Last modified by Mengting Qiu on 2025/06/04 18:42

From version 117.1
edited by Bei Jinggeng
on 2023/04/26 16:20
Change comment: There is no comment for this version
To version 179.1
edited by Dilisi S
on 2024/11/09 05:29
Change comment: Nov 8 edit FAQ and Troubleshooting sections

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,30 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 40  (((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
37 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
43 43  
44 -(((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
40 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
41 +* Setup your own private LoRaWAN network.
46 46  
47 -
43 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
52 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
56 +* STM32L072xxxx MCU
57 +* SX1276/78 Wireless Chip 
58 +* Power Consumption:
59 +** Idle: 4mA@12v
60 +** 20dB Transmit: 34mA@12V
61 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
65 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
66 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
67 +* 2 x Relay Output (5A@250VAC / 30VDC)
68 +* 2 x 0~~20mA Analog Input (res:0.01mA)
69 +* 2 x 0~~30V Analog Input (res:0.01V)
70 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
74 +* Frequency Range:
75 +** Band 1 (HF): 862 ~~ 1020 Mhz
76 +** Band 2 (LF): 410 ~~ 528 Mhz
77 +* 168 dB maximum link budget.
78 +* +20 dBm - 100 mW constant RF output vs.
79 +* +14 dBm high-efficiency PA.
80 +* Programmable bit rate up to 300 kbps.
81 +* High sensitivity: down to -148 dBm.
82 +* Bullet-proof front end: IIP3 = -12.5 dBm.
83 +* Excellent blocking immunity.
84 +* Low RX current of 10.3 mA, 200 nA register retention.
85 +* Fully integrated synthesizer with a resolution of 61 Hz.
86 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
87 +* Built-in bit synchronizer for clock recovery.
88 +* Preamble detection.
89 +* 127 dB Dynamic Range RSSI.
90 +* Automatic RF Sense and CAD with ultra-fast AFC.
91 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
99 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
103 +== 1.4 Applications ==
192 192  
193 -== 1.4  Applications ==
194 -
195 -
196 196  * Smart Buildings & Home Automation
197