Last modified by Mengting Qiu on 2025/06/04 18:42

From version 118.11
edited by Xiaoling
on 2023/05/17 11:21
Change comment: There is no comment for this version
To version 183.1
edited by Dilisi S
on 2024/11/10 05:26
Change comment: Uploaded new attachment "thingseye-json.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,162 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
192 -== 1.4  Applications ==
103 +== 1.4 Applications ==
193 193  
194 -
195 195  * Smart Buildings & Home Automation
196 -
197 197  * Logistics and Supply Chain Management
198 -
199 199  * Smart Metering
200 -
201 201  * Smart Agriculture
202 -
203 203  * Smart Cities
204 -
205 205  * Smart Factory
206 206  
207 207  == 1.5 Hardware Variants ==
208 208  
209 209  
210 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
211 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
115 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
212 212  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
213 213  (% style="text-align:center" %)
214 214  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -221,149 +221,224 @@
221 221  * 1 x Counting Port
222 222  )))
223 223  
224 -= 2. Power ON Device =
129 += 2. Assembling the Device =
225 225  
131 +== 2.1 What is included in the package? ==
226 226  
227 -(((
228 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
229 -)))
133 +The package includes the following items:
230 230  
231 -(((
232 -PWR will on when device is properly powered.
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
233 233  
234 -
235 -)))
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
142 +== 2.2 Terminals ==
143 +
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
237 237  [[image:1653297104069-180.png]]
238 238  
239 239  
240 240  = 3. Operation Mode =
241 241  
242 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
243 243  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
244 244  
245 -(((
246 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
247 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
248 248  
249 -(((
250 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
251 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
252 252  
188 +== 3.2 Registering with a LoRaWAN network server ==
253 253  
254 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
255 255  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
256 256  
257 -(((
258 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
259 259  
260 -
261 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
262 262  
263 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
264 264  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
265 265  
266 -(((
267 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
268 268  
269 -
270 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
271 271  
272 -(((
273 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
274 -)))
208 +==== ====
275 275  
276 -(((
277 -Each LT is shipped with a sticker with the default device EUI as below:
278 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
279 279  
280 -[[image:image-20230425173427-2.png||height="246" width="530"]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
281 281  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
282 282  
283 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
284 284  
285 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
286 286  
287 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
288 288  
230 +==== ====
289 289  
290 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
291 291  
292 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
293 293  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
294 294  
295 295  
296 -(((
297 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
298 298  
299 -
300 -)))
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
301 301  
302 -[[image:1653298044601-602.png||height="405" width="709"]]
303 303  
257 +You will be navigated to the **Device overview** page.
304 304  
305 -== 3.3 Uplink Payload ==
306 306  
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
307 307  
308 -There are five working modes + one interrupt mode on LT for different type application:
309 309  
310 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
311 311  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293 +
312 312  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
295 +
313 313  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297 +
314 314  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
299 +
315 315  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
316 316  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
317 317  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
318 318  
319 -
320 320  (((
321 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default. (% style="display:none" %)
307 +This is the default mode.
322 322  
323 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 -|Size(bytes)(% style="display:none" %) |2|2|2|2|1|1|1
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
310 +
311 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
325 325  |Value|(((
326 -AVI1
327 -voltage
314 +AVI1 voltage
328 328  )))|(((
329 -AVI2
330 -voltage
316 +AVI2 voltage
331 331  )))|(((
332 -ACI1
333 -Current
318 +ACI1 Current
334 334  )))|(((
335 -ACI2
336 -Current
337 -)))|DIDORO*|(((
320 +ACI2 Current
321 +)))|**DIDORO***|(((
338 338  Reserve
339 339  )))|MOD
340 340  )))
341 341  
342 -
343 343  (((
344 -
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
345 345  
346 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
347 -
348 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
349 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
350 -|RO1|RO2|DI3|DI2|DI1|DO3|DO2|DO1
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
351 351  )))
352 352  
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
353 353  
354 -* RO is for relay. ROx=1 : close,ROx=0 always open.
355 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
356 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
357 357  
358 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
359 359  
360 -For example if payload is: [[image:image-20220523175847-2.png]]
361 361  
343 +**The interface values can be calculated as follows:  **
362 362  
363 -**The value for the interface is **
345 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
364 364  
365 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
366 -
367 367  AVI2 channel voltage is 0x04AC/1000=1.196V
368 368  
369 369  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -370,106 +370,92 @@
370 370  
371 371  ACI2 channel current is 0x1300/1000=4.864mA
372 372  
373 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
374 374  
375 -* [1] RO1 relay channel is close and the RO1 LED is ON.
376 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
377 377  
378 -**LT22222-L:**
379 -
380 -* [1] DI2 channel is high input and DI2 LED is ON;
381 -* [0] DI1 channel is low input;
382 -
383 -* [0] DO3 channel output state
384 -** DO3 is float in case no load between DO3 and V+.;
385 -** DO3 is high in case there is load between DO3 and V+.
386 -** DO3 LED is off in both case
387 -* [1] DO2 channel output is low and DO2 LED is ON.
388 -* [0] DO1 channel output state
389 -** DO1 is float in case no load between DO1 and V+.;
390 -** DO1 is high in case there is load between DO1 and V+.
391 -** DO1 LED is off in both case
392 -
393 393  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
394 394  
395 395  
396 396  (((
397 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
398 398  )))
399 399  
400 400  (((
401 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
402 402  
403 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
404 -|Size(bytes)|4|4|1|1|1
380 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
405 405  |Value|COUNT1|COUNT2 |DIDORO*|(((
406 -Reserve
407 -
408 -
383 +Reserve
409 409  )))|MOD
410 410  )))
411 411  
412 412  (((
413 -
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
414 414  
415 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
416 416  
417 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
419 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
420 -
421 -RO is for relay. ROx=1 : close,ROx=0 always open.
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
422 422  )))
423 423  
424 -* FIRST: Indicate this is the first packet after join network.
