -01: Low,  00: High ,  11: No action
1316 +01: Low,  00: High,  11: No action
1317 +
1318 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1319 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1320 +|02  01  00  11|Low|High|No Action
1321 +|02  00  11  01|High|No Action|Low
1322 +|02  11  01  00|No Action|Low|High
1049 1049  )))
1050 1050  
1051 -[[image:image-20220524092754-5.png]]
1052 -
1053 1053  (((
1054 -(% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1326 +(((
1327 +(% style="color:red" %)**Note: For the LT-22222-L, there is no DO3; the last byte can have any value.**
1055 1055  )))
1056 1056  
1057 1057  (((
1058 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1331 +(% style="color:red" %)**The device will upload a packet if downlink code executes successfully.**
1059 1059  )))
1333 +)))
1334 +)))
1060 1060  
1336 +==== ====
1061 1061  
1062 -
1063 1063  ==== 3.4.2.13 DO ~-~- Control Digital Output DO1/DO2/DO3 with time control ====
1064 1064  
1065 1065  
... ... @@ -1084,59 +1084,64 @@
1084 1084  00: DO pins will change to an inverter state after timeout 
1085 1085  
1086 1086  
1087 -(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1362 +(% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Port status:
1088 1088  
1089 -[[image:image-20220524093238-6.png]]
1364 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1365 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1366 +|0x01|DO1 set to low
1367 +|0x00|DO1 set to high
1368 +|0x11|DO1 NO Action
1090 1090  
1370 +(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Port status:
1091 1091  
1092 -(% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1372 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1373 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1374 +|0x01|DO2 set to low
1375 +|0x00|DO2 set to high
1376 +|0x11|DO2 NO Action
1093 1093  
1094 -[[image:image-20220524093328-7.png]]
1378 +(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Port status:
1095 1095  
1380 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1381 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1382 +|0x01|DO3 set to low
1383 +|0x00|DO3 set to high
1384 +|0x11|DO3 NO Action
1096 1096  
1097 -(% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1386 +(% style="color:#4f81bd" %)**Sixth, Seventh, Eighth, and Ninth Bytes**:(%%) Latching time (Unit: ms)
1098 1098  
1099 -[[image:image-20220524093351-8.png]]
1100 1100  
1101 -
1102 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1103 -
1104 - Latching time. Unit: ms
1105 -
1106 -
1107 1107  (% style="color:red" %)**Note: **
1108 1108  
1109 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1391 + Since firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1110 1110  
1111 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1393 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1112 1112  
1395 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1113 1113  
1114 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1115 1115  
1116 -
1117 1117  **Example payload:**
1118 1118  
1119 1119  **~1. A9 01 01 01 01 07 D0**
1120 1120  
1121 -DO1 pin & DO2 pin & DO3 pin will be set to Low, last 2 seconds, then change back to original state.
1402 +DO1 pin, DO2 pin, and DO3 pin will be set to low, last for 2 seconds, and then revert to their original state.
1122 1122  
1123 1123  **2. A9 01 00 01 11 07 D0**
1124 1124  
1125 -DO1 pin set high, DO2 pin set low, DO3 pin no action, last 2 seconds, then change back to original state.
1406 +DO1 pin is set to high, DO2 pin is set to low, and DO3 pin takes no action. This lasts for 2 seconds and then reverts to the original state.
1126 1126  
1127 1127  **3. A9 00 00 00 00 07 D0**
1128 1128  
1129 -DO1 pin & DO2 pin & DO3 pin will be set to high, last 2 seconds, then both change to low.
1410 +DO1 pin, DO2 pin, and DO3 pin will be set to high, last for 2 seconds, and then all change to low.
1130 1130  
1131 1131  **4. A9 00 11 01 00 07 D0**
1132 1132  
1133 -DO1 pin no action, DO2 pin set low, DO3 pin set high, last 2 seconds, then DO1 pin no action, DO2 pin set high, DO3 pin set low
1414 +DO1 pin takes no action, DO2 pin is set to low, and DO3 pin is set to high. This lasts for 2 seconds, after which DO1 pin takes no action, DO2 pin is set to high, and DO3 pin is set to low.
1134 1134  
1135 1135  
1417 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1136 1136  
1137 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1138 1138  
1139 -
1140 1140  * (% style="color:#037691" %)**AT Command:**
1141 1141  
1142 1142  There is no AT Command to control Relay Output
... ... @@ -1148,23 +1148,30 @@
1148 1148  
1149 1149  
1150 1150  (((
1151 -If payload = 0x030100, it means set RO1 to close and RO2 to open.
1431 +If payload is 0x030100, it means setting RO1 to close and RO2 to open.
1152 1152  )))
1153 1153  
1154 1154  (((
1155 -01: Close ,  00: Open , 11: No action
1156 -)))
1435 +00: Close ,  01: Open , 11: No action
1157 1157  
1158 -(((
1159 -[[image:image-20230426161322-1.png]]
1437 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1438 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1439 +|03  00  11|Open|No Action
1440 +|03  01  11|Close|No Action
1441 +|03  11  00|No Action|Open
1442 +|03  11  01|No Action|Close
1443 +|03  00  00|Open|Open
1444 +|03  01  01|Close|Close
1445 +|03  01  00|Close|Open
1446 +|03  00  01|Open|Close
1160 1160  )))
1161 1161  
1162 1162  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1163 1163  
1164 1164  
1165 -
1166 1166  ==== 3.4.2.15 Relay ~-~- Control Relay Output RO1/RO2 with time control ====
1167 1167  
1454 +Controls the relay output time.
1168 1168  
1169 1169  * (% style="color:#037691" %)**AT Command:**
1170 1170  
... ... @@ -1176,15 +1176,15 @@
1176 1176  (% style="color:blue" %)**0x05 aa bb cc dd     ** (%%)~/~/ Set RO1/RO2 relay with time control
1177 1177  
1178 1178  
1179 -This is to control the relay output time of relay. Include four bytes:
1466 +This is to control the relay output time. It includes four bytes:
1180 1180  
1181 1181  (% style="color:#4f81bd" %)**First Byte **(%%)**:** Type code (0x05)
1182 1182  
1183 1183  (% style="color:#4f81bd" %)**Second Byte(aa)**(%%): Inverter Mode
1184 1184  
1185 -01: Relays will change back to original state after timeout.
1472 +01: Relays will change back to their original state after timeout.
1186 1186  
1187 -00: Relays will change to an inverter state after timeout
1474 +00: Relays will change to the inverter state after timeout.
1188 1188  
1189 1189  
1190 1190  (% style="color:#4f81bd" %)**Third Byte(bb)**(%%): Control Method and Ports status:
... ... @@ -1197,12 +1197,12 @@
1197 1197  
1198 1198  (% style="color:red" %)**Note:**
1199 1199  
1200 - Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
1487 + Since firmware v1.6.0, the latch time supports both 4 bytes and 2 bytes.
