Changes for page LT-22222-L -- LoRa I/O Controller User Manual
Last modified by Mengting Qiu on 2025/06/04 18:42
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 17 added, 0 removed)
- image-20230608101532-1.png
- image-20230608101608-2.jpeg
- image-20230608101722-3.png
- image-20230616235145-1.png
- image-20240219115718-1.png
- lt-22222-l-dev-repo-p1.png
- lt-22222-l-dev-repo-reg-p1.png
- lt-22222-l-dev-repo-reg-p2.png
- lt-22222-l-manually-p1.png
- lt-22222-l-manually-p2.png
- thingseye-io-step-1.png
- thingseye-io-step-2.png
- thingseye-io-step-3.png
- thingseye-io-step-4.png
- thingseye-io-step-5.png
- thingseye-io-step-6.png
- tts-mqtt-integration.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LT-22222-L LoRa IO Controller User Manual 1 +LT-22222-L -- LoRa IO Controller User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.pradeeka - Content
-
... ... @@ -3,6 +3,10 @@ 3 3 4 4 5 5 6 + 7 + 8 + 9 + 6 6 **Table of Contents:** 7 7 8 8 {{toc/}} ... ... @@ -15,36 +15,30 @@ 15 15 16 16 = 1.Introduction = 17 17 18 -== 1.1 What is LT SeriesI/O Controller ==22 +== 1.1 What is the LT-22222-L I/O Controller? == 19 19 20 20 ((( 21 - 22 - 23 23 ((( 24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring. 25 -))) 26 -))) 26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs. 27 27 28 -((( 29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on. 28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology. 30 30 ))) 31 - 32 -((( 33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology. 34 34 ))) 35 35 36 36 ((( 37 - The useenvironment includes:33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands. 38 38 ))) 39 39 40 -((( 41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless. 42 -))) 36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks. 43 43 44 44 ((( 45 - 2) User can setupa LoRaWAN gateway locally andconfigure thecontroller toconnecttothegatewayviawireless.39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways: 46 46 47 - 41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it. 42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network. 43 +* Setup your own private LoRaWAN network. 44 + 45 +> You can use the Dragino LG308 gateway to expand or create LoRaWAN coverage in your area. 48 48 ))) 49 49 50 50 ((( ... ... @@ -53,162 +53,71 @@ 53 53 54 54 ))) 55 55 56 -== 1.2 54 +== 1.2 Specifications == 57 57 58 -((( 59 - 60 - 61 61 (% style="color:#037691" %)**Hardware System:** 62 -))) 63 63 64 -* ((( 65 -STM32L072xxxx MCU 66 -))) 67 -* ((( 68 -SX1276/78 Wireless Chip 69 -))) 70 -* ((( 71 -((( 72 -Power Consumption: 73 -))) 58 +* STM32L072xxxx MCU 59 +* SX1276/78 Wireless Chip 60 +* Power Consumption: 61 +** Idle: 4mA@12v 62 +** 20dB Transmit: 34mA@12v 63 +* Operating Temperature: -40 ~~ 85 Degree, No Dew 74 74 75 -* ((( 76 -Idle: 4mA@12v 77 -))) 78 -* ((( 79 -20dB Transmit: 34mA@12v 80 -))) 81 -))) 82 - 83 -((( 84 - 85 - 86 86 (% style="color:#037691" %)**Interface for Model: LT22222-L:** 87 -))) 88 88 89 -* ((( 90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 91 -))) 92 -* ((( 93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 94 -))) 95 -* ((( 96 -2 x Relay Output (5A@250VAC / 30VDC) 97 -))) 98 -* ((( 99 -2 x 0~~20mA Analog Input (res:0.01mA) 100 -))) 101 -* ((( 102 -2 x 0~~30V Analog Input (res:0.01v) 103 -))) 104 -* ((( 105 -Power Input 7~~ 24V DC. 106 -))) 67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor) 68 +* 2 x Digital Output (NPN output. Max pull up voltage 36V,450mA) 69 +* 2 x Relay Output (5A@250VAC / 30VDC) 70 +* 2 x 0~~20mA Analog Input (res:0.01mA) 71 +* 2 x 0~~30V Analog Input (res:0.01v) 72 +* Power Input 7~~ 24V DC. 107 107 108 -((( 109 - 110 - 111 111 (% style="color:#037691" %)**LoRa Spec:** 112 -))) 113 113 114 -* ((( 115 -((( 116 -Frequency Range: 117 -))) 76 +* Frequency Range: 77 +** Band 1 (HF): 862 ~~ 1020 Mhz 78 +** Band 2 (LF): 410 ~~ 528 Mhz 79 +* 168 dB maximum link budget. 80 +* +20 dBm - 100 mW constant RF output vs. 81 +* +14 dBm high efficiency PA. 82 +* Programmable bit rate up to 300 kbps. 83 +* High sensitivity: down to -148 dBm. 84 +* Bullet-proof front end: IIP3 = -12.5 dBm. 85 +* Excellent blocking immunity. 86 +* Low RX current of 10.3 mA, 200 nA register retention. 87 +* Fully integrated synthesizer with a resolution of 61 Hz. 88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 89 +* Built-in bit synchronizer for clock recovery. 90 +* Preamble detection. 91 +* 127 dB Dynamic Range RSSI. 92 +* Automatic RF Sense and CAD with ultra-fast AFC. 93 +* Packet engine up to 256 bytes with CRC. 118 118 119 -* ((( 120 -Band 1 (HF): 862 ~~ 1020 Mhz 121 -))) 122 -* ((( 123 -Band 2 (LF): 410 ~~ 528 Mhz 124 -))) 125 -))) 126 -* ((( 127 -168 dB maximum link budget. 128 -))) 129 -* ((( 130 -+20 dBm - 100 mW constant RF output vs. 131 -))) 132 -* ((( 133 -+14 dBm high efficiency PA. 134 -))) 135 -* ((( 136 -Programmable bit rate up to 300 kbps. 137 -))) 138 -* ((( 139 -High sensitivity: down to -148 dBm. 140 -))) 141 -* ((( 142 -Bullet-proof front end: IIP3 = -12.5 dBm. 143 -))) 144 -* ((( 145 -Excellent blocking immunity. 146 -))) 147 -* ((( 148 -Low RX current of 10.3 mA, 200 nA register retention. 149 -))) 150 -* ((( 151 -Fully integrated synthesizer with a resolution of 61 Hz. 152 -))) 153 -* ((( 154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation. 155 -))) 156 -* ((( 157 -Built-in bit synchronizer for clock recovery. 158 -))) 159 -* ((( 160 -Preamble detection. 161 -))) 162 -* ((( 163 -127 dB Dynamic Range RSSI. 164 -))) 165 -* ((( 166 -Automatic RF Sense and CAD with ultra-fast AFC. 167 -))) 168 -* ((( 169 -Packet engine up to 256 bytes with CRC. 170 - 171 - 172 - 173 -))) 174 - 175 175 == 1.3 Features == 176 176 177 - 178 178 * LoRaWAN Class A & Class C protocol 179 - 180 180 * Optional Customized LoRa Protocol 181 - 182 182 * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869 183 - 184 184 * AT Commands to change parameters 185 - 186 186 * Remote configure parameters via LoRa Downlink 187 - 188 188 * Firmware upgradable via program port 189 - 190 190 * Counting 191 191 192 -== 1.4 105 +== 1.4 Applications == 193 193 194 - 195 195 * Smart Buildings & Home Automation 196 - 197 197 * Logistics and Supply Chain Management 198 - 199 199 * Smart Metering 200 - 201 201 * Smart Agriculture 202 - 203 203 * Smart Cities 204 - 205 205 * Smart Factory 206 206 207 207 == 1.5 Hardware Variants == 208 208 209 209 210 -(% border="1" style="background-color:#f2f2f2; width:500px" %) 211 -|(% style="background-color:# d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %) 118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description** 212 212 |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)((( 213 213 (% style="text-align:center" %) 214 214 [[image:image-20230424115112-1.png||height="106" width="58"]] ... ... @@ -221,97 +221,149 @@ 221 221 * 1 x Counting Port 222 222 ))) 223 223 224 -= 2. PowerONDevice =131 += 2. Assembling the Device = 225 225 133 +== 2.1 What is included in the package? == 226 226 227 -((( 228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller. 229 -))) 135 +The package includes the following items: 230 230 231 -((( 232 -PWR will on when device is properly powered. 