425 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
426 426  
427 427  (((
428 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
429 -)))
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
430 430  
431 -(((
432 432  
404 +)))
433 433  
434 -**To use counting mode, please run:**
406 +(((
407 +**To activate this mode, run the following AT commands:**
435 435  )))
436 436  
410 +(((
437 437  (% class="box infomessage" %)
438 438  (((
439 -(((
440 -(((
441 441  **AT+MOD=2**
442 -)))
443 443  
444 -(((
445 445  **ATZ**
446 446  )))
447 447  )))
448 -)))
449 449  
450 450  (((
451 451  
452 452  
453 453  (% style="color:#4f81bd" %)**AT Commands for counting:**
454 -
455 -
456 456  )))
457 457  
458 458  (((
459 459  **For LT22222-L:**
460 460  
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
461 461  
462 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
463 463  
464 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
465 465  
466 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
467 467  
468 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
469 469  
470 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
471 -
472 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
473 473  )))
474 474  
475 475  
... ... @@ -476,10 +476,10 @@
476 476  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
477 477  
478 478  
479 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
480 480  
481 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 -|Size(bytes)|4|2|2|1|1|1
447 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
483 483  |Value|COUNT1|(((
484 484  ACI1 Current
485 485  )))|(((
... ... @@ -487,44 +487,39 @@
487 487  )))|DIDORO*|Reserve|MOD
488 488  
489 489  (((
490 -
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
491 491  
492 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
493 -
494 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
495 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
496 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
497 497  )))
498 498  
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
499 499  
500 -* RO is for relay. ROx=1 : close,ROx=0 always open.
501 -* FIRST: Indicate this is the first packet after join network.
502 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
503 -
504 504  (((
505 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
506 506  )))
507 507  
508 508  
509 509  (((
510 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
511 511  )))
512 512  
476 +(((
513 513  (% class="box infomessage" %)
514 514  (((
515 -(((
516 -(((
517 517  **AT+MOD=3**
518 -)))
519 519  
520 -(((
521 521  **ATZ**
522 522  )))
523 523  )))
524 -)))
525 525  
526 526  (((
527 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
528 528  )))
529 529  
530 530  
... ... @@ -532,77 +532,64 @@
532 532  
533 533  
534 534  (((
535 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
536 536  )))
537 537  
538 538  (((
539 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
540 540  
541 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 -|Size(bytes)|4|4|1|1|1
502 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
543 543  |Value|COUNT1|AVI1 Counting|DIDORO*|(((
544 544  Reserve
545 -
546 -
547 547  )))|MOD
548 548  )))
549 549  
550 -
551 -
552 552  (((
553 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
554 554  
555 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
556 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
557 -|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
558 558  )))
559 559  
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
560 560  
561 -* RO is for relay. ROx=1 : close,ROx=0 always open.
562 -* FIRST: Indicate this is the first packet after join network.
563 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
564 -
565 565  (((
566 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
567 -)))
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
568 568  
569 -(((
570 570  
525 +)))
571 571  
572 -**To use this mode, please run:**
527 +(((
528 +**To activate this mode, run the following AT commands:**
573 573  )))
574 574  
531 +(((
575 575  (% class="box infomessage" %)
576 576  (((
577 -(((
578 -(((
579 579  **AT+MOD=4**
580 -)))
581 581  
582 -(((
583 583  **ATZ**
584 584  )))
585 585  )))
586 -)))
587 587  
588 -
589 589  (((
590 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
591 591  )))
592 592  
593 593  (((
594 -
545 +**In addition to that, below are the commands for AVI1 Counting:**
595 595  
596 -**Plus below command for AVI1 Counting:**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
597 597  
598 -
599 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
600 -
601 601  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
602 602  
603 603  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
604 604  
605 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
606 606  )))
607 607  
608 608  
... ... @@ -609,64 +609,53 @@
609 609  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
610 610  
611 611  
612 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
613 613  
614 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
615 -|Size(bytes)|2|2|2|2|1|1|1
562 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
616 616  |Value|(((
617 -AVI1
618 -voltage
565 +AVI1 voltage
619 619  )))|(((
620 -AVI2
621 -voltage
567 +AVI2 voltage
622 622  )))|(((
623 -ACI1
624 -Current
569 +ACI1 Current
625 625  )))|COUNT1|DIDORO*|(((
626 626  Reserve
627 627  )))|MOD
628 628  
629 629  (((
630 -
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
631 631  
632 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
633 -
634 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
635 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
577 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
636 636  |RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
637 637  )))
638 638  
639 -* RO is for relay. ROx=1 : closeROx=0 always open.
640 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
641 641  * (((
642 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
643 643  )))
644 644  
645 645  (((
646 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
647 647  )))
648 648  
649 649  (((
650 -
651 -
652 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
653 653  )))
654 654  
596 +(((
655 655  (% class="box infomessage" %)
656 656  (((
657 -(((
658 -(((
659 659  **AT+MOD=5**
660 -)))
661 661  
662 -(((
663 663  **ATZ**
664 664  )))
665 665  )))
666 -)))
667 667  
668 668  (((
669 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
670 670  )))
671 671  
672 672  
... ... @@ -673,49 +673,46 @@
673 673  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
674 674  
675 675  
676 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
677 677  
678 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
679 679  
680 680  * **AT+MOD=1 ** **~-~->**  The normal working mode
681 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
682 682  
683 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
684 684  
685 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
686 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
687 687  
688 688  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
689 689  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
690 690  
691 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
692 -
693 693  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
694 694  
695 695  
696 696  **Example:**
697 697  
698 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
699 699  
700 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
701 701  
702 702  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
703 703  
704 -(% style="color:#4f81bd" %)**Trigger base on current**:
705 -
706 706  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
707 707  
708 708  
709 709  **Example:**
710 710  
711 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
712 712  
713 713  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
714 714  
715 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
716 716  
717 -DI status trigger Flag.
718 -
719 719  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
720 720  
721 721  
... ... @@ -724,139 +724,116 @@
724 724  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
725 725  
726 726  
727 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
728 728  
729 729  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
730 730  
731 731  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
732 732  
733 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
734 734  
735 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
736 736  
737 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
738 738  
739 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
740 740  
741 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
742 742  
743 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
744 744  
745 745  
746 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
747 747  
748 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
749 749  
750 750  
751 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
752 752  
753 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
754 754  
755 755  
756 -
757 757  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
758 758  
759 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
760 760  
761 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
762 -|Size(bytes)|1|1|1|6|1|1
694 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
763 763  |Value|(((
764 -TRI_A
765 -FLAG
697 +TRI_A FLAG
766 766  )))|(((
767 -TRI_A
768 -Status
699 +TRI_A Status
769 769  )))|(((
770 -TRI_DI
771 -FLAG+STA
701 +TRI_DI FLAG+STA
772 772  )))|Reserve|Enable/Disable MOD6|(((
773 -MOD
774 -(6)
703 +MOD(6)
775 775  )))
776 776  
777 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
778 778  
779 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
780 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
781 781  |(((
782 -AV1_
783 -LOW
711 +AV1_LOW
784 784  )))|(((
785 -AV1_
786 -HIGH
713 +AV1_HIGH
787 787  )))|(((
788 -AV2_
789 -LOW
715 +AV2_LOW
790 790  )))|(((
791 -AV2_
792 -HIGH
717 +AV2_HIGH
793 793  )))|(((
794 -AC1_
795 -LOW
719 +AC1_LOW
796 796  )))|(((
797 -AC1_
798 -HIGH
721 +AC1_HIGH
799 799  )))|(((
800 -AC2_
801 -LOW
723 +AC2_LOW
802 802  )))|(((
803 -AC2_
804 -HIGH
725 +AC2_HIGH
805 805  )))
806 806  
807 -* Each bits shows if the corresponding trigger has been configured.