1201 1201  
1202 - Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1489 + Before firmware v1.6.0, the latch time only supported 2 bytes.
1203 1203  
1204 1204  
1205 -(% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1492 +(% style="color:red" %)**Device will upload a packet if the downlink code executes successfully.**
1206 1206  
1207 1207  
1208 1208  **Example payload:**
... ... @@ -1209,19 +1209,19 @@
1209 1209  
1210 1210  **~1. 05 01 11 07 D0**
1211 1211  
1212 -Relay1 and Relay 2 will be set to NC , last 2 seconds, then change back to original state.
1499 +Relay1 and Relay2 will be set to NC, lasting 2 seconds, then revert to their original state
1213 1213  
1214 1214  **2. 05 01 10 07 D0**
1215 1215  
1216 -Relay1 will change to NC, Relay2 will change to NO, last 2 seconds, then both change back to original state.
1503 +Relay1 will change to NC, Relay2 will change to NO, lasting 2 seconds, then both will revert to their original state.
1217 1217  
1218 1218  **3. 05 00 01 07 D0**
1219 1219  
1220 -Relay1 will change to NO, Relay2 will change to NC, last 2 seconds, then relay change to NC,Relay2 change to NO.
1507 +Relay1 will change to NO, Relay2 will change to NC, lasting 2 seconds, then Relay1 will change to NC, and Relay2 will change to NO.
1221 1221  
1222 1222  **4. 05 00 00 07 D0**
1223 1223  
1224 -Relay 1 & relay2 will change to NO, last 2 seconds, then both change to NC.
1511 +Relay1 and Relay2 will change to NO, lasting 2 seconds, then both will change to NC.
1225 1225  
1226 1226  
1227 1227  
... ... @@ -1228,29 +1228,85 @@
1228 1228  ==== 3.4.2.16 Counting ~-~- Voltage threshold counting ====
1229 1229  
1230 1230  
1231 -When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1518 +When the voltage exceeds the threshold, counting begins. For details, see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1232 1232  
1233 -* (% style="color:#037691" %)**AT Command:**
1520 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1234 1234  
1235 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1236 -
1237 -
1238 1238  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1239 1239  
1240 1240  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
1241 1241  
1242 1242  
1527 +(% style="color:#037691" %)**AT Command**
1243 1243  
1244 -==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1529 +(% border="2" style="width:500px" %)
1530 +|(% style="width:137px" %)**Command**|(% style="width:361px" %)AT+VOLMAX=<voltage><logic>
1531 +|(% style="width:137px" %)**Response**|(% style="width:361px" %)
1532 +|(% style="width:137px" %)**Parameters**|(% style="width:361px" %)(((
1533 +**voltage** : voltage threshold in mV
1245 1245  
1535 +**logic**:
1246 1246  
1247 -* (% style="color:#037691" %)**AT Command:**
1537 +0 : lower than
1248 1248  
1249 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1539 +1: higher than
1250 1250  
1541 +if you leave logic parameter blank, it is considered 0
1542 +)))
1543 +|(% style="width:137px" %)**Examples**|(% style="width:361px" %)(((
1544 +AT+VOLMAX=20000
1545 +
1546 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1547 +
1548 +AT+VOLMAX=20000,0
1549 +
1550 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1551 +
1552 +AT+VOLMAX=20000,1
1553 +
1554 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1555 +)))
1556 +
1557 +(% style="color:#037691" %)**Downlink Payload**
1558 +
1559 +(% border="2" style="width:500px" %)
1560 +|(% style="width:140px" %)**Payload**|(% style="width:358px" %)<prefix><voltage><logic>
1561 +|(% style="width:140px" %)**Parameters**|(% style="width:358px" %)(((
1562 +**prefix** : A5 (hex)
1563 +
1564 +**voltage** : voltage threshold in mV (2 bytes in hex)
1565 +
1566 +**logic**: (1 byte in hexadecimal)
1567 +
1568 +0 : lower than
1569 +
1570 +1: higher than
1571 +
1572 +if you leave logic parameter blank, it is considered 1 (higher than)
1573 +)))
1574 +|(% style="width:140px" %)**Example**|(% style="width:358px" %)(((
1575 +A5 **4E 20**
1576 +
1577 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1578 +
1579 +A5 **4E 20 00**
1580 +
1581 +If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1
1582 +
1583 +A5 **4E 20 01**
1584 +
1585 +If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1
1586 +)))
1587 +
1588 +==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1589 +
1590 +This feature allows users to pre-configure specific count numbers for various counting parameters such as Count1, Count2, or AVI1 Count. Use the AT command to set the desired count number for each configuration.
1591 +
1592 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1593 +
1251 1251  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1252 1252  
1253 -(% style="color:red" %)**bb cc dd ee: **(%%)number to be set
1596 +(% style="color:red" %)**bb cc dd ee: **(%%)The number to be set
1254 1254  
1255 1255  
1256 1256  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA8):**
... ... @@ -1258,29 +1258,85 @@
1258 1258  (% style="color:blue" %)**0x A8 aa bb cc dd ee     ** (%%)~/~/ same as AT+SETCNT=aa,(bb cc dd ee)
1259 1259  
1260 1260  
1604 +(% style="color:#037691" %)**AT Command**
1261 1261  
1262 -==== 3.4.2.18 Counting ~-~- Clear Counting ====
1606 +(% border="2" style="width:500px" %)
1607 +|(% style="width:134px" %)**Command**|(% style="width:364px" %)AT+SETCNT=<counting_parameter><number>
1608 +|(% style="width:134px" %)**Response**|(% style="width:364px" %)
1609 +|(% style="width:134px" %)**Parameters**|(% style="width:364px" %)(((
1610 +**counting_parameter** :
1263 1263  
1612 +1: COUNT1
1264 1264  
1265 -Clear counting for counting mode
1614 +2: COUNT2
1266 1266  
1267 -* (% style="color:#037691" %)**AT Command:**
1616 +3: AVI1 Count
1268 1268  
1269 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1618 +**number** : Start number
1619 +)))
1620 +|(% style="width:134px" %)**Example**|(% style="width:364px" %)(((
1621 +AT+SETCNT=1,10
1270 1270  
1623 +Sets the COUNT1 to 10.
1624 +)))
1271 1271  
1626 +(% style="color:#037691" %)**Downlink Payload**
1627 +
1628 +(% border="2" style="width:500px" %)
1629 +|(% style="width:135px" %)**Payload**|(% style="width:363px" %)<prefix><counting_parameter><number>
1630 +|(% style="width:135px" %)**Parameters**|(% style="width:363px" %)(((
1631 +prefix : A8 (hex)
1632 +
1633 +**counting_parameter** : (1 byte in hexadecimal)
1634 +
1635 +1: COUNT1
1636 +
1637 +2: COUNT2
1638 +
1639 +3: AVI1 Count
1640 +
1641 +**number** : Start number, 4 bytes in hexadecimal
1642 +)))
1643 +|(% style="width:135px" %)**Example**|(% style="width:363px" %)(((
1644 +A8 **01 00 00 00 0A**
1645 +
1646 +Sets the COUNT1 to 10.