137 +* 1 x LT-22222-L I/O Controller 138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L 139 +* 1 x bracket for wall mounting 140 +* 1 x programming cable 233 233 234 - 235 -))) 142 +Attach the LoRaWAN antenna to the connector labeled **ANT** (located on the top right side of the device, next to the upper terminal block). Secure the antenna by tightening it clockwise. 236 236 144 +== 2.2 Terminals == 145 + 146 +Upper screw terminal block (from left to right): 147 + 148 +(% style="width:634px" %) 149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function 150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground 151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage 152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2 153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1 154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2 155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1 156 + 157 +Lower screw terminal block (from left to right): 158 + 159 +(% style="width:633px" %) 160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function 161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1 162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1 163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2 164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2 165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2 166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2 167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1 168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1 169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2 170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1 171 + 172 +== 2.3 Powering == 173 + 174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN screw terminal and the negative wire to the GND screw terminal. The power indicator (PWR) LED will turn on when the device is properly powered. 175 + 176 + 237 237 [[image:1653297104069-180.png]] 238 238 239 239 240 240 = 3. Operation Mode = 241 241 242 -== 3.1 How it work s? ==182 +== 3.1 How does it work? == 243 243 184 +The LT-22222-L is configured to operate in LoRaWAN Class C mode by default. It supports OTAA (Over-the-Air Activation), which is the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots. 244 244 245 -((( 246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 247 -))) 186 +For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 248 248 249 -((( 250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices. 251 -))) 188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device. 252 252 190 +== 3.2 Registering with a LoRaWAN network server == 253 253 254 - ==3.2 Example tojoinLoRaWAN network==192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network. 255 255 194 +[[image:image-20220523172350-1.png||height="266" width="864"]] 256 256 257 -((( 258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 196 +=== 3.2.1 Prerequisites === 259 259 260 - 261 -))) 198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference. 262 262 263 -[[image:image-202 20523172350-1.png||height="266" width="864"]]200 +[[image:image-20230425173427-2.png||height="246" width="530"]] 264 264 202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers. 265 265 266 -((( 267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN: 204 +=== 3.2.2 The Things Stack Sandbox (TTSS) === 268 268 269 - 270 -))) 206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account. 207 +* Create an application if you do not have one yet. 208 +* Register LT-22222-L with that application. Two registration options available: 271 271 272 -((( 273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller. 274 -))) 210 +==== Using the LoRaWAN Device Repository: ==== 275 275 276 -((( 277 -Each LT is shipped with a sticker with the default device EUI as below: 278 -))) 212 +* Go to your application and click on the **Register end device** button. 213 +* On the **Register end device** page: 214 +** Select the option **Select the end device in the LoRaWAN Device Repository**. 215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**. 216 +** Select the **Frequency plan** that matches with your device. 279 279 280 -[[image: image-20230425173427-2.png||height="246" width="530"]]218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]] 281 281 220 +* 221 +** Enter the **AppEUI** in the **JoinEUI** field and click **Confirm** button. 222 +** Enter the **DevEUI** in the **DevEUI** field. 223 +** Enter the **AppKey** in the **AppKey** field. 224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 225 +** Under **After registration**, select the **View registered end device** option. 282 282 283 - Input these keysin the LoRaWAN Servertal.Belowis TTN screen shot:227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]] 284 284 285 - **AddAPPEUI inheapplication.**229 +==== Entering device information manually: ==== 286 286 287 -[[image:1653297955910-247.png||height="321" width="716"]] 231 +* On the **Register end device** page: 232 +** Select the **Enter end device specifies manually** option as the input method. 233 +** Select the **Frequency plan** that matches with your device. 234 +** Select the **LoRaWAN version**. 235 +** Select the **Regional Parameters version**. 236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section. 237 +** Select **Over the air activation (OTAA)** option under **Activation mode** 238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**. 288 288 240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]] 289 289 290 -**Add APP KEY and DEV EUI** 291 291 292 -[[image:1653298023685-319.png]] 243 +* Enter **AppEUI** in the **JoinEUI** field and click **Confirm** button. 244 +* Enter **DevEUI** in the **DevEUI** field. 245 +* Enter **AppKey** in the **AppKey** field. 246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N. 247 +* Under **After registration**, select the **View registered end device** option. 