728 +* Each bit shows if the corresponding trigger has been configured.
808 808  
809 809  **Example:**
810 810  
811 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
812 812  
813 813  
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
814 814  
815 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
816 -
817 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
818 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
819 819  |(((
820 -AV1_
821 -LOW
740 +AV1_LOW
822 822  )))|(((
823 -AV1_
824 -HIGH
742 +AV1_HIGH
825 825  )))|(((
826 -AV2_
827 -LOW
744 +AV2_LOW
828 828  )))|(((
829 -AV2_
830 -HIGH
746 +AV2_HIGH
831 831  )))|(((
832 -AC1_
833 -LOW
748 +AC1_LOW
834 834  )))|(((
835 -AC1_
836 -HIGH
750 +AC1_HIGH
837 837  )))|(((
838 -AC2_
839 -LOW
752 +AC2_LOW
840 840  )))|(((
841 -AC2_
842 -HIGH
754 +AC2_HIGH
843 843  )))
844 844  
757 +* Each bit shows which status has been triggered on this uplink.
845 845  
846 -* Each bits shows which status has been trigger on this uplink.
847 -
848 848  **Example:**
849 849  
850 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
851 851  
852 852  
853 853  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
854 854  
855 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
856 -|bit7|bit6|bit5|bit4|bit3|bit2|bit1|bit0
766 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
857 857  |N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
858 858  
859 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
860 860  
861 861  **Example:**
862 862  
... ... @@ -883,11 +883,11 @@
883 883  )))
884 884  
885 885  
886 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
887 887  
888 888  
889 889  (((
890 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
891 891  )))
892 892  
893 893  (((
... ... @@ -902,9 +902,8 @@
902 902  
903 903  === 3.4.1 Common Commands ===
904 904  
905 -
906 906  (((
907 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
908 908  )))
909 909  
910 910  
... ... @@ -912,38 +912,37 @@
912 912  
913 913  ==== 3.4.2.1 Set Transmit Interval ====
914 914  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
915 915  
916 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
917 917  
918 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
919 919  
920 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
921 921  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
922 922  
923 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
924 924  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
925 925  
926 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
927 -
928 928  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
929 929  
930 930  
931 931  
932 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
933 933  
934 934  
935 -Set work mode.
845 +Sets the work mode.
936 936  
937 -* (% style="color:#037691" %)**AT Command:**
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
938 938  
939 -(% style="color:blue" %)**AT+MOD=N  **
849 +Where N is the work mode.
940 940  
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
941 941  
942 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
943 943  
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
944 944  
945 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
946 -
947 947  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
948 948  
949 949  
... ... @@ -951,34 +951,30 @@
951 951  ==== 3.4.2.3 Poll an uplink ====
952 952  
953 953  
954 -* (% style="color:#037691" %)**AT Command:**
863 +Asks the device to send an uplink.
955 955  
956 -There is no AT Command to poll uplink
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
957 957  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
958 958  
959 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
960 -
961 961  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
962 962  
963 -
964 964  **Example**: 0x08FF, ask device to send an Uplink
965 965  
966 966  
967 967  
968 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
969 969  
970 970  
971 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
972 972  
973 -* (% style="color:#037691" %)**AT Command:**
880 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
974 974  
975 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
976 976  
977 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
978 978  
979 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
980 980  
981 -
982 982  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
983 983  
984 984  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -988,16 +988,15 @@
988 988  ==== 3.4.2.5 Poll trigger settings ====
989 989  
990 990  
991 -Poll trigger settings,
896 +Polls the trigger settings
992 992  
993 993  * (% style="color:#037691" %)**AT Command:**
994 994  
995 995  There is no AT Command for this feature.
996 996  
997 -
998 998  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
999 999  
1000 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
1001 1001  
1002 1002  
1003 1003  
... ... @@ -1004,17 +1004,13 @@
1004 1004  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
1005 1005  
1006 1006  
1007 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
1008 1008  
1009 -* (% style="color:#037691" %)**AT Command:**
913 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
1010 1010  
1011 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
1012 1012  
1013 1013  
1014 -**Example:**
1015 -
1016 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
1017 -
1018 1018  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
1019 1019  
1020 1020  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -1026,20 +1026,15 @@
1026 1026  
1027 1027  Set DI1 or DI3(for LT-33222-L) trigger.
1028 1028  
1029 -* (% style="color:#037691" %)**AT Command:**
929 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
1030 1030  
1031 -(% style="color:blue" %)**AT+TRIG1=a,b**
1032 -
1033 1033  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1034 1034  
1035 1035  (% style="color:red" %)**b :** (%%)delay timing.
1036 1036  
935 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1037 1037  
1038 -**Example:**
1039 1039  
1040 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
1041 -
1042 -
1043 1043  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
1044 1044  
1045 1045  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -1049,22 +1049,17 @@
1049 1049  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
1050 1050  
1051 1051  
1052 -Set DI2 trigger.
947 +Sets DI2 trigger.
1053 1053  
1054 -* (% style="color:#037691" %)**AT Command:**
949 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
1055 1055  
1056 -(% style="color:blue" %)**AT+TRIG2=a,b**
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
1057 1057  
1058 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
1059 -
1060 1060  (% style="color:red" %)**b :** (%%)delay timing.