1647 +)))
1648 +
1649 +==== 3.4.2.18 Counting ~-~- Clear Counting ====
1650 +
1651 +This feature clears the counting in counting mode.
1652 +
1653 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1654 +
1272 1272  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1273 1273  
1274 1274  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
1275 1275  
1659 +(% style="color:#037691" %)**AT Command**
1276 1276  
1661 +(% border="2" style="width:500px" %)
1662 +|(% style="width:142px" %)**Command**|(% style="width:356px" %)AT+CLRCOUNT
1663 +|(% style="width:142px" %)**Response**|(% style="width:356px" %)-
1277 1277  
1278 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1665 +(% style="color:#037691" %)**Downlink Payload**
1279 1279  
1667 +(% border="2" style="width:500px" %)
1668 +|(% style="width:141px" %)**Payload**|(% style="width:357px" %)<prefix><clear?>
1669 +|(% style="width:141px" %)**Parameters**|(% style="width:357px" %)(((
1670 +prefix : A6 (hex)
1280 1280  
1672 +clear? : 01 (hex)
1673 +)))
1674 +|(% style="width:141px" %)**Example**|(% style="width:357px" %)A6 **01**
1675 +
1676 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1677 +
1678 +This feature allows you to configure the device to save its counting result to internal flash memory at specified intervals. By setting a save time, the device will periodically store the counting data to prevent loss in case of power failure. The save interval can be adjusted to suit your requirements, with a minimum value of 30 seconds.
1679 +
1281 1281  * (% style="color:#037691" %)**AT Command:**
1282 1282  
1283 -(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Set save time to 60 seconds. Device will save the counting result in internal flash every 60 seconds. (min value: 30)
1682 +(% style="color:blue" %)**AT+COUTIME=60  **(%%)~/~/ Sets the save time to 60 seconds. The device will save the counting result in internal flash every 60 seconds. (Min value: 30 seconds)
1284 1284  
1285 1285  
1286 1286  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA7):**
... ... @@ -1288,7 +1288,7 @@
1288 1288  (% style="color:blue" %)**0x A7 aa bb cc     ** (%%)~/~/ same as AT+COUTIME =aa bb cc,
1289 1289  
1290 1290  (((
1291 -range: aa bb cc:0 to 16777215,  (unit:second)
1690 +Range: aa bb cc:0 to 16777215,  (unit: seconds)
1292 1292  )))
1293 1293  
1294 1294  
... ... @@ -1295,12 +1295,13 @@
1295 1295  
1296 1296  ==== 3.4.2.20 Reset save RO DO state ====
1297 1297  
1697 +This feature allows you to reset the saved relay output (RO) and digital output (DO) states when the device joins the network. By configuring this setting, you can control whether the device should retain or reset the relay states after a reset and rejoin to the network.
1298 1298  
1299 1299  * (% style="color:#037691" %)**AT Command:**
1300 1300  
1301 1301  (% style="color:blue" %)**AT+RODORESET=1    **(%%)~/~/ RODO will close when the device joining the network. (default)
1302 1302  
1303 -(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state is not changed when it is reconnected to the network.
1703 +(% style="color:blue" %)**AT+RODORESET=0    **(%%)~/~/ After the device is reset, the previously saved RODO state (only MOD2 to MOD5) is read, and its state will not change when the device reconnects to the network.
1304 1304  
1305 1305  
1306 1306  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAD):**
... ... @@ -1311,6 +1311,7 @@
1311 1311  
1312 1312  ==== 3.4.2.21 Encrypted payload ====
1313 1313  
1714 +This feature allows you to configure whether the device should upload data in an encrypted format or in plaintext. By default, the device encrypts the payload before uploading. You can toggle this setting to either upload encrypted data or transmit it without encryption.
1314 1314  
1315 1315  * (% style="color:#037691" %)**AT Command:**
1316 1316  
... ... @@ -1325,9 +1325,9 @@
1325 1325  
1326 1326  * (% style="color:#037691" %)**AT Command:**
1327 1327  
1328 -(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port gets the reading of the current sensor
1729 +(% style="color:blue" %)**AT+GETSENSORVALUE=0    **(%%)~/~/ The serial port retrieves the reading of the current sensor.
1329 1329  
1330 -(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port gets the current sensor reading and uploads it.
1731 +(% style="color:blue" %)**AT+GETSENSORVALUE=1    **(%%)~/~/ The serial port retrieves the current sensor reading and uploads it.
1331 1331  
1332 1332  
1333 1333  
... ... @@ -1396,75 +1396,145 @@
1396 1396  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1397 1397  
1398 1398  
1399 -== 3.5 Integrate with Mydevice ==
1800 +== 3.5 Integrating with ThingsEye.io ==
1400 1400  
1802 +The Things Stack application supports integration with ThingsEye.io. Once integrated, ThingsEye.io acts as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1401 1401  
1402 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1804 +=== 3.5.1 Configuring The Things Stack ===
1403 1403  
1404 -(((
1405 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1406 -)))
1806 +We use The Things Stack Sandbox in this example:
1407 1407  
1408 -(((
1409 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1808 +* In **The Things Stack Sandbox**, go to the **Application **for the LT-22222-L you added.
1809 +* Select **MQTT** under **Integrations** in the left menu.
1810 +* In the **Connection information **section, under **Connection credentials**, The Things Stack displays an auto-generated **username**. You can use it or provide a new one.
1811 +* Click the **Generate new API key** button to generate a password. You can view it by clicking on the **visibility toggle/eye** icon. The API key works as the password.
1410 1410  
1411 -
1412 -)))
1813 +{{info}}
1814 +The username and  password (API key) you created here are required in the next section.
1815 +{{/info}}
1413 1413  
1414 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1817 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1415 1415  
1819 +=== 3.5.2 Configuring ThingsEye.io ===
1416 1416  
1821 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1822 +* Under the **Integrations center**, click **Integrations**.
1823 +* Click the **Add integration** button (the button with the **+** symbol).
1417 1417  
1418 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1825 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1419 1419  
1420 1420  
1421 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1828 +On the **Add integration** window, configure the following:
1422 1422  
1423 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1830 +**Basic settings:**
1424 1424  
1425 -Search under The things network
1832 +* Select **The Things Stack Community** from the **Integration type** list.
1833 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1834 +* Ensure the following options are turned on.