293 293 249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]] 294 294 295 295 296 -((( 297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel. 252 +==== Joining ==== 298 298 299 - 300 -))) 254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel. 301 301 302 302 [[image:1653298044601-602.png||height="405" width="709"]] 303 303 304 304 305 -== 3.3 Uplink Payload == 259 +== 3.3 Uplink Payload formats == 306 306 307 307 308 -The rearefiveworking modes+oneinterrupt modeon LTfor different type application:262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different type applications that can be used together with all the working modes as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands. 309 309 310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO 264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO 265 + 311 311 * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO 267 + 312 312 * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO 269 + 313 313 * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO 271 + 314 314 * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO 273 + 315 315 * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5 316 316 317 317 === 3.3.1 AT+MOD~=1, 2ACI+2AVI === ... ... @@ -318,58 +318,44 @@ 318 318 319 319 320 320 ((( 321 -The uplink payload i ncludestotally9bytes. Uplink packetsuse FPORT=2and every10 minutessendone uplinkbydefault. (% style="display:none" %)280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" %) 322 322 323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:5 20px" %)324 -|Size(bytes)(% style="dis play:none" %)|2|2|2|2|1|1|1282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 325 325 |Value|((( 326 -AVI1 327 - 328 -voltage 285 +AVI1 voltage 329 329 )))|((( 330 -AVI2 331 - 332 -voltage 287 +AVI2 voltage 333 333 )))|((( 334 -ACI1 335 - 336 -Current 289 +ACI1 Current 337 337 )))|((( 338 -ACI2 339 - 340 -Current 291 +ACI2 Current 341 341 )))|DIDORO*|((( 342 342 Reserve 343 - 344 - 345 345 )))|MOD 346 346 ))) 347 347 348 - 349 349 ((( 350 - 298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 351 351 352 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below 353 - 354 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 355 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0 356 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1 300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1 357 357 ))) 358 358 305 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low. 307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 359 359 360 -* RO is for relay. ROx=1 : close,ROx=0 always open. 361 -* DI is for digital input. DIx=1: high or float, DIx=0: low. 362 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L** 363 363 364 - (%style="color:red"%)**Note:DI3andDO3 bitarenot valid for LT-22222-L**311 +For example, if the payload is: [[image:image-20220523175847-2.png]] 365 365 366 -For example if payload is: [[image:image-20220523175847-2.png]] 367 367 314 +**The interface values can be calculated as follows: ** 368 368 369 - **Thevalueforthe interface is:**316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 370 370 371 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V 372 - 373 373 AVI2 channel voltage is 0x04AC/1000=1.196V 374 374 375 375 ACI1 channel current is 0x1310/1000=4.880mA ... ... @@ -376,96 +376,95 @@ 376 376 377 377 ACI2 channel current is 0x1300/1000=4.864mA 378 378 379 -The last byte 0xAA= 10101010( B) means324 +The last byte 0xAA= 10101010(b) means, 380 380 381 -* [1] RO1 relay channel is close and the RO1 LED is ON. 382 -* [0] RO2 relay channel is open and RO2 LED is OFF ;383 - 384 -* *LT22222-L:**385 - 386 -* [1]DI2channelishigh inputand DI2LEDis ON;387 -* [0]DI1channelis lowinput;388 - 389 -* [0] DO3 channel output state 390 -** DO3 is float in case no load between DO3 and V+. ;326 +* [1] RO1 relay channel is closed, and the RO1 LED is ON. 327 +* [0] RO2 relay channel is open, and RO2 LED is OFF. 328 +* [1] DI3 - not used for LT-22222-L. 329 +* [0] DI2 channel input is low, and the DI2 LED is OFF. 330 +* [1] DI1 channel input state: 331 +** DI1 is floating when there is no load between DI1 and V+. 332 +** DI1 is high when there is load between DI1 and V+. 333 +** DI1 LED is ON in both cases. 334 +* [0] DO3 channel output state: 335 +** DO3 is float in case no load between DO3 and V+. 391 391 ** DO3 is high in case there is load between DO3 and V+. 392 -** DO3 LED is offin both case393 -* [1] DO2 channel output is low and DO2 LED is ON. 394 -* [0] DO1 channel output state 395 -** DO1 is float case no load between DO1 and V+.;396 -** DO1 is high incasethere is load between DO1 and V+.397 -** DO1 LED is offin both case337 +** DO3 LED is OFF in both case 338 +* [1] DO2 channel output is low, and the DO2 LED is ON. 339 +* [0] DO1 channel output state: 340 +** DO1 is floating when there is no load between DO1 and V+. 341 +** DO1 is high when there is load between DO1 and V+. 342 +** DO1 LED is OFF in both case. 398 398 399 399 === 3.3.2 AT+MOD~=2, (Double DI Counting) === 400 400 401 401 402 402 ((( 403 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins. 348 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins. 404 404 ))) 405 405 406 406 ((( 407 -Total : 11 bytes payload 352 +The uplink payload is 11 bytes long. 353 + 354 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 355 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 356 +|Value|COUNT1|COUNT2 |DIDORO*|((( 357 +Reserve 358 +)))|MOD 408 408 ))) 409 409 410 -[[image:image-20220523180452-3.png]] 361 +((( 362 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 411 411 364 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 365 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 366 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 412 412 413 -((( 414 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below 368 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 415 415 ))) 416 416 417 -[[image:image-20220523180506-4.png]] 371 +* FIRST: Indicates that this is the first packet after joining the network. 372 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 418 418 419 -* RO is for relay. ROx=1 : close,ROx=0 always open. 420 -* FIRST: Indicate this is the first packet after join network. 421 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 422 - 423 423 ((( 424 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.** 425 -))) 375 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L** 426 426 427 -((( 428 428 378 +))) 429 429 430 -**To use counting mode, please run:** 380 +((( 381 +**To activate this mode, please run the following AT command:** 431 431 ))) 432 432 384 +((( 433 433 (% class="box infomessage" %) 434 434 ((( 435 -((( 436 -((( 437 437 **AT+MOD=2** 438 -))) 439 439 440 -((( 441 441 **ATZ** 442 442 ))) 443 443 ))) 444 -))) 445 445 446 446 ((( 447 447 448 448 449 449 (% style="color:#4f81bd" %)**AT Commands for counting:** 450 - 451 - 452 452 ))) 453 453 454 454 ((( 455 455 **For LT22222-L:** 456 456 402 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (set the DI1 port to trigger on a low level, the valid signal duration is 100ms) ** 457 457 458 -(% style="color:blue" %)**AT+TRIG1= 0,100**(%%)** (set DI1 port to trigger onlowlevel, valid signal is 100ms) **404 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (set the DI1 port to trigger on a high level, the valid signal duration is 100ms) ** 459 459 460 -(% style="color:blue" %)**AT+TRIG 1=1,100**(%%)** (set DI1port to trigger onhighlevel, valid signal is 100ms406 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (set the DI2 port to trigger on a low level, the valid signal duration is 100ms) ** 461 461 462 -(% style="color:blue" %)**AT+TRIG2= 0,100**(%%)** (set DI2 port to trigger onlowlevel, valid signal is 100ms) **408 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (set the DI2 port to trigger on a high level, the valid signal duration is 100ms) ** 463 463 464 -(% style="color:blue" %)**AT+T RIG2=1,100**(%%)**setDI2 portto triggeronhigh level, validsignalis 100ms)410 