1061 1061  
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
1062 1062  
1063 -**Example:**
1064 1064  
1065 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
1066 -
1067 -
1068 1068  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
1069 1069  
1070 1070  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -1076,11 +1076,8 @@
1076 1076  
1077 1077  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1078 1078  
1079 -* (% style="color:#037691" %)**AT Command**
969 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
1080 1080  
1081 -(% style="color:blue" %)**AT+ACLIM**
1082 -
1083 -
1084 1084  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
1085 1085  
1086 1086  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -1092,11 +1092,8 @@
1092 1092  
1093 1093  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
1094 1094  
1095 -* (% style="color:#037691" %)**AT Command**
982 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1096 1096  
1097 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
1098 -
1099 -
1100 1100  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
1101 1101  
1102 1102  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -1106,20 +1106,15 @@
1106 1106  ==== 3.4.2.11 Trigger – Set minimum interval ====
1107 1107  
1108 1108  
1109 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
1110 1110  
1111 -* (% style="color:#037691" %)**AT Command**
995 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
1112 1112  
1113 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
1114 -
1115 -
1116 1116  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
1117 1117  
1118 1118  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
1119 1119  
1120 1120  (((
1121 -
1122 -
1123 1123  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
1124 1124  )))
1125 1125  
... ... @@ -1134,8 +1134,9 @@
1134 1134  
1135 1135  
1136 1136  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1137 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1138 1138  
1017 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1018 +
1139 1139  (((
1140 1140  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1141 1141  )))
... ... @@ -1143,14 +1143,13 @@
1143 1143  (((
1144 1144  01: Low,  00: High ,  11: No action
1145 1145  
1146 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1147 -|Downlink Code|DO1|DO2|DO3
1026 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1148 1148  |02  01  00  11|Low|High|No Action
1149 1149  |02  00  11  01|High|No Action|Low
1150 1150  |02  11  01  00|No Action|Low|High
1151 1151  )))
1152 1152  
1153 -
1154 1154  (((
1155 1155  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1156 1156  )))
... ... @@ -1188,38 +1188,30 @@
1188 1188  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1189 1189  
1190 1190  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1191 -|**Second Byte**|**Status**
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1192 1192  |0x01|DO1 set to low
1193 1193  |0x00|DO1 set to high
1194 1194  |0x11|DO1 NO Action
1195 1195  
1196 -
1197 -
1198 1198  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1199 1199  
1200 1200  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1201 -|**Second Byte**|**Status**
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1202 1202  |0x01|DO2 set to low
1203 1203  |0x00|DO2 set to high
1204 1204  |0x11|DO2 NO Action
1205 1205  
1206 -
1207 -
1208 1208  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1209 1209  
1210 1210  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1211 -|**Second Byte**|**Status**
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1212 1212  |0x01|DO3 set to low
1213 1213  |0x00|DO3 set to high
1214 1214  |0x11|DO3 NO Action
1215 1215  
1091 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1216 1216  
1217 1217  
1218 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1219 -
1220 - Latching time. Unit: ms
1221 -
1222 -
1223 1223  (% style="color:red" %)**Note: **
1224 1224  
1225 1225   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1226,7 +1226,6 @@
1226 1226  
1227 1227   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1228 1228  
1229 -
1230 1230  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1231 1231  
1232 1232  
... ... @@ -1250,7 +1250,7 @@
1250 1250  
1251 1251  
1252 1252  
1253 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1123 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1254 1254  
1255 1255  
1256 1256  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1268,10 +1268,10 @@
1268 1268  )))
1269 1269  
1270 1270  (((
1271 -01: Close ,  00: Open , 11: No action
1141 +00: Closed ,  01: Open , 11: No action
1272 1272  
1273 1273  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1274 -|**Downlink Code**|**RO1**|**RO2**
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1275 1275  |03  00  11|Open|No Action
1276 1276  |03  01  11|Close|No Action
1277 1277  |03  11  00|No Action|Open
... ... @@ -1282,10 +1282,6 @@
1282 1282  |03  00  01|Open|Close
1283 1283  )))
1284 1284  
1285 -(((
1286 -
1287 -)))
1288 -
1289 1289  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1290 1290  
1291 1291  
... ... @@ -1357,11 +1357,8 @@
1357 1357  
1358 1358  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1359 1359  
1360 -* (% style="color:#037691" %)**AT Command:**
1226 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1361 1361  
1362 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1363 -
1364 -
1365 1365  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1366 1366  
1367 1367  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1371,10 +1371,8 @@
1371 1371  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1372 1372  
1373 1373  
1374 -* (% style="color:#037691" %)**AT Command:**
1237 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1375 1375  
1376 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1377 -
1378 1378  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1379 1379  
1380 1380  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1391,11 +1391,8 @@
1391 1391  
1392 1392  Clear counting for counting mode
1393 1393  
1394 -* (% style="color:#037691" %)**AT Command:**
1255 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1395 1395  
1396 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1397 -
1398 -
1399 1399  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1400 1400  
1401 1401  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1402,7 +1402,7 @@
1402 1402  
1403 1403  
1404 1404  
1405 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1406 1406  
1407 1407  
1408 1408  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1523,75 +1523,144 @@
1523 1523  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1524 1524  
1525 1525  
1526 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1527 1527  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1528 1528  
1529 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1530 1530  
1531 -(((
1532 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1533 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1534 1534  
1535 -(((
1536 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1537 1537  
1538 -
1539 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1540 1540  
1541 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1542 1542  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1543 1543  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1544 1544  
1545 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1546 1546  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1547 1547  
1548 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1549 1549  
1550 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1551 1551  
1552 -Search under The things network
1414 +**Basic settings:**
1553 1553  
1554 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1555 1555  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1556 1556  
1557 1557  
1558 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1427 +**Uplink data converter:**
1559 1559  
1560 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1561 1561  
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1562 1562  
1563 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1564 1564  
1438 +**Downlink data converter (this is an optional step):**
1565 1565  
1566 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1567 1567  
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1568 1568  
1569 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1570 1570  
1449 +**Connection:**
1571 1571  