1835 +** Enable integration
1836 +** Debug mode
1837 +** Allow create devices or assets
1838 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1426 1426  
1427 -[[image:1653356838789-523.png||height="337" width="740"]]
1840 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1428 1428  
1429 1429  
1843 +**Uplink data converter:**
1430 1430  
1431 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1845 +* Click the **Create new** button if it is not selected by default.
1846 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1847 +* Click the **JavaScript** button.
1848 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1849 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1432 1432  
1433 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1851 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1434 1434  
1435 1435  
1436 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1854 +**Downlink data converter (this is an optional step):**
1437 1437  
1856 +* Click the **Create new** button if it is not selected by default.
1857 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name.
1858 +* Click the **JavaScript** button.
1859 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Downlink_Converter.js]].
1860 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1438 1438  
1439 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1862 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1440 1440  
1441 1441  
1442 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1865 +**Connection:**
1443 1443  
1867 +* Choose **Region** from the **Host type**.
1868 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1869 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The **username **and **password **can be found on the MQTT integration page of your The Things Stack account (see Configuring The Things Stack).
1870 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1444 1444  
1445 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1872 +[[image:message-1.png]]
1446 1446  
1447 1447  
1448 -== 3.6 Interface Detail ==
1875 +* Click the **Add** button.
1449 1449  
1450 -=== 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1877 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1451 1451  
1452 1452  
1453 -Support NPN Type sensor
1880 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1454 1454  
1882 +
1883 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1884 +
1885 +
1886 +==== 3.5.2.1 Viewing integration details ====
1887 +
1888 +Click on your integration from the list. The **Integration details** window will appear with the **Details **tab selected. The **Details **tab shows all the settings you have provided for this integration.
1889 +
1890 +[[image:integration-details.png||height="686" width="1000"]]
1891 +
1892 +
1893 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1894 +
1895 +{{info}}
1896 +See also ThingsEye documentation.
1897 +{{/info}}
1898 +
1899 +==== **3.5.2.2 Viewing events** ====
1900 +
1901 +The **Events **tab displays all the uplink messages from the LT-22222-L.
1902 +
1903 +* Select **Debug **from the **Event type** dropdown.
1904 +* Select the** time frame** from the **time window**.
1905 +
1906 +[[image:thingseye-events.png||height="686" width="1000"]]
1907 +
1908 +
1909 +* To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1910 +
1911 +[[image:thingseye-json.png||width="1000"]]
1912 +
1913 +
1914 +==== **3.5.2.3 Deleting an integration** ====
1915 +
1916 +If you want to delete an integration, click the **Delete integratio**n button on the Integrations page.
1917 +
1918 +
1919 +== 3.6 Interface Details ==
1920 +
1921 +=== 3.6.1 Digital Input Ports: DI1/DI2/DI3 (For LT-33222-L, Low Active) ===
1922 +
1923 +
1924 +Supports NPN-type sensors.
1925 +
1455 1455  [[image:1653356991268-289.png]]
1456 1456  
1457 1457  
1458 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1929 +=== 3.6.2 Digital Input Ports: DI1/DI2 ===
1459 1459  
1460 1460  
1461 1461  (((
1462 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1933 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1463 1463  )))
1464 1464  
1465 1465  (((
1466 1466  (((
1467 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1938 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1468 1468  
1469 1469  
1470 1470  )))
... ... @@ -1474,7 +1474,7 @@
1474 1474  
1475 1475  (((
1476 1476  (((
1477 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1948 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1478 1478  )))
1479 1479  )))
1480 1480  
... ... @@ -1483,22 +1483,22 @@
1483 1483  )))
1484 1484  
1485 1485  (((
1486 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1957 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1487 1487  )))
1488 1488  
1489 1489  (((
1490 -This type of sensor will output a low signal GND when active.
1961 +This type of sensor outputs a low (GND) signal when active.
1491 1491  )))
1492 1492  
1493 1493  * (((
1494 -Connect sensor's output to DI1-
1965 +Connect the sensor's output to DI1-
1495 1495  )))
1496 1496  * (((
1497 -Connect sensor's VCC to DI1+.
1968 +Connect the sensor's VCC to DI1+.
1498 1498  )))
1499 1499  
1500 1500  (((
1501 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1972 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1502 1502  )))
1503 1503  
1504 1504  (((
... ... @@ -1506,7 +1506,7 @@
1506 1506  )))
1507 1507  
1508 1508  (((
1509 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1980 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1510 1510  )))
1511 1511  
1512 1512  (((
... ... @@ -1514,22 +1514,22 @@
1514 1514  )))
1515 1515  
1516 1516  (((
1517 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1988 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1518 1518  )))
1519 1519  
1520 1520  (((
1521 -This type of sensor will output a high signal (example 24v) when active.
1992 +This type of sensor outputs a high signal (e.g., 24V) when active.
1522 1522  )))
1523 1523  
1524 1524  * (((
1525 -Connect sensor's output to DI1+
1996 +Connect the sensor's output to DI1+
1526 1526  )))
1527 1527  * (((
1528 -Connect sensor's GND DI1-.
1999 +Connect the sensor's GND DI1-.
1529 1529  )))
1530 1530  
1531 1531  (((
1532 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2003 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1533 1533  )))
1534 1534  
1535 1535  (((
... ... @@ -1537,7 +1537,7 @@
1537 1537  )))
1538 1538  
1539 1539  (((
1540 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
2011 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1541 1541  )))
1542 1542  
1543 1543  (((
... ... @@ -1545,22 +1545,22 @@
1545 1545  )))
1546 1546  
1547 1547  (((
1548 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
2019 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1549 1549  )))
1550 1550  
1551 1551  (((
1552 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
2023 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1553 1553  )))
1554 1554  
1555 1555  * (((
1556 -Connect sensor's output to DI1+ with a serial 50K resistor
2027 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1557 1557  )))
1558 1558  * (((
1559 -Connect sensor's GND DI1-.
2030 +Connect the sensor's GND DI1-.
1560 1560  )))
1561 1561  
1562 1562  (((
1563 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
2034 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1564 1564  )))
1565 1565  
1566 1566  (((
... ... @@ -1568,24 +1568,37 @@
1568 1568  )))
1569 1569  
1570 1570  (((
1571 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
2042 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1572 1572  )))
1573 1573  
1574 1574  
1575 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
2046 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1576 1576  
2048 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1577 1577  
1578 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
2050 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1579 1579  
1580 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
2052 +[[image:image-20230616235145-1.png]]
1581 1581  
2054 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
2055 +
2056 +[[image:image-20240219115718-1.png]]
2057 +
2058 +
2059 +=== 3.6.3 Digital Output Ports: DO1/DO2 ===
2060 +
2061 +
2062 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
2063 +
2064 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
2065 +
1582 1582  [[image:1653357531600-905.png]]
1583 1583  
1584 1584  
1585 -=== 3.6.4 Analog Input Interface ===
2069 +=== 3.6.4 Analog Input Interfaces ===
1586 1586  
1587 1587  
1588 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
2072 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1589 1589  
1590 1590  
1591 1591  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1592,20 +1592,19 @@
1592 1592  
1593 1593  [[image:1653357592296-182.png]]
1594 1594  
1595 -Example to connect a 4~~20mA sensor
2079 +Example: Connecting a 4~~20mA sensor
1596 1596  
1597 -We take the wind speed sensor as an example for reference only.