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (Set the COUNT1 value to 60)** 465 465 466 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (Set COUNT1 value to 60)** 467 - 468 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** (Set COUNT2 value to 60)** 412 +(% style="color:blue" %)**AT+SETCNT=2,60**(%%)** (Set the COUNT2 value to 60)** 469 469 ))) 470 470 471 471 ... ... @@ -472,22 +472,28 @@ 472 472 === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI === 473 473 474 474 475 -**LT22222-L**: This mode the DI1 is used as a counting pin.419 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 476 476 477 -[[image:image-20220523181246-5.png]] 421 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 422 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 423 +|Value|COUNT1|((( 424 +ACI1 Current 425 +)))|((( 426 +ACI2 Current 427 +)))|DIDORO*|Reserve|MOD 478 478 479 479 ((( 480 - 430 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 481 481 482 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below 432 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 433 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 434 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 483 483 ))) 484 484 485 -[[image:image-20220523181301-6.png]] 437 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 438 +* FIRST: Indicates that this is the first packet after joining the network. 439 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 486 486 487 -* RO is for relay. ROx=1 : close,ROx=0 always open. 488 -* FIRST: Indicate this is the first packet after join network. 489 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 490 - 491 491 ((( 492 492 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 493 493 ))) ... ... @@ -494,24 +494,22 @@ 494 494 495 495 496 496 ((( 497 -**To usecountingmode, please run:**447 +**To activate this mode, please run the following AT command:** 498 498 ))) 499 499 450 +((( 500 500 (% class="box infomessage" %) 501 501 ((( 502 -((( 503 -((( 504 504 **AT+MOD=3** 505 -))) 506 506 507 -((( 508 508 **ATZ** 509 509 ))) 510 510 ))) 511 -))) 512 512 513 513 ((( 514 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 460 +AT Commands for counting: 461 + 462 +The AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. Use only the commands that match 'DI'. 515 515 ))) 516 516 517 517 ... ... @@ -519,62 +519,59 @@ 519 519 520 520 521 521 ((( 522 -**LT22222-L**: This mode the DI1 is used as a counting pin.470 +**LT22222-L**: In this mode, the DI1 is used as a counting pin. 523 523 ))) 524 524 525 525 ((( 526 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour. 474 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours. 475 + 476 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 477 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 478 +|Value|COUNT1|AVI1 Counting|DIDORO*|((( 479 +Reserve 480 +)))|MOD 527 527 ))) 528 528 529 -[[image:image-20220523181903-8.png]] 530 - 531 - 532 532 ((( 533 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below 484 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below. 485 + 486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 487 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0** 488 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1 534 534 ))) 535 535 536 -[[image:image-20220523181727-7.png]] 491 +* RO is for relay. ROx=1 : closed, ROx=0 always open. 492 +* FIRST: Indicates that this is the first packet after joining the network. 493 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating. 537 537 538 -* RO is for relay. ROx=1 : close,ROx=0 always open. 539 -* FIRST: Indicate this is the first packet after join network. 540 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. 541 - 542 542 ((( 543 543 (% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.** 544 -))) 545 545 546 -((( 547 547 499 +))) 548 548 549 -**To use this mode, please run:** 501 +((( 502 +**To activate this mode, please run the following AT command:** 550 550 ))) 551 551 505 +((( 552 552 (% class="box infomessage" %) 553 553 ((( 554 -((( 555 -((( 556 556 **AT+MOD=4** 557 -))) 558 558 559 -((( 560 560 **ATZ** 561 561 ))) 562 562 ))) 563 -))) 564 564 565 - 566 566 ((( 567 567 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. 568 568 ))) 569 569 570 570 ((( 571 - 519 +**In addition to that, below are the commands for AVI1 Counting:** 572 572 573 - **Plusbelowcommand for AVI1Counting:**521 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (set AVI Count to 60)** 574 574 575 - 576 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)** (set AVI Count to 60)** 577 - 578 578 (% style="color:blue" %)**AT+VOLMAX=20000**(%%)** (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)** 579 579 580 580 (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)** (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)** ... ... @@ -588,15 +588,27 @@ 588 588 589 589 **LT22222-L**: This mode the DI1 is used as a counting pin. 590 590 591 -[[image:image-20220523182334-9.png]] 536 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 537 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1** 538 +|Value|((( 539 +AVI1 voltage 540 +)))|((( 541 +AVI2 voltage 542 +)))|((( 543 +ACI1 Current 544 +)))|COUNT1|DIDORO*|((( 545 +Reserve 546 +)))|MOD 592 592 593 593 ((( 594 - 595 - 596 596 (% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below 550 + 551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 552 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 553 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1 597 597 ))) 598 598 599 -* RO is for relay. ROx=1 : close ,ROx=0 always open.556 +* RO is for relay. ROx=1 : close, ROx=0 always open. 600 600 * FIRST: Indicate this is the first packet after join network. 601 601 * ((( 602 602 DO is for reverse digital output. DOx=1: output low, DOx=0: high or float. ... ... @@ -607,23 +607,17 @@ 607 607 ))) 608 608 609 609 ((( 610 - 611 - 612 612 **To use this mode, please run:** 613 613 ))) 614 614 570 +((( 615 615 (% class="box infomessage" %) 616 616 ((( 617 -((( 618 -((( 619 619 **AT+MOD=5** 620 -))) 621 621 622 -((( 623 623 **ATZ** 624 624 ))) 625 625 ))) 626 -))) 627 627 628 628 ((( 629 629 Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]. ... ... @@ -718,12 +718,39 @@ 718 718 719 719 MOD6 Payload : total 11 bytes payload 720 720 721 -[[image:image-20220524085923-1.png]] 672 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 673 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1** 674 +|Value|((( 675 +TRI_A FLAG 676 +)))|((( 677 +TRI_A Status 678 +)))|((( 679 +TRI_DI FLAG+STA 680 +)))|Reserve|Enable/Disable MOD6|((( 681 +MOD(6) 682 +))) 722 722 723 - 724 724 (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below 725 725 726 -[[image:image-20220524090106-2.png]] 686 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 687 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 688 +|((( 689 +AV1_LOW 690 +)))|((( 691 +AV1_HIGH 692 +)))|((( 693 +AV2_LOW 694 +)))|((( 695 +AV2_HIGH 696 +)))|((( 697 +AC1_LOW 698 +)))|((( 699 +AC1_HIGH 700 +)))|((( 701 +AC2_LOW 702 +)))|((( 703 +AC2_HIGH 704 +))) 727 727 728 728 * Each bits shows if the corresponding trigger has been configured. 