1572 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1573 1573  
1456 +[[image:message-1.png]]
1574 1574  
1575 -== 3.6 Interface Detail ==
1576 1576  
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1577 1577  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1578 1578  
1579 1579  
1580 -Support NPN Type sensor
1507 +Support NPN-type sensor
1581 1581  
1582 1582  [[image:1653356991268-289.png]]
1583 1583  
1584 1584  
1585 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1586 1586  
1587 1587  
1588 1588  (((
1589 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1590 1590  )))
1591 1591  
1592 1592  (((
1593 1593  (((
1594 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1595 1595  
1596 1596  
1597 1597  )))
... ... @@ -1601,7 +1601,7 @@
1601 1601  
1602 1602  (((
1603 1603  (((
1604 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1605 1605  )))
1606 1606  )))
1607 1607  
... ... @@ -1610,22 +1610,22 @@
1610 1610  )))
1611 1611  
1612 1612  (((
1613 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1614 1614  )))
1615 1615  
1616 1616  (((
1617 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1618 1618  )))
1619 1619  
1620 1620  * (((
1621 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1622 1622  )))
1623 1623  * (((
1624 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1625 1625  )))
1626 1626  
1627 1627  (((
1628 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1629 1629  )))
1630 1630  
1631 1631  (((
... ... @@ -1633,7 +1633,7 @@
1633 1633  )))
1634 1634  
1635 1635  (((
1636 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1637 1637  )))
1638 1638  
1639 1639  (((
... ... @@ -1641,22 +1641,22 @@
1641 1641  )))
1642 1642  
1643 1643  (((
1644 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1645 1645  )))
1646 1646  
1647 1647  (((
1648 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1649 1649  )))
1650 1650  
1651 1651  * (((
1652 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1653 1653  )))
1654 1654  * (((
1655 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1656 1656  )))
1657 1657  
1658 1658  (((
1659 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1660 1660  )))
1661 1661  
1662 1662  (((
... ... @@ -1664,7 +1664,7 @@
1664 1664  )))
1665 1665  
1666 1666  (((
1667 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1668 1668  )))
1669 1669  
1670 1670  (((
... ... @@ -1672,22 +1672,22 @@
1672 1672  )))
1673 1673  
1674 1674  (((
1675 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1676 1676  )))
1677 1677  
1678 1678  (((
1679 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1680 1680  )))
1681 1681  
1682 1682  * (((
1683 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1684 1684  )))
1685 1685  * (((
1686 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1687 1687  )))
1688 1688  
1689 1689  (((
1690 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1691 1691  )))
1692 1692  
1693 1693  (((
... ... @@ -1695,24 +1695,37 @@
1695 1695  )))
1696 1696  
1697 1697  (((
1698 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1699 1699  )))
1700 1700  
1701 1701  
1702 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1703 1703  
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1704 1704  
1705 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1706 1706  
1707 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1635 +[[image:image-20230616235145-1.png]]
1708 1708  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1638 +
1639 +[[image:image-20240219115718-1.png]]
1640 +
1641 +
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1643 +
1644 +
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 +
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1709 1709  [[image:1653357531600-905.png]]
1710 1710  
1711 1711  
1712 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1713 1713  
1714 1714  
1715 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1716 1716  
1717 1717  
1718 1718  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1719,20 +1719,19 @@
1719 1719  
1720 1720  [[image:1653357592296-182.png]]
1721 1721  
1722 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1723 1723  
1724 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1725 1725  
1726 1726  
1727 1727  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1728 1728  
1729 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1730 1730  
1731 1731  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1732 1732  
1733 1733  **Black:  GND**
1734 1734  
1735 -
1736 1736  **Connection diagram:**
1737 1737  
1738 1738  [[image:1653357640609-758.png]]
... ... @@ -1740,266 +1740,146 @@
1740 1740  [[image:1653357648330-671.png||height="155" width="733"]]
1741 1741  
1742 1742  
1743 -=== 3.6.5 Relay Output ===
1682 +Example: Connecting to a regulated power supply to measure voltage
1744 1744  
1684 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1745 1745  
1746 -(((
1747 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1686 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1748 1748  
1749 -**Note**: RO pins go to Open(NO) when device is power off.
1750 -)))
1688 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1751 1751  
1752 -[[image:image-20220524100215-9.png]]
1753 1753  
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1754 1754  
1755 -[[image:image-20220524100215-10.png||height="382" width="723"]]
1693 +(% style="color:red" %)**Red:  12~~24v**
1756 1756  
1695 +**Black:  GND**
1757 1757  
1758 -== 3.7 LEDs Indicators ==
1759 1759  
1698 +=== 3.6.5 Relay Output ===
1760 1760  
1761 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
1762 -|(% style="background-color:#D9E2F3;color:#0070C0" %)**LEDs**|(% style="background-color:#D9E2F3;color:#0070C0" %)**Feature**
1763 -|**PWR**|Always on if there is power
1764 -|**SYS**|After device is powered on, the SYS will **fast blink in GREEN** for 5 times, means RS485-LN start to join LoRaWAN network. If join success, SYS will be **on GREEN for 5 seconds. **SYS will **blink Blue** on every upload and **blink Green** once receive a downlink message.
1765 -|**TX**|(((
1766 -Device boot: TX blinks 5 times.
1767 1767  
1768 -Successful join network: TX ON for 5 seconds.
1769 -
1770 -Transmit a LoRa packet: TX blinks once
1771 -)))
1772 -|**RX**|RX blinks once when receive a packet.
1773 -|**DO1**|
1774 -|**DO2**|
1775 -|**DO3**|
1776 -|**DI2**|(((
1777 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1778 -)))
1779 -|**DI2**|(((
1780 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1781 -)))
1782 -|**DI2**|(((
1783 -For LT-22222-L: ON when DI2 is high, LOW when DI2 is low
1784 -)))
1785 -|**RO1**|
1786 -|**RO2**|
1787 -
1788 -[[image:image-20220524100748-11.png]]
1789 -
1790 -
1791 -= 4. Use AT Command =
1792 -
1793 -== 4.1 Access AT Command ==
1794 -
1795 -
1796 1796  (((
1797 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1798 -)))
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1799 1799  
1800 -(((
1801 -
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1802 1802  )))
1803 1803  
1804 -[[image:1653358238933-385.png]]
1707 +[[image:image-20220524100215-9.png]]
1805 1805  
1806 1806  
1807 -(((
1808 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1809 -)))
1710 +[[image:image-20220524100215-10.png||height="382" width="723"]]
1810 1810  
1811 -[[image:1653358355238-883.png]]
1812 1812  
1713 +== 3.7 LEDs Indicators ==
1813 1813  
1814 -(((
1815 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1816 -)))
1817 1817  
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1718 +|**PWR**|Always on if there is power
1719 +|**TX**|(((
1818 1818  (((
1819 -AT+<CMD>?        : Help on <CMD>
1721 +Device boot: TX blinks 5 times.
1820 1820  )))
1821 1821  
1822 1822  (((
1823 -AT+<CMD>         : Run <CMD>
1725 +Successful join network: TX ON for 5 seconds.
1824 1824  )))
1825 1825  
1826 1826  (((
1827 -AT+<CMD>=<value> : Set the value
1729 +Transmit a LoRa packet: TX blinks once
1828 1828  )))
1829 -
1830 -(((
1831 -AT+<CMD>=?       :  Get the value
1832 1832  )))
1833 -
1834 -(((
1835 -ATZ: Trig a reset of the MCU
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1836 1836  )))
1837 -
1838 -(((
1839 -AT+FDR: Reset Parameters to Factory Default, Keys Reserve 
1738 +|**DI2**|(((
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1840 1840  )))
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1841 1841  
1842 -(((
1843 -AT+DEUI: Get or Set the Device EUI
1844 -)))
1744 += 4. Using AT Commands =
1845 1845  
1846 -(((
1847 -AT+DADDR: Get or Set the Device Address
1848 -)))
1746 +The LT-22222-L supports programming using AT Commands.