2081 +We will use the wind speed sensor as an example for reference only.
1598 1598  
1599 1599  
1600 1600  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1601 1601  
1602 -(% style="color:red" %)**Red:  12~~24v**
2086 +(% style="color:red" %)**Red:  12~~24V**
1603 1603  
1604 1604  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1605 1605  
1606 1606  **Black:  GND**
1607 1607  
1608 -
1609 1609  **Connection diagram:**
1610 1610  
1611 1611  [[image:1653357640609-758.png]]
... ... @@ -1613,239 +1613,148 @@
1613 1613  [[image:1653357648330-671.png||height="155" width="733"]]
1614 1614  
1615 1615  
1616 -=== 3.6.5 Relay Output ===
2099 +Example: Connecting to a regulated power supply to measure voltage
1617 1617  
2101 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1618 1618  
1619 -(((
1620 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
2103 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1621 1621  
1622 -**Note**: RO pins go to Open(NO) when device is power off.
1623 -)))
2105 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1624 1624  
1625 -[[image:image-20220524100215-9.png]]
1626 1626  
2108 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1627 1627  
1628 -[[image:image-20220524100215-10.png||height="382" width="723"]]
2110 +(% style="color:red" %)**Red:  12~~24v**
1629 1629  
2112 +**Black:  GND**
1630 1630  
1631 -== 3.7 LEDs Indicators ==
1632 1632  
2115 +=== 3.6.5 Relay Output ===
1633 1633  
1634 -[[image:image-20220524100748-11.png]]
1635 1635  
1636 -
1637 -= 4. Use AT Command =
1638 -
1639 -== 4.1 Access AT Command ==
1640 -
1641 -
1642 1642  (((
1643 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1644 -)))
2119 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1645 1645  
1646 -(((
1647 -
2121 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1648 1648  )))
1649 1649  
1650 -[[image:1653358238933-385.png]]
2124 +[[image:image-20220524100215-9.png]]
1651 1651  
1652 1652  
1653 -(((
1654 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1655 -)))
2127 +[[image:image-20220524100215-10.png||height="382" width="723"]]
1656 1656  
1657 -[[image:1653358355238-883.png]]
1658 1658  
2130 +== 3.7 LEDs Indicators ==
1659 1659  
1660 -(((
1661 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1662 -)))
2132 +The table below lists the behavior of LED indicators for each port function.
1663 1663  
2134 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
2135 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
2136 +|**PWR**|Always on when there is power
2137 +|**TX**|(((
1664 1664  (((
1665 -AT+<CMD>?        : Help on <CMD>
2139 +Device boot: TX blinks 5 times.
1666 1666  )))
1667 1667  
1668 1668  (((
1669 -AT+<CMD>         : Run <CMD>
2143 +Successful network join: TX remains ON for 5 seconds.
1670 1670  )))
1671 1671  
1672 1672  (((
1673 -AT+<CMD>=<value> : Set the value
2147 +Transmit a LoRa packet: TX blinks once
1674 1674  )))
1675 -
1676 -(((
1677 -AT+<CMD>=?       :  Get the value
1678 1678  )))
1679 -
1680 -(((
1681 -ATZ: Trig a reset of the MCU
2150 +|**RX**|RX blinks once when a packet is received.
2151 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
2152 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
2153 +|**DI1**|(((
2154 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1682 1682  )))
1683 -
1684 -(((
1685 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
2156 +|**DI2**|(((
2157 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1686 1686  )))
2159 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
2160 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1687 1687  
1688 -(((
1689 -AT+DEUI: Get or Set the Device EUI
1690 -)))
2162 += 4. Using AT Commands =
1691 1691  
1692 -(((
1693 -AT+DADDR: Get or Set the Device Address
1694 -)))
2164 +The LT-22222-L supports programming using AT Commands.
1695 1695  
1696 -(((
1697 -AT+APPKEY: Get or Set the Application Key
1698 -)))
2166 +== 4.1 Connecting the LT-22222-L to a PC ==
1699 1699  
1700 1700  (((
1701 -AT+NWKSKEY: Get or Set the Network Session Key
1702 -)))
2169 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1703 1703  
1704 -(((
1705 -AT+APPSKEY:  Get or Set the Application Session Key
2171 +[[image:usb-ttl-programming.png]]
1706 1706  )))
1707 1707  
1708 -(((
1709 -AT+APPEUI:  Get or Set the Application EUI
1710 -)))
1711 1711  
1712 -(((
1713 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1714 -)))
1715 1715  
1716 1716  (((
1717 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
2177 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1718 1718  )))
1719 1719  
1720 -(((
1721 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1722 -)))
2180 +[[image:1653358355238-883.png]]
1723 1723  
1724 -(((
1725 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1726 -)))
1727 1727  
1728 1728  (((
1729 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1730 -)))
2184 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1731 1731  
1732 -(((
1733 -AT+RX2FQ: Get or Set the Rx2 window frequency
2186 +== 4.2 LT-22222-L related AT commands ==
1734 1734  )))
1735 1735  
1736 1736  (((
1737 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1738 -)))
2190 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between working modes.