729 729 ... ... @@ -732,10 +732,27 @@ 732 732 10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW 733 733 734 734 735 - 736 736 (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below 737 737 738 -[[image:image-20220524090249-3.png]] 715 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 716 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 717 +|((( 718 +AV1_LOW 719 +)))|((( 720 +AV1_HIGH 721 +)))|((( 722 +AV2_LOW 723 +)))|((( 724 +AV2_HIGH 725 +)))|((( 726 +AC1_LOW 727 +)))|((( 728 +AC1_HIGH 729 +)))|((( 730 +AC2_LOW 731 +)))|((( 732 +AC2_HIGH 733 +))) 739 739 740 740 * Each bits shows which status has been trigger on this uplink. 741 741 ... ... @@ -746,7 +746,9 @@ 746 746 747 747 (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below 748 748 749 -[[image:image-20220524090456-4.png]] 744 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 745 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0** 746 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG 750 750 751 751 * Each bits shows which status has been trigger on this uplink. 752 752 ... ... @@ -826,14 +826,10 @@ 826 826 827 827 Set work mode. 828 828 829 -* (% style="color:#037691" %)**AT Command:** 826 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N ** 830 830 831 -(% style="color:blue" %)**AT+MOD=N ** 832 - 833 - 834 834 **Example**: AT+MOD=2. Set work mode to Double DI counting mode 835 835 836 - 837 837 * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):** 838 838 839 839 (% style="color:blue" %)**0x0A aa **(%%)** ** ~/~/ Same as AT+MOD=aa ... ... @@ -843,16 +843,12 @@ 843 843 ==== 3.4.2.3 Poll an uplink ==== 844 844 845 845 846 -* (% style="color:#037691" %)**AT Command:** 839 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink 847 847 848 -There is no AT Command to poll uplink 849 - 850 - 851 851 * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):** 852 852 853 853 (% style="color:blue" %)**0x08 FF **(%%)** **~/~/ Poll an uplink 854 854 855 - 856 856 **Example**: 0x08FF, ask device to send an Uplink 857 857 858 858 ... ... @@ -862,10 +862,8 @@ 862 862 863 863 Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 864 864 865 -* (% style="color:#037691" %)**AT Command:** 854 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0** 866 866 867 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0** 868 - 869 869 (% style="color:red" %)**1:** (%%)Enable Trigger Mode 870 870 871 871 (% style="color:red" %)**0: **(%%)Disable Trigger Mode ... ... @@ -880,13 +880,12 @@ 880 880 ==== 3.4.2.5 Poll trigger settings ==== 881 881 882 882 883 -Poll trigger settings ,870 +Poll trigger settings 884 884 885 885 * (% style="color:#037691" %)**AT Command:** 886 886 887 887 There is no AT Command for this feature. 888 888 889 - 890 890 * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):** 891 891 892 892 (% style="color:blue" %)**0xAB 06 ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command ... ... @@ -898,15 +898,11 @@ 898 898 899 899 Enable Disable DI1/DI2/DI2 as trigger, 900 900 901 -* (% style="color:#037691" %)**AT Command:** 887 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >** 902 902 903 - (% style="color:blue" %)**Format:AT+DTRI=<DI1_TIRGGER_FlAG>,<DI2_TIRGGER_FlAG>**889 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 904 904 905 905 906 -**Example:** 907 - 908 -AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger) 909 - 910 910 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):** 911 911 912 912 (% style="color:blue" %)**0xAA 02 aa bb ** (%%) ~/~/ Same as AT+DTRI=aa,bb ... ... @@ -918,20 +918,15 @@ 918 918 919 919 Set DI1 or DI3(for LT-33222-L) trigger. 920 920 921 -* (% style="color:#037691" %)**AT Command:** 903 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b** 922 922 923 -(% style="color:blue" %)**AT+TRIG1=a,b** 924 - 925 925 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 926 926 927 927 (% style="color:red" %)**b :** (%%)delay timing. 928 928 909 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) 929 929 930 -**Example:** 931 931 932 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms ) 933 - 934 - 935 935 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):** 936 936 937 937 (% style="color:blue" %)**0x09 01 aa bb cc ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc) ... ... @@ -943,20 +943,15 @@ 943 943 944 944 Set DI2 trigger. 945 945 946 -* (% style="color:#037691" %)**AT Command:** 923 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b** 947 947 948 -(% style="color:blue" %)**AT+TRIG2=a,b** 949 - 950 950 (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1). 951 951 952 952 (% style="color:red" %)**b :** (%%)delay timing. 953 953 929 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 954 954 955 -**Example:** 956 956 957 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms ) 958 - 959 - 960 960 * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):** 961 961 962 962 (% style="color:blue" %)**0x09 02 aa bb cc ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc) ... ... @@ -968,11 +968,8 @@ 968 968 969 969 Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 970 970 971 -* (% style="color:#037691" %)**AT Command** 943 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM** 972 972 973 -(% style="color:blue" %)**AT+ACLIM** 974 - 975 - 976 976 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )** 977 977 978 978 (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] ... ... @@ -984,11 +984,8 @@ 984 984 985 985 Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] 986 986 987 -* (% style="color:#037691" %)**AT Command** 956 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]** 988 988 989 -(% style="color:blue" %)**AT+AVLIM **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]** 990 - 991 - 992 992 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )** 993 993 994 994 (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]] ... ... @@ -1000,18 +1000,13 @@ 1000 1000 1001 1001 Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger. 1002 1002 1003 -* (% style="color:#037691" %)**AT Command** 969 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5 ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger. 1004 1004 1005 -(% style="color:blue" %)**AT+ATDC=5 ** (%%)Device won't response the second trigger within 5 minute after the first trigger. 