1849 1849  
1850 -(((
1851 -AT+APPKEY: Get or Set the Application Key
1852 -)))
1748 +== 4.1 Connecting the LT-22222-L to a PC ==
1853 1853  
1854 1854  (((
1855 -AT+NWKSKEY: Get or Set the Network Session Key
1751 +You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a PC, as shown below.
1856 1856  )))
1857 1857  
1858 -(((
1859 -AT+APPSKEY:  Get or Set the Application Session Key
1860 -)))
1754 +[[image:1653358238933-385.png]]
1861 1861  
1862 -(((
1863 -AT+APPEUI:  Get or Set the Application EUI
1864 -)))
1865 1865  
1866 1866  (((
1867 -AT+ADR: Get or Set the Adaptive Data Rate setting. (0: off, 1: on)
1758 +On the PC, you need to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate of (% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. Access to AT commands is disabled by default, and a password (default: (% style="color:green" %)**123456**)(%%) must be entered to enable AT command access, as shown below:
1868 1868  )))
1869 1869  
1870 -(((
1871 -AT+TXP: Get or Set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Spec)
1872 -)))
1761 +[[image:1653358355238-883.png]]
1873 1873  
1874 -(((
1875 -AT+DR:  Get or Set the Data Rate. (0-7 corresponding to DR_X)  
1876 -)))
1877 1877  
1878 1878  (((
1879 -AT+DCS: Get or Set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1880 -)))
1765 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1881 1881  
1882 -(((
1883 -AT+PNM: Get or Set the public network mode. (0: off, 1: on)
1767 +== 4.2 LT-22222-L related AT commands ==
1884 1884  )))
1885 1885  
1886 1886  (((
1887 -AT+RX2FQ: Get or Set the Rx2 window frequency
1888 -)))
1771 +The following is the list of all the AT commands related to the LT-22222-L, except for those used for switching between work modes.
1889 1889  
1890 -(((
1891 -AT+RX2DR: Get or Set the Rx2 window data rate (0-7 corresponding to DR_X)
1773 +* AT+<CMD>? : Help on <CMD>
1774 +* AT+<CMD> : Run <CMD>
1775 +* AT+<CMD>=<value> : Set the value
1776 +* AT+<CMD>=? : Get the value
1777 +* ATZ: Trigger a reset of the MCU
1778 +* ##**AT+FDR**##: Reset Parameters to factory default, reserve keys 
1779 +* **##AT+DEUI##**: Get or set the Device EUI (DevEUI)
1780 +* **##AT+DADDR##**: Get or set the Device Address (DevAddr)
1781 +* **##AT+APPKEY##**: Get or set the Application Key (AppKey)
1782 +* AT+NWKSKEY: Get or set the Network Session Key (NwkSKey)
1783 +* AT+APPSKEY: Get or set the Application Session Key (AppSKey)
1784 +* AT+APPEUI: Get or set the Application EUI (AppEUI)
1785 +* AT+ADR: Get or set the Adaptive Data Rate setting. (0: OFF, 1: ON)
1786 +* AT+TXP: Get or set the Transmit Power (0-5, MAX:0, MIN:5, according to LoRaWAN Specification)
1787 +* AT+DR:  Get or set the Data Rate. (0-7 corresponding to DR_X)  
1788 +* AT+DCS: Get or set the ETSI Duty Cycle setting - 0=disable, 1=enable - Only for testing
1789 +* AT+PNM: Get or set the public network mode. (0: off, 1: on)
1790 +* AT+RX2FQ: Get or set the Rx2 window frequency
1791 +* AT+RX2DR: Get or set the Rx2 window data rate (0-7 corresponding to DR_X)
1792 +* AT+RX1DL: Get or set the delay between the end of the Tx and the Rx Window 1 in ms
1793 +* AT+RX2DL: Get or set the delay between the end of the Tx and the Rx Window 2 in ms
1794 +* AT+JN1DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1795 +* AT+JN2DL: Get or set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1796 +* AT+NJM: Get or set the Network Join Mode. (0: ABP, 1: OTAA)
1797 +* AT+NWKID: Get or set the Network ID
1798 +* AT+FCU: Get or set the Frame Counter Uplink (FCntUp)
1799 +* AT+FCD: Get or set the Frame Counter Downlink (FCntDown)
1800 +* AT+CLASS: Get or set the Device Class
1801 +* AT+JOIN: Join network
1802 +* AT+NJS: Get OTAA Join Status
1803 +* AT+SENDB: Send hexadecimal data along with the application port
1804 +* AT+SEND: Send text data along with the application port
1805 +* AT+RECVB: Print last received data in binary format (with hexadecimal values)
1806 +* AT+RECV: Print last received data in raw format
1807 +* AT+VER: Get current image version and Frequency Band
1808 +* AT+CFM: Get or Set the confirmation mode (0-1)
1809 +* AT+CFS: Get confirmation status of the last AT+SEND (0-1)
1810 +* AT+SNR: Get the SNR of the last received packet
1811 +* AT+RSSI: Get the RSSI of the last received packet
1812 +* AT+TDC: Get or set the application data transmission interval in ms
1813 +* AT+PORT: Get or set the application port
1814 +* AT+DISAT: Disable AT commands
1815 +* AT+PWORD: Set password, max 9 digits
1816 +* AT+CHS: Get or set the Frequency (Unit: Hz) for Single Channel Mode
1817 +* AT+CHE: Get or set eight channels mode, Only for US915, AU915, CN470
1818 +* AT+CFG: Print all settings
1892 1892  )))
1893 1893  
1894 -(((
1895 -AT+RX1DL: Get or Set the delay between the end of the Tx and the Rx Window 1 in ms
1896 -)))
1897 1897  
1898 -(((
1899 -AT+RX2DL: Get or Set the delay between the end of the Tx and the Rx Window 2 in ms
1900 -)))
1901 -
1902 -(((
1903 -AT+JN1DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 1 in ms
1904 -)))
1905 -
1906 -(((
1907 -AT+JN2DL: Get or Set the Join Accept Delay between the end of the Tx and the Join Rx Window 2 in ms
1908 -)))
1909 -
1910 -(((
1911 -AT+NJM:  Get or Set the Network Join Mode. (0: ABP, 1: OTAA)
1912 -)))
1913 -
1914 -(((
1915 -AT+NWKID: Get or Set the Network ID
1916 -)))
1917 -
1918 -(((
1919 -AT+FCU: Get or Set the Frame Counter Uplink
1920 -)))
1921 -
1922 -(((
1923 -AT+FCD: Get or Set the Frame Counter Downlink
1924 -)))
1925 -
1926 -(((
1927 -AT+CLASS: Get or Set the Device Class
1928 -)))
1929 -
1930 -(((
1931 -AT+JOIN: Join network
1932 -)))
1933 -
1934 -(((
1935 -AT+NJS: Get OTAA Join Status
1936 -)))
1937 -
1938 -(((
1939 -AT+SENDB: Send hexadecimal data along with the application port