1739 1739  
1740 -(((
1741 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
2192 +* **##AT##+<CMD>?** : Help on <CMD>
2193 +* **##AT##+<CMD>** : Run <CMD>
2194 +* **##AT##+<CMD>=<value>** : Set the value
2195 +* **##AT##+<CMD>=?** : Get the value
2196 +* ##**ATZ**##: Trigger a reset of the MCU
2197 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
2198 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
2199 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
2200 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
2201 +* ##**AT+NWKSKEY**##: Get or set the Network Session Key (NwkSKey)
2202 +* **##AT+APPSKEY##**: Get or set the Application Session Key (AppSKey)
2203 +* **##AT+APPEUI##**: Get or set the Application EUI (AppEUI)
2204 +* **##AT+ADR##**: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
2205 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
2206 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
2207 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
2208 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
2209 +* AT+RX2FQ: Get or set the Rx2 window frequency
2210 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
2211 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
2212 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
2213 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
2214 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
2215 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
2216 +* AT+NWKID: Get or set the Network ID
2217 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
2218 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
2219 +* AT+CLASS: Get or set the Device Class
2220 +* AT+JOIN: Join network
2221 +* AT+NJS: Get OTAA Join Status
2222 +* AT+SENDB: Send hexadecimal data along with the application port
2223 +* AT+SEND: Send text data along with the application port
2224 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
2225 +* AT+RECV: Print last received data in raw format
2226 +* AT+VER: Get current image version and Frequency Band
2227 +* AT+CFM: Get or Set the confirmation mode (0-1)
2228 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
2229 +* AT+SNR: Get the SNR of the last received packet
2230 +* AT+RSSI: Get the RSSI of the last received packet
2231 +* AT+TDC: Get or set the application data transmission interval in ms
2232 +* AT+PORT: Get or set the application port
2233 +* AT+DISAT: Disable AT commands
2234 +* AT+PWORD: Set password, max 9 digits
2235 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
2236 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
2237 +* AT+CFG: Print all settings
1742 1742  )))
1743 1743  
1744 -(((
1745 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1746 -)))
1747 1747  
1748 -(((
1749 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1750 -)))
1751 -
1752 -(((
1753 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1754 -)))
1755 -
1756 -(((
1757 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1758 -)))
1759 -
1760 -(((
1761 -AT+NWKID: Get or Set the Network ID
1762 -)))
1763 -
1764 -(((
1765 -AT+FCU: Get or Set the Frame Counter Uplink
1766 -)))
1767 -
1768 -(((
1769 -AT+FCD: Get or Set the Frame Counter Downlink
1770 -)))
1771 -
1772 -(((
1773 -AT+CLASS: Get or Set the Device Class
1774 -)))
1775 -
1776 -(((
1777 -AT+JOIN: Join network
1778 -)))
1779 -
1780 -(((
1781 -AT+NJS: Get OTAA Join Status
1782 -)))
1783 -
1784 -(((
1785 -AT+SENDB: Send hexadecimal data along with the application port
1786 -)))
1787 -
1788 -(((
1789 -AT+SEND: Send text data along with the application port
1790 -)))
1791 -
1792 -(((
1793 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1794 -)))
1795 -
1796 -(((
1797 -AT+RECV: Print last received data in raw format
1798 -)))
1799 -
1800 -(((
1801 -AT+VER:  Get current image version and Frequency Band
1802 -)))
1803 -
1804 -(((
1805 -AT+CFM: Get or Set the confirmation mode (0-1)
1806 -)))
1807 -
1808 -(((
1809 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1810 -)))
1811 -
1812 -(((
1813 -AT+SNR: Get the SNR of the last received packet
1814 -)))
1815 -
1816 -(((
1817 -AT+RSSI: Get the RSSI of the last received packet
1818 -)))
1819 -
1820 -(((
1821 -AT+TDC: Get or set the application data transmission interval in ms
1822 -)))
1823 -
1824 -(((
1825 -AT+PORT: Get or set the application port
1826 -)))
1827 -
1828 -(((
1829 -AT+DISAT: Disable AT commands
1830 -)))
1831 -
1832 -(((
1833 -AT+PWORD: Set password, max 9 digits
1834 -)))
1835 -
1836 -(((
1837 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1838 -)))
1839 -
1840 -(((
1841 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1842 -)))
1843 -
1844 -(((
1845 -AT+CFG: Print all settings
1846 -)))
1847 -
1848 -
1849 1849  == 4.2 Common AT Command Sequence ==
1850 1850  
1851 1851  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -1854,41 +1854,41 @@
1854 1854  
1855 1855  
1856 1856  (((
1857 -(% style="color:blue" %)**If device has not joined network yet:**
2249 +(% style="color:blue" %)**If the device has not yet joined the network:**
1858 1858  )))
1859 1859  )))
1860 1860  
1861 1861  (((
1862 -(% style="background-color:#dcdcdc" %)**123456**
2254 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1863 1863  )))
1864 1864  
1865 1865  (((
1866 -(% style="background-color:#dcdcdc" %)**AT+FDR**
2258 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/Reset parameters to factory default, Reserve keys**##
1867 1867  )))
1868 1868  
1869 1869  (((
1870 -(% style="background-color:#dcdcdc" %)**123456**
2262 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/Enter the password to enable AT commands access**##
1871 1871  )))
1872 1872  
1873 1873  (((
1874 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2266 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/Set to ABP mode**##
1875 1875  )))
1876 1876  
1877 1877  (((
1878 -(% style="background-color:#dcdcdc" %)**ATZ**
2270 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/Reset MCU**##
1879 1879  )))
1880 1880  
1881 1881  
1882 1882  (((
1883 -(% style="color:blue" %)**If device already joined network:**
2275 +(% style="color:blue" %)**If the device has already joined the network:**
1884 1884  )))
1885 1885  
1886 1886  (((
1887 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
2279 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
1888 1888  )))
1889 1889  
1890 1890  (((
1891 -(% style="background-color:#dcdcdc" %)**ATZ**
2283 +(% style="background-color:#dcdcdc" %)##**ATZ**##
1892 1892  )))
1893 1893  
1894 1894  
... ... @@ -1898,20 +1898,20 @@
1898 1898  
1899 1899  
1900 1900  (((
1901 -(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter Password to have AT access.
2293 +(% style="background-color:#dcdcdc" %)**123456**(%%)  ~/~/ Enter password to enable AT commands access
1902 1902  )))
1903 1903  )))
1904 1904  
1905 1905  (((
1906 -(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset Parameters to Factory Default, Keys Reserve
2298 +(% style="background-color:#dcdcdc" %)** AT+FDR**(%%)  ~/~/ Reset parameters to Factory Default, Reserve keys
1907 1907  )))
1908 1908  
1909 1909  (((
1910 -(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter Password to have AT access.
2302 +(% style="background-color:#dcdcdc" %)** 123456**(%%)  ~/~/ Enter password to enable AT commands access
1911 1911  )))
1912 1912  
1913 1913  (((
1914 -(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to work in CLASS C
2306 +(% style="background-color:#dcdcdc" %)** AT+CLASS=C**(%%)  ~/~/ Set to CLASS C mode
1915 1915  )))
1916 1916  
1917 1917  (((
... ... @@ -1931,19 +1931,19 @@
1931 1931  )))
1932 1932  
1933 1933  (((
1934 -(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4Mhz
2326 +(% style="background-color:#dcdcdc" %)** AT+CHS=868400000**(%%)  ~/~/ Set transmit frequency to 868.4 MHz
1935 1935  )))
1936 1936  
1937 1937  (((
1938 -(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2Frequency to 868.4Mhz (according to the result from server)
2330 +(% style="background-color:#dcdcdc" %)** AT+RX2FQ=868400000**(%%)  ~/~/ Set RX2 frequency to 868.4 MHz (according to the result from the server)
1939 1939  )))
1940 1940  
1941 1941  (((
1942 -(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2DR to match the downlink DR from server. see below
2334 +(% style="background-color:#dcdcdc" %)** AT+RX2DR=5**(%%)** ** ~/~/ Set RX2 DR to match the downlink DR from the server. See below.