1006 - 1007 - 1008 1008 * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )** 1009 1009 1010 1010 (% style="color:blue" %)**0x AC aa bb **(%%) ~/~/ same as AT+ATDC=0x(aa bb) . Unit (min) 1011 1011 1012 1012 ((( 1013 - 1014 - 1015 1015 (% style="color:red" %)**Note: ATDC setting must be more than 5min** 1016 1016 ))) 1017 1017 ... ... @@ -1026,8 +1026,9 @@ 1026 1026 1027 1027 1028 1028 * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)** 1029 -* (% style="color:blue" %)**0x02 aa bb cc ** (%%)~/~/ Set DO1/DO2/DO3 output 1030 1030 991 +(% style="color:blue" %)**0x02 aa bb cc ** (%%)~/~/ Set DO1/DO2/DO3 output 992 + 1031 1031 ((( 1032 1032 If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low. 1033 1033 ))) ... ... @@ -1034,10 +1034,14 @@ 1034 1034 1035 1035 ((( 1036 1036 01: Low, 00: High , 11: No action 999 + 1000 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1001 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3** 1002 +|02 01 00 11|Low|High|No Action 1003 +|02 00 11 01|High|No Action|Low 1004 +|02 11 01 00|No Action|Low|High 1037 1037 ))) 1038 1038 1039 -[[image:image-20220524092754-5.png]] 1040 - 1041 1041 ((( 1042 1042 (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.** 1043 1043 ))) ... ... @@ -1074,24 +1074,31 @@ 1074 1074 1075 1075 (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status: 1076 1076 1077 -[[image:image-20220524093238-6.png]] 1043 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1044 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1045 +|0x01|DO1 set to low 1046 +|0x00|DO1 set to high 1047 +|0x11|DO1 NO Action 1078 1078 1079 - 1080 1080 (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status: 1081 1081 1082 -[[image:image-20220524093328-7.png]] 1051 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1052 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1053 +|0x01|DO2 set to low 1054 +|0x00|DO2 set to high 1055 +|0x11|DO2 NO Action 1083 1083 1084 - 1085 1085 (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status: 1086 1086 1087 -[[image:image-20220524093351-8.png]] 1059 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %) 1060 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status** 1061 +|0x01|DO3 set to low 1062 +|0x00|DO3 set to high 1063 +|0x11|DO3 NO Action 1088 1088 1065 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms 1089 1089 1090 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**: 1091 1091 1092 - Latching time. Unit: ms 1093 - 1094 - 1095 1095 (% style="color:red" %)**Note: ** 1096 1096 1097 1097 Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes ... ... @@ -1098,7 +1098,6 @@ 1098 1098 1099 1099 Before Firmwre v1.6.0 the latch time only suport 2 bytes. 1100 1100 1101 - 1102 1102 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** 1103 1103 1104 1104 ... ... @@ -1122,7 +1122,7 @@ 1122 1122 1123 1123 1124 1124 1125 -==== 3.4.2. 1097 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ==== 1126 1126 1127 1127 1128 1128 * (% style="color:#037691" %)**AT Command:** ... ... @@ -1140,11 +1140,18 @@ 1140 1140 ))) 1141 1141 1142 1142 ((( 1143 -01: Close , 00: Open , 11: No action 1144 -))) 1115 +00: Close , 01: Open , 11: No action 1145 1145 1146 -((( 1147 -[[image:image-20230426161322-1.png]] 1117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %) 1118 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2** 1119 +|03 00 11|Open|No Action 1120 +|03 01 11|Close|No Action 1121 +|03 11 00|No Action|Open 1122 +|03 11 01|No Action|Close 1123 +|03 00 00|Open|Open 1124 +|03 01 01|Close|Close 1125 +|03 01 00|Close|Open 1126 +|03 00 01|Open|Close 1148 1148 ))) 1149 1149 1150 1150 (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.** ... ... @@ -1218,11 +1218,8 @@ 1218 1218 1219 1219 When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1220 1220 1221 -* (% style="color:#037691" %)**AT Command:** 1200 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1222 1222 1223 -(% style="color:blue" %)**AT+VOLMAX ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]] 1224 - 1225 - 1226 1226 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):** 1227 1227 1228 1228 (% style="color:blue" %)**0xA5 aa bb cc ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc ... ... @@ -1232,10 +1232,8 @@ 1232 1232 ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ==== 1233 1233 1234 1234 1235 -* (% style="color:#037691" %)**AT Command:** 1211 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) ** 1236 1236 1237 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) ** 1238 - 1239 1239 (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count 1240 1240 1241 1241 (% style="color:red" %)**bb cc dd ee: **(%%)number to be set ... ... @@ -1252,11 +1252,8 @@ 1252 1252 1253 1253 Clear counting for counting mode 1254 1254 1255 -* (% style="color:#037691" %)**AT Command:** 1229 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting 1256 1256 1257 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting 1258 - 1259 - 1260 1260 * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):** 1261 1261 1262 1262 (% style="color:blue" %)**0x A6 01 ** (%%)~/~/ clear all counting ... ... @@ -1384,57 +1384,73 @@ 1384 1384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]] 1385 1385 1386 1386 1387 -== 3.5 Integrat ewithMydevice==1358 +== 3.5 Integrating with ThingsEye.io == 1388 1388 1360 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic. 1389 1389 1390 - Mydevicesprovidesa humanendlyinterface to show thesensor data, once wehave datainTTN, we can useMydevicestoconnectto TTNandsee the data in Mydevices. Beloware the steps:1362 +=== 3.5.1 Configuring The Things Stack Sandbox === 1391 1391 1392 - (((1393 - (%style="color:blue" %)**Step1**(%%): Besurethatyour deviceisrogrammedandproperly connectedto thetworkatthis time.1394 - )))1364 +* Go to your Application and select MQTT under Integrations. 1365 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one. 1366 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button. 1395 1395 1396 -((( 1397 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps: 1368 +[[image:tts-mqtt-integration.png||height="625" width="1000"]] 1398 1398 1399 - 1400 -))) 1370 +=== 3.5.2 Configuring ThingsEye.io === 1401 1401 1402 -[[image:image-20220719105525-1.png||height="377" width="677"]] 1372 +* Login to your thingsEye.io account. 1373 +* Under the Integrations center, click Integrations. 1374 +* Click the Add integration button (the button with the + symbol). 1403 1403 1376 +[[image:thingseye-io-step-1.png||height="625" width="1000"]] 1404 1404 1405 1405 1406 - [[image:image-20220719110247-2.png||height="388"width="683"]]1379 +On the Add integration page configure the following: 1407 1407 1381 +Basic settings: 1408 1408 1409 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices. 1383 +* Select The Things Stack Community from the Integration type list. 1384 +* Enter a suitable name for your integration in the Name box or keep the default name. 1385 +* Click the Next button. 1410 1410 1411 - (% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none"%)1387 +[[image:thingseye-io-step-2.png||height="625" width="1000"]] 1412 1412 1413 - Search underThethingsnetwork1389 +Uplink Data converter: 1414 1414 1415 -[[image:1653356838789-523.png||height="337" width="740"]] 1391 +* Click the Create New button if it is not selected by default. 1392 +* Click the JavaScript button. 1393 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1394 +* Click the Next button. 1416 1416 1396 +[[image:thingseye-io-step-3.png||height="625" width="1000"]] 1417 1417 1398 +Downlink Data converter (this is an optional step): 1418 1418 1419 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 1400 +* Click the Create new button if it is not selected by default. 