1940 -)))
1941 -
1942 -(((
1943 -AT+SEND: Send text data along with the application port
1944 -)))
1945 -
1946 -(((
1947 -AT+RECVB: Print last received data in binary format (with hexadecimal values)
1948 -)))
1949 -
1950 -(((
1951 -AT+RECV: Print last received data in raw format
1952 -)))
1953 -
1954 -(((
1955 -AT+VER:  Get current image version and Frequency Band
1956 -)))
1957 -
1958 -(((
1959 -AT+CFM: Get or Set the confirmation mode (0-1)
1960 -)))
1961 -
1962 -(((
1963 -AT+CFS:  Get confirmation status of the last AT+SEND (0-1)
1964 -)))
1965 -
1966 -(((
1967 -AT+SNR: Get the SNR of the last received packet
1968 -)))
1969 -
1970 -(((
1971 -AT+RSSI: Get the RSSI of the last received packet
1972 -)))
1973 -
1974 -(((
1975 -AT+TDC: Get or set the application data transmission interval in ms
1976 -)))
1977 -
1978 -(((
1979 -AT+PORT: Get or set the application port
1980 -)))
1981 -
1982 -(((
1983 -AT+DISAT: Disable AT commands
1984 -)))
1985 -
1986 -(((
1987 -AT+PWORD: Set password, max 9 digits
1988 -)))
1989 -
1990 -(((
1991 -AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
1992 -)))
1993 -
1994 -(((
1995 -AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470
1996 -)))
1997 -
1998 -(((
1999 -AT+CFG: Print all settings
2000 -)))
2001 -
2002 -
2003 2003  == 4.2 Common AT Command Sequence ==
2004 2004  
2005 2005  === 4.2.1 Multi-channel ABP mode (Use with SX1301/LG308) ===
... ... @@ -2008,41 +2008,41 @@
2008 2008  
2009 2009  
2010 2010  (((
2011 -(% style="color:blue" %)**If device has not joined network yet:**
1830 +(% style="color:blue" %)**If the device has not joined the network yet:**
2012 2012  )))
2013 2013  )))
2014 2014  
2015 2015  (((
2016 -(% style="background-color:#dcdcdc" %)**123456**
1835 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2017 2017  )))
2018 2018  
2019 2019  (((
2020 -(% style="background-color:#dcdcdc" %)**AT+FDR**
1839 +(% style="background-color:#dcdcdc" %)##**AT+FDR ~/~/reset parameters to factory default, reserve keys**##
2021 2021  )))
2022 2022  
2023 2023  (((
2024 -(% style="background-color:#dcdcdc" %)**123456**
1843 +(% style="background-color:#dcdcdc" %)##**123456 ~/~/enable AT commands access**##
2025 2025  )))
2026 2026  
2027 2027  (((
2028 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1847 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0 ~/~/set to ABP mode**##
2029 2029  )))
2030 2030  
2031 2031  (((
2032 -(% style="background-color:#dcdcdc" %)**ATZ**
1851 +(% style="background-color:#dcdcdc" %)##**ATZ ~/~/reset MCU**##
2033 2033  )))
2034 2034  
2035 2035  
2036 2036  (((
2037 -(% style="color:blue" %)**If device already joined network:**
1856 +(% style="color:blue" %)**If the device has already joined the network:**
2038 2038  )))
2039 2039  
2040 2040  (((
2041 -(% style="background-color:#dcdcdc" %)**AT+NJM=0**
1860 +(% style="background-color:#dcdcdc" %)##**AT+NJM=0**##
2042 2042  )))
2043 2043  
2044 2044  (((
2045 -(% style="background-color:#dcdcdc" %)**ATZ**
1864 +(% style="background-color:#dcdcdc" %)##**ATZ**##
2046 2046  )))
2047 2047  
2048 2048  
... ... @@ -2119,8 +2119,6 @@
2119 2119  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
2120 2120  
2121 2121  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
2122 -
2123 -
2124 2124  )))
2125 2125  
2126 2126  (((
... ... @@ -2127,9 +2127,6 @@
2127 2127  [[image:1653359097980-169.png||height="188" width="729"]]
2128 2128  )))
2129 2129  
2130 -(((
2131 -
2132 -)))
2133 2133  
2134 2134  === 4.2.3 Change to Class A ===
2135 2135  
... ... @@ -2137,44 +2137,58 @@
2137 2137  (((
2138 2138  (% style="color:blue" %)**If sensor JOINED:**
2139 2139  
2140 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
2141 -ATZ**
1954 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
1955 +
1956 +(% style="background-color:#dcdcdc" %)**ATZ**
2142 2142  )))
2143 2143  
2144 2144  
2145 2145  = 5. Case Study =
2146 2146  
2147 -== 5.1 Counting how many objects pass in Flow Line ==
1962 +== 5.1 Counting how many objects pass through the flow Line ==
2148 2148  
2149 2149  
2150 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
1965 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
2151 2151  
2152 2152  
2153 2153  = 6. FAQ =
2154 2154  
2155 -== 6.1 How to upgrade the image? ==
1970 +This section contains some frequently asked questions, which can help you resolve common issues and find solutions quickly.
2156 2156  
1972 +== 6.1 How to update the firmware? ==
2157 2157  
2158 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
1974 +Dragino frequently releases firmware updates for the LT-22222-L.
2159 2159  
1976 +Updating your LT-22222-L with the latest firmware version helps to:
1977 +
2160 2160  * Support new features
2161 -* For bug fix
2162 -* Change LoRaWAN bands.
1979 +* Fix bugs
1980 +* Change LoRaWAN frequency bands
2163 2163  
2164 -Below shows the hardware connection for how to upload an image to the LT:
1982 +You will need the following things before proceeding:
2165 2165  
1984 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
1985 +* USB to TTL adapter
1986 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
1987 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
1988 +
1989 +{{info}}
1990 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
1991 +{{/info}}
1992 +
1993 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
1994 +
1995 +
2166 2166  [[image:1653359603330-121.png]]
2167 2167  
2168 2168  
2169 -(((
2170 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
2171 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2172 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
2173 -
1999 +Start the STM32 Flash Loader and choose the correct COM port to update.