1943 1943  )))
1944 1944  
1945 1945  (((
1946 -(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address to 26 01 1A F1, this ID can be found in the LoRa Server portal.
2338 +(% style="background-color:#dcdcdc" %)** AT+DADDR=26 01 1A F1** (%%) ~/~/ Set Device Address. The Device Address can be found in the application on the LoRaWAN NS.
1947 1947  )))
1948 1948  
1949 1949  (((
... ... @@ -1957,16 +1957,14 @@
1957 1957  )))
1958 1958  
1959 1959  (((
1960 -**~1. Make sure the device is set to ABP mode in the IoT Server.**
2352 +**~1. Ensure that the device is set to ABP mode in the LoRaWAN Network Server.**
1961 1961  
1962 -**2. Make sure the LG01/02 gateway RX frequency is exactly the same as AT+CHS setting.**
2354 +**2. Verify that the LG01/02 gateway RX frequency matches the AT+CHS setting exactly.**
1963 1963  
1964 -**3. Make sure SF / bandwidth setting in LG01/LG02 match the settings of AT+DR. refer [[this link>>url:http://www.dragino.com/downloads/index.php?
2356 +**3. Make sure the SF/bandwidth settings in the LG01/LG02 match the settings of AT+DR. Refer to [[this link>>url:http://www.dragino.com/downloads/index.php?
1965 1965  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1966 1966  
1967 -**4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1968 -
1969 -
2359 +**4. The commands AT+RX2FQ and AT+RX2DR enable downlink functionality. To set the correct parameters, you can check the actual downlink parameters to be used as shown below. Here, RX2FQ should be set to 868400000 and RX2DR should be set to 5.**
1970 1970  )))
1971 1971  
1972 1972  (((
... ... @@ -1973,54 +1973,63 @@
1973 1973  [[image:1653359097980-169.png||height="188" width="729"]]
1974 1974  )))
1975 1975  
1976 -(((
1977 -
1978 -)))
1979 1979  
1980 1980  === 4.2.3 Change to Class A ===
1981 1981  
1982 1982  
1983 1983  (((
1984 -(% style="color:blue" %)**If sensor JOINED:**
2371 +(% style="color:blue" %)**If the sensor has JOINED:**
1985 1985  
1986 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1987 -ATZ**
2373 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2374 +
2375 +(% style="background-color:#dcdcdc" %)**ATZ**
1988 1988  )))
1989 1989  
1990 1990  
1991 1991  = 5. Case Study =
1992 1992  
1993 -== 5.1 Counting how many objects pass in Flow Line ==
2381 +== 5.1 Counting how many objects pass through the flow line ==
1994 1994  
2383 +See [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1995 1995  
1996 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1997 1997  
1998 -
1999 1999  = 6. FAQ =
2000 2000  
2001 -== 6.1 How to upgrade the image? ==
2388 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2002 2002  
2003 2003  
2004 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2391 +== 6.1 How to update the firmware? ==
2005 2005  
2393 +Dragino frequently releases firmware updates for the LT-22222-L. Updating your LT-22222-L with the latest firmware version helps to:
2394 +
2006 2006  * Support new features
2007 -* For bug fix
2008 -* Change LoRaWAN bands.
2396 +* Fix bugs
2397 +* Change LoRaWAN frequency bands
2009 2009  
2010 -Below shows the hardware connection for how to upload an image to the LT:
2399 +You will need the following things before proceeding:
2011 2011  
2012 -[[image:1653359603330-121.png]]
2401 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2402 +* USB to TTL adapter
2403 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2404 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2013 2013  
2406 +{{info}}
2407 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2408 +{{/info}}
2014 2014  
2015 -(((
2016 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2017 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2018 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2019 -
2410 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2020 2020  
2412 +[[image:usb-ttl-programming.png]]
2413 +
2414 +
2415 +
2416 +Start the STM32 Flash Loader and choose the correct COM port to update.
2417 +
2021 2021  (((
2419 +(((
2022 2022  (% style="color:blue" %)**For LT-22222-L**(%%):
2023 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2421 +
2422 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2024 2024  )))
2025 2025  
2026 2026  
... ... @@ -2035,41 +2035,36 @@
2035 2035  [[image:image-20220524104033-15.png]]
2036 2036  
2037 2037  
2038 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2437 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5 mm cable. The pin mapping is as follows:
2039 2039  
2040 -
2041 2041  [[image:1653360054704-518.png||height="186" width="745"]]
2042 2042  
2043 2043  
2044 2044  (((
2045 2045  (((
2046 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2047 -
2048 -
2444 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2049 2049  )))
2050 2050  )))
2051 2051  
2052 2052  (((
2053 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2449 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2054 2054  )))
2055 2055  
2056 2056  (((
2057 2057  
2058 2058  
2059 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2060 -
2061 -
2455 +== 6.3 How to setup LT-22222-L to work with a Single Channel Gateway, such as LG01/LG02? ==
2062 2062  )))
2063 2063  
2064 2064  (((
2065 2065  (((
2066 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2460 +In this case, you need to set the LT-22222-L to work in ABP mode and transmit on only one frequency.
2067 2067  )))
2068 2068  )))
2069 2069  
2070 2070  (((
2071 2071  (((
2072 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2466 +We assume you have an LG01/LG02 working on the frequency 868400000. Below are the steps.
2073 2073  
2074 2074  
2075 2075  )))
... ... @@ -2076,188 +2076,193 @@
2076 2076  )))
2077 2077  
2078 2078  (((
2079 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2473 +(% style="color:#0000ff" %)**Step 1**(%%): Log in to The Things Stack Sandbox account and create an ABP device in the application. To do this, use the manual registration option as explained in section 3.2.2.2, //Adding a Device Manually//. Select //Activation by Personalization (ABP)// under Activation Mode. Enter the DevEUI exactly as shown on the registration information sticker, then generate the Device Address, Application Session Key (AppSKey), and Network Session Key (NwkSKey).
2080 2080  
2081 -
2475 +[[image:lt-22222-l-abp.png||height="686" width="1000"]]
2082 2082  )))
2083 2083  
2084 2084  (((
2085 -[[image:1653360231087-571.png||height="401" width="727"]]
2086 -
2087 2087  
2088 2088  )))
2089 2089  
2090 -(((
2091 -(% style="color:red" %)**Note: user just need to make sure above three keys match, User can change either in TTN or Device to make then match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN.**
2092 -)))
2482 +{{warning}}
2483 +Ensure that the Device Address (DevAddr) and the two keys match between the LT-22222-L and The Things Stack. You can modify them either in The Things Stack or on the LT-22222-L to make them align. In The Things Stack, you can configure the NwkSKey and AppSKey on the settings page, but note that the Device Address is generated by The Things Stack.