1401 +* Click the JavaScript button. 1402 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here. 1403 +* Click the Next button. 1420 1420 1421 -[[image:i mage-20220524094909-1.png||height="335" width="729"]]1405 +[[image:thingseye-io-step-4.png||height="625" width="1000"]] 1422 1422 1407 +Connection: 1423 1423 1424 -[[image:image-20220524094909-2.png||height="337" width="729"]] 1409 +* Choose Region from the Host type. 1410 +* Enter the cluster of your The Things Stack in the Region textbox. 1411 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack. 1412 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected. 1413 +* Click the Add button. 1425 1425 1415 +[[image:thingseye-io-step-5.png||height="625" width="1000"]] 1426 1426 1427 -[[image:image-20220524094909-3.png||height="338" width="727"]] 1428 1428 1418 +Your integration is added to the integrations list and it will display on the Integrations page. 1429 1429 1430 -[[image:i mage-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)1420 +[[image:thingseye-io-step-6.png||height="625" width="1000"]] 1431 1431 1432 1432 1433 - [[image:image-20220524094909-5.png||height="341" width="734"]]1423 +== 3.6 Interface Details == 1434 1434 1435 - 1436 -== 3.6 Interface Detail == 1437 - 1438 1438 === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) === 1439 1439 1440 1440 ... ... @@ -1447,12 +1447,12 @@ 1447 1447 1448 1448 1449 1449 ((( 1450 -The DI port of LT-22222-L can support NPN orPNP output sensor.1437 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors. 1451 1451 ))) 1452 1452 1453 1453 ((( 1454 1454 ((( 1455 - Internal circuitas below,the NEC2501is aphotocoupler,theActive current(from NEC2501 pin 1 to pin 2 is 1maandthemax currentis50mA. Whenthere isactive currentpassNEC2501 pin1 to pin2.The DIwillbe active high.1442 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH, and the DI LED status changes. 1456 1456 1457 1457 1458 1458 ))) ... ... @@ -1462,7 +1462,7 @@ 1462 1462 1463 1463 ((( 1464 1464 ((( 1465 - When use needto connect a device to the DI port, both DI1+ and DI1- must be connected.1452 +(% style="font-size: 11pt; font-variant-alternates: normal; font-variant-east-asian: normal; font-variant-ligatures: normal; font-variant-numeric: normal; font-variant-position: normal; white-space: pre-wrap; font-family: Arial, sans-serif; color: rgb(0, 0, 0); font-weight: 400; font-style: normal; text-decoration: none" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected. 1466 1466 ))) 1467 1467 ))) 1468 1468 ... ... @@ -1471,22 +1471,22 @@ 1471 1471 ))) 1472 1472 1473 1473 ((( 1474 -(% style="color:blue" %)**Example1**(%%): Connect to a Low1461 +(% style="color:blue" %)**Example1**(%%): Connecting to a low-active sensor. 1475 1475 ))) 1476 1476 1477 1477 ((( 1478 -This type of sensor willoutput a low signalGNDwhen active.1465 +This type of sensors outputs a low (GND) signal when active. 1479 1479 ))) 1480 1480 1481 1481 * ((( 1482 -Connect sensor's output to DI1- 1469 +Connect the sensor's output to DI1- 1483 1483 ))) 1484 1484 * ((( 1485 -Connect sensor's VCC to DI1+. 1472 +Connect the sensor's VCC to DI1+. 1486 1486 ))) 1487 1487 1488 1488 ((( 1489 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1476 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be: 1490 1490 ))) 1491 1491 1492 1492 ((( ... ... @@ -1494,7 +1494,7 @@ 1494 1494 ))) 1495 1495 1496 1496 ((( 1497 - If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA ,Sothe LT-22222-L will be able to detect this active signal.1484 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal. 1498 1498 ))) 1499 1499 1500 1500 ((( ... ... @@ -1502,22 +1502,22 @@ 1502 1502 ))) 1503 1503 1504 1504 ((( 1505 -(% style="color:blue" %)**Example2**(%%): Connect to a High1492 +(% style="color:blue" %)**Example2**(%%): Connecting to a high-active sensor. 1506 1506 ))) 1507 1507 1508 1508 ((( 1509 -This type of sensor willoutput a high signal (example24v) when active.1496 +This type of sensors outputs a high signal (e.g., 24V) when active. 1510 1510 ))) 1511 1511 1512 1512 * ((( 1513 -Connect sensor's output to DI1+ 1500 +Connect the sensor's output to DI1+ 1514 1514 ))) 1515 1515 * ((( 1516 -Connect sensor's GND DI1-. 1503 +Connect the sensor's GND DI1-. 1517 1517 ))) 1518 1518 1519 1519 ((( 1520 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1507 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1521 1521 ))) 1522 1522 1523 1523 ((( ... ... @@ -1525,7 +1525,7 @@ 1525 1525 ))) 1526 1526 1527 1527 ((( 1528 -If **DI1+ = 24 v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA ,So the LT-22222-L willbe able todetect this high1515 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] 24mA , Therefore, the LT-22222-L will detect this high-active signal. 1529 1529 ))) 1530 1530 1531 1531 ((( ... ... @@ -1533,22 +1533,22 @@ 1533 1533 ))) 1534 1534 1535 1535 ((( 1536 -(% style="color:blue" %)**Example3**(%%): Connect to a 220 vhigh1523 +(% style="color:blue" %)**Example3**(%%): Connecting to a 220V high-active sensor. 1537 1537 ))) 1538 1538 1539 1539 ((( 1540 -Assume u serwant to monitor an active signal higher than 220v,to make surenotburnthe photocoupler1527 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler 1541 1541 ))) 1542 1542 1543 1543 * ((( 1544 -Connect sensor's output to DI1+ with a serial50K resistor1531 +Connect the sensor's output to DI1+ with a 50K resistor in series. 1545 1545 ))) 1546 1546 * ((( 1547 -Connect sensor's GND DI1-. 1534 +Connect the sensor's GND DI1-. 1548 1548 ))) 1549 1549 1550 1550 ((( 1551 - So when sensor active, the current between NEC2501 pin1 and pin2 is:1538 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be: 1552 1552 ))) 1553 1553 1554 1554 ((( ... ... @@ -1556,10 +1556,23 @@ 1556 1556 ))) 1557 1557 1558 1558 ((( 1559 -If sensor output is 220 v, theSothe LT-22222-L will be able to detect this highsafely.1546 +If the sensor output is 220V, then [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K. = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal. 1560 1560 ))) 1561 1561 1562 1562 1550 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor 1551 + 1552 +From DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference. 