2174 2174  
2175 2175  (((
2002 +(((
2176 2176  (% style="color:blue" %)**For LT-22222-L**(%%):
2177 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2004 +
2005 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
2178 2178  )))
2179 2179  
2180 2180  
... ... @@ -2189,15 +2189,14 @@
2189 2189  [[image:image-20220524104033-15.png]]
2190 2190  
2191 2191  
2192 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2020 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2193 2193  
2194 -
2195 2195  [[image:1653360054704-518.png||height="186" width="745"]]
2196 2196  
2197 2197  
2198 2198  (((
2199 2199  (((
2200 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2027 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2201 2201  
2202 2202  
2203 2203  )))
... ... @@ -2204,13 +2204,13 @@
2204 2204  )))
2205 2205  
2206 2206  (((
2207 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2034 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2208 2208  )))
2209 2209  
2210 2210  (((
2211 2211  
2212 2212  
2213 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2040 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2214 2214  
2215 2215  
2216 2216  )))
... ... @@ -2217,13 +2217,13 @@
2217 2217  
2218 2218  (((
2219 2219  (((
2220 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2047 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2221 2221  )))
2222 2222  )))
2223 2223  
2224 2224  (((
2225 2225  (((
2226 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2053 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2227 2227  
2228 2228  
2229 2229  )))
... ... @@ -2230,7 +2230,7 @@
2230 2230  )))
2231 2231  
2232 2232  (((
2233 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2060 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2234 2234  
2235 2235  
2236 2236  )))
... ... @@ -2255,13 +2255,21 @@
2255 2255  
2256 2256  (((
2257 2257  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2085 +
2258 2258  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2087 +
2259 2259  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2089 +
2260 2260  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2091 +
2261 2261  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2093 +
2262 2262  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2095 +
2263 2263  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2097 +
2264 2264  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2099 +
2265 2265  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2266 2266  )))
2267 2267  
... ... @@ -2273,61 +2273,61 @@
2273 2273  [[image:1653360498588-932.png||height="485" width="726"]]
2274 2274  
2275 2275  
2276 -== 6.4 How to change the uplink interval ==
2111 +== 6.4 How to change the uplink interval? ==
2277 2277  
2278 2278  
2279 2279  Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2280 2280  
2281 2281  
2282 -== 6.5 Can I see counting event in Serial? ==
2117 +== 6.5 Can I see the counting event in the serial output? ==
2283 2283  
2284 2284  
2285 2285  (((
2286 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2121 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesnt support AT+DEBUG, update to the latest firmware first.
2287 2287  
2288 2288  
2289 -== 6.6 Can i use point to point communication for LT-22222-L? ==
2124 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2290 2290  
2291 2291  
2292 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2293 -
2294 -
2127 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2295 2295  )))
2296 2296  
2297 2297  (((
2298 -== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2131 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2299 2299  
2300 2300  
2301 -If the device is not shut down, but directly powered off.
2134 +* If the device is not properly shut down and is directly powered off.
2135 +* It will default to a power-off state.
2136 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2137 +* After a restart, the status before the power failure will be read from flash.
2302 2302  
2303 -It will default that this is a power-off state.
2139 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2304 2304  
2305 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2306 2306  
2307 -After restart, the status before power failure will be read from flash.
2142 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2308 2308  
2309 2309  
2310 -== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2145 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2311 2311  
2312 2312  
2313 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2148 +== 6.9 Can the LT-22222-L save the RO state? ==
2314 2314  
2315 2315  
2316 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2151 +The firmware version must be at least 1.6.0.
2317 2317  
2318 2318  
2319 -== 6.9 Can LT22222-L save RO state? ==
2154 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2320 2320  
2321 2321  
2322 -Firmware version needs to be no less than 1.6.0.
2157 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2323 2323  
2324 2324  
2325 -= 7. Trouble Shooting =
2160 += 7. Troubleshooting =
2326 2326  )))
2327 2327  
2328 2328  (((
2329 2329  (((
2330 -== 7.1 Downlink doesn't work, how to solve it? ==
2165 +== 7.1 Downlink isn't working. How can I solve this? ==
2331 2331  
2332 2332  
2333 2333  )))
... ... @@ -2334,78 +2334,84 @@
2334 2334  )))
2335 2335  
2336 2336  (((
2337 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2172 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2338 2338  )))
2339 2339  
2340 2340  (((
2341 2341  
2342 2342  
2343 -== 7.2 Have trouble to upload image. ==
2178 +== 7.2 Having trouble uploading an image? ==
2344 2344  
2345 2345  
2346 2346  )))
2347 2347  
2348 2348  (((
2349 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2184 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2350 2350  )))
2351 2351  
2352 2352  (((
2353 2353  
2354 2354  
2355 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2190 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2356 2356  
2357 2357  
2358 2358  )))
2359 2359  
2360 2360  (((
2361 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2196 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases]]
2362 2362  )))
2363 2363  
2364 2364  
2365 -= 8. Order Info =
2200 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2366 2366  
2367 2367  
2203 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2204 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2205 +
2206 +
2207 += 8. Ordering information =
2208 +
2209 +
2368 2368  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2369 2369  
2370 2370  (% style="color:#4f81bd" %)**XXX:**
2371 2371  
2372 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2373 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2374 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2375 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2376 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2377 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2378 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2379 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2380 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2214 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2215 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2216 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2217 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2218 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2219 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2220 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2221 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2222 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2381 2381  
2382 -= 9. Packing Info =
2224 += 9. Packing information =
2383 2383  
2384 2384  
2385 -**Package Includes**:
2227 +**Package includes**:
2386 2386  
2387 2387  * LT-22222-L I/O Controller x 1
2388 2388  * Stick Antenna for LoRa RF part x 1
2389 2389  * Bracket for controller x1
2390 -* Program cable x 1
2232 +* 3.5mm Programming cable x 1
2391 2391  
2392 2392  **Dimension and weight**:
2393 2393  
2394 2394  * Device Size: 13.5 x 7 x 3 cm
2395 -* Device Weight: 105g
2237 +* Device Weight: 105 g
2396 2396  * Package Size / pcs : 14.5 x 8 x 5 cm
2397 -* Weight / pcs : 170g
2239 +* Weight / pcs : 170 g
2398 2398  
2399 2399  = 10. Support =
2400 2400  
2401 2401  
2402 2402  * (((
2403 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2245 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2404 2404  )))
2405 2405  * (((
2406 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2248 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2407 2407  
2408 -
2409 2409  
2410 2410  )))
2411 2411  
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-events.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +530.6 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye-json.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +554.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content