2484 +{{/warning}}
2093 2093  
2094 2094  
2095 -
2096 2096  (((
2097 -(% style="color:blue" %)**Step2**(%%)**:  **Run AT Command to make LT work in Single frequency & ABP mode. Below is the AT commands:
2488 +(% style="color:blue" %)**Step 2**(%%)**:  **(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)Run AT commands to configure the LT-22222-L to operate in single-frequency and ABP mode. The AT commands are as follows:
2098 2098  
2099 2099  
2100 2100  )))
2101 2101  
2102 2102  (((
2103 -(% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2104 -(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2105 -(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2106 -(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2107 -(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2108 -(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2109 -(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2110 -(% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2111 -(% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2494 +(% style="background-color:#dcdcdc" %)**123456** (%%) : Enter the password to enable AT access.
2495 +
2496 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset parameters to factory default, keeping keys reserved.
2497 +
2498 +(% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode.
2499 +
2500 +(% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Disable the Adaptive Data Rate (ADR).
2501 +
2502 +(% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Use AT+DR=3 for the 915 MHz band).
2503 +
2504 +(% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds.
2505 +
2506 +(% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4 MHz.
2507 +
2508 +(% style="background-color:#dcdcdc" %)**AT+DADDR=xxxx**(%%) : Set the Device Address (DevAddr)
2509 +
2510 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:700; text-decoration:none; white-space:pre-wrap" %)**AT+APPKEY=xxxx**(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %): Get or set the Application Key (AppKey)
2511 +
2512 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+NWKSKEY=xxxx**: Get or set the Network Session Key (NwkSKey)
2513 +
2514 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)**AT+APPSKEY=xxxx**: Get or set the Application Session Key (AppSKey)
2515 +
2516 +(% style="background-color:#dcdcdc" %)**ATZ**        (%%) : Reset MCU.
2112 2112  )))
2113 2113  
2114 2114  
2115 2115  (((
2116 -As shown in below:
2521 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)The following figure shows the screenshot of the command set above, issued using a serial tool:
2117 2117  )))
2118 2118  
2119 2119  [[image:1653360498588-932.png||height="485" width="726"]]
2120 2120  
2121 2121  
2122 -== 6.4 How to change the uplink interval ==
2527 +== 6.4 How to change the uplink interval? ==
2123 2123  
2124 -
2125 2125  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2126 2126  
2127 2127  
2128 -== 6.5 Can I see counting event in Serial? ==
2532 +== 6.5 Can I see the counting event in the serial output? ==
2129 2129  
2130 -
2131 2131  (((
2132 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2535 +You can run the AT command **AT+DEBUG** to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2133 2133  
2134 2134  
2135 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2538 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2136 2136  
2540 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2137 2137  
2138 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2139 -
2140 2140  
2141 2141  )))
2142 2142  
2143 2143  (((
2144 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2546 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2145 2145  
2548 +* If the device is not properly shut down and is directly powered off.
2549 +* It will default to a power-off state.
2550 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2551 +* After a restart, the status before the power failure will be read from flash.
2146 2146  
2147 -If the device is not shut down, but directly powered off.
2553 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2148 2148  
2149 -It will default that this is a power-off state.
2555 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2150 2150  
2151 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2152 2152  
2153 -After restart, the status before power failure will be read from flash.
2558 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2154 2154  
2155 2155  
2156 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2561 +== 6.9 Can the LT-22222-L save the RO state? ==
2157 2157  
2563 +To enable this feature, the firmware version must be 1.6.0 or higher.
2158 2158  
2159 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2160 2160  
2566 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2161 2161  
2162 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2568 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2163 2163  
2164 2164  
2165 -== 6.9 Can LT22222-L save RO state? ==
2571 += 7. Troubleshooting =
2166 2166  
2573 +This section provides some known troubleshooting tips.
2167 2167  
2168 -Firmware version needs to be no less than 1.6.0.
2169 -
2170 -
2171 -= 7. Trouble Shooting =
2575 +
2172 2172  )))
2173 2173  
2174 2174  (((
2175 2175  (((
2176 -== 7.1 Downlink doesn't work, how to solve it? ==
2177 -
2178 -
2580 +== 7.1 Downlink isn't working. How can I solve this? ==
2179 2179  )))
2180 2180  )))
2181 2181  
2182 2182  (((
2183 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2585 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2184 2184  )))
2185 2185  
2186 2186  (((
2187 2187  
2188 2188  
2189 -== 7.2 Have trouble to upload image. ==
2190 -
2191 -
2591 +== 7.2 Having trouble uploading an image? ==
2192 2192  )))
2193 2193  
2194 2194  (((
2195 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2595 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2196 2196  )))
2197 2197  
2198 2198  (((
2199 2199  
2200 2200  
2201 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2202 -
2203 -
2601 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2204 2204  )))
2205 2205  
2206 2206  (((
2207 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2605 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2208 2208  )))
2209 2209  
2210 2210  
2211 -= 8. Order Info =
2609 +== 7.4 Why can the LT-22222-L perform uplink normally, but cannot receive downlink? ==
2212 2212  
2611 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2612 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2213 2213  
2614 +
2615 += 8. Ordering information =
2616 +
2214 2214  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2215 2215  
2216 2216  (% style="color:#4f81bd" %)**XXX:**
2217 2217  
2218 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2219 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2220 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2221 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2222 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2223 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2224 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2225 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2226 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2621 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2622 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2623 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2624 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2625 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2626 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2627 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2628 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2629 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2227 2227  
2228 -= 9. Packing Info =
2631 += 9. Package information =
2229 2229  
2633 +**Package includes**:
2230 2230  
2231 -**Package Includes**:
2635 +* 1 x LT-22222-L I/O Controller
2636 +* 1 x LoRa antenna matched to the frequency of the LT-22222-L
2637 +* 1 x bracket for DIN rail mounting
2638 +* 1 x 3.5 mm programming cable
2232 2232  
2233 -* LT-22222-L I/O Controller x 1
2234 -* Stick Antenna for LoRa RF part x 1
2235 -* Bracket for controller x1
2236 -* Program cable x 1
2237 -
2238 2238  **Dimension and weight**:
2239 2239  
2240 2240  * Device Size: 13.5 x 7 x 3 cm
2241 -* Device Weight: 105g
2643 +* Device Weight: 105 g
2242 2242  * Package Size / pcs : 14.5 x 8 x 5 cm
2243 -* Weight / pcs : 170g
2645 +* Weight / pcs : 170 g
2244 2244  
2245 2245  = 10. Support =
2246 2246  
2247 -
2248 2248  * (((
2249 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2650 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2250 2250  )))
2251 2251  * (((
2252 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2653 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2253 2253  
2254 -
2255 2255  
2256 2256  )))
2257 2257  
2258 2258  = 11. Reference​​​​​ =
2259 2259  
2260 -
2261 2261  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2262 2262  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2263 2263  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-abp.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +321.4 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content
usb-ttl-programming.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +462.9 KB
Content