1553 + 1554 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram. 1555 + 1556 +[[image:image-20230616235145-1.png]] 1557 + 1558 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector 1559 + 1560 +[[image:image-20240219115718-1.png]] 1561 + 1562 + 1563 1563 === 3.6.3 Digital Output Port: DO1/DO2 /DO3 === 1564 1564 1565 1565 ... ... @@ -1593,7 +1593,6 @@ 1593 1593 1594 1594 **Black: GND** 1595 1595 1596 - 1597 1597 **Connection diagram:** 1598 1598 1599 1599 [[image:1653357640609-758.png]] ... ... @@ -1601,6 +1601,22 @@ 1601 1601 [[image:1653357648330-671.png||height="155" width="733"]] 1602 1602 1603 1603 1603 +Example connected to a regulated power supply to measure voltage 1604 + 1605 +[[image:image-20230608101532-1.png||height="606" width="447"]] 1606 + 1607 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]] 1608 + 1609 +[[image:image-20230608101722-3.png||height="102" width="1139"]] 1610 + 1611 + 1612 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power**(%%) (% style="color:blue" %)**:** 1613 + 1614 +(% style="color:red" %)**Red: 12~~24v** 1615 + 1616 +**Black: GND** 1617 + 1618 + 1604 1604 === 3.6.5 Relay Output === 1605 1605 1606 1606 ... ... @@ -1619,9 +1619,34 @@ 1619 1619 == 3.7 LEDs Indicators == 1620 1620 1621 1621 1622 -[[image:image-20220524100748-11.png]] 1637 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1638 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature** 1639 +|**PWR**|Always on if there is power 1640 +|**TX**|((( 1641 +((( 1642 +Device boot: TX blinks 5 times. 1643 +))) 1623 1623 1645 +((( 1646 +Successful join network: TX ON for 5 seconds. 1647 +))) 1624 1624 1649 +((( 1650 +Transmit a LoRa packet: TX blinks once 1651 +))) 1652 +))) 1653 +|**RX**|RX blinks once when receive a packet. 1654 +|**DO1**|For LT-22222-L: ON when DO1 is low, LOW when DO1 is high 1655 +|**DO2**|For LT-22222-L: ON when DO2 is low, LOW when DO2 is high 1656 +|**DI1**|((( 1657 +For LT-22222-L: ON when DI1 is high, LOW when DI1 is low 1658 +))) 1659 +|**DI2**|((( 1660 +For LT-22222-L: ON when DI2 is high, LOW when DI2 is low 1661 +))) 1662 +|**RO1**|For LT-22222-L: ON when RO1 is closed, LOW when RO1 is open 1663 +|**RO2**|For LT-22222-L: ON when RO2 is closed, LOW when RO2 is open 1664 + 1625 1625 = 4. Use AT Command = 1626 1626 1627 1627 == 4.1 Access AT Command == ... ... @@ -1631,10 +1631,6 @@ 1631 1631 LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below. 1632 1632 ))) 1633 1633 1634 -((( 1635 - 1636 -))) 1637 - 1638 1638 [[image:1653358238933-385.png]] 1639 1639 1640 1640 ... ... @@ -1953,8 +1953,6 @@ 1953 1953 dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.** 1954 1954 1955 1955 **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.** 1956 - 1957 - 1958 1958 ))) 1959 1959 1960 1960 ((( ... ... @@ -1961,9 +1961,6 @@ 1961 1961 [[image:1653359097980-169.png||height="188" width="729"]] 1962 1962 ))) 1963 1963 1964 -((( 1965 - 1966 -))) 1967 1967 1968 1968 === 4.2.3 Change to Class A === 1969 1969 ... ... @@ -1971,8 +1971,9 @@ 1971 1971 ((( 1972 1972 (% style="color:blue" %)**If sensor JOINED:** 1973 1973 1974 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A 1975 -ATZ** 2005 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A** 2006 + 2007 +(% style="background-color:#dcdcdc" %)**ATZ** 1976 1976 ))) 1977 1977 1978 1978 ... ... @@ -2002,7 +2002,7 @@ 2002 2002 2003 2003 ((( 2004 2004 (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. 2005 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>> url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].2037 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. 2006 2006 (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update. 2007 2007 2008 2008 ... ... @@ -2025,7 +2025,6 @@ 2025 2025 2026 2026 (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is: 2027 2027 2028 - 2029 2029 [[image:1653360054704-518.png||height="186" width="745"]] 2030 2030 2031 2031 ... ... @@ -2089,13 +2089,21 @@ 2089 2089 2090 2090 ((( 2091 2091 (% style="background-color:#dcdcdc" %)**123456** (%%) : Enter Password to have AT access. 2123 + 2092 2092 (% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Reset Parameters to Factory Default, Keys Reserve 2125 + 2093 2093 (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) : Set to ABP mode 2127 + 2094 2094 (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) : Set the Adaptive Data Rate Off 2129 + 2095 2095 (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) : Set Data Rate (Set AT+DR=3 for 915 band) 2131 + 2096 2096 (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) : Set transmit interval to 60 seconds 2133 + 2097 2097 (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz 2135 + 2098 2098 (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%) : Set Device Address to 26 01 1A F1 2137 + 2099 2099 (% style="background-color:#dcdcdc" %)**ATZ** (%%) : Reset MCU 2100 2100 ))) 2101 2101 ... ... @@ -2107,7 +2107,7 @@ 2107 2107 [[image:1653360498588-932.png||height="485" width="726"]] 2108 2108 2109 2109 2110 -== 6.4 How to change the uplink interval ?==2149 +== 6.4 How to change the uplink interval? == 2111 2111 2112 2112 2113 2113 Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]] ... ... @@ -2156,6 +2156,12 @@ 2156 2156 Firmware version needs to be no less than 1.6.0. 2157 2157 2158 2158 2198 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? == 2199 + 2200 + 2201 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose. 2202 + 2203 + 2159 2159 = 7. Trouble Shooting = 2160 2160 ))) 2161 2161 ... ... @@ -2196,6 +2196,13 @@ 2196 2196 ))) 2197 2197 2198 2198 2244 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? == 2245 + 2246 + 2247 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state. 2248 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]] 2249 + 2250 + 2199 2199 = 8. Order Info = 2200 2200 2201 2201 ... ... @@ -2237,7 +2237,7 @@ 2237 2237 Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 2238 2238 ))) 2239 2239 * ((( 2240 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]2292 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]] 2241 2241 2242 2242 2243 2243
- image-20230608101532-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +563.0 KB - Content
- image-20230608101608-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +287.8 KB - Content
- image-20230608101722-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Bei - Size
-
... ... @@ -1,0 +1,1 @@ 1 +25.4 KB - Content
- image-20230616235145-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +19.4 KB - Content
- image-20240219115718-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +27.7 KB - Content
- lt-22222-l-dev-repo-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.8 KB - Content
- lt-22222-l-dev-repo-reg-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +391.7 KB - Content
- lt-22222-l-dev-repo-reg-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +319.1 KB - Content
- lt-22222-l-manually-p1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.6 KB - Content
- lt-22222-l-manually-p2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +279.1 KB - Content
- thingseye-io-step-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +191.8 KB - Content
- thingseye-io-step-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +260.3 KB - Content
- thingseye-io-step-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +336.6 KB - Content
- thingseye-io-step-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +361.1 KB - Content
- thingseye-io-step-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +292.1 KB - Content
- thingseye-io-step-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +203.8 KB - Content
- tts-mqtt-integration.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.pradeeka - Size
-
... ... @@ -1,0 +1,1 @@ 1 +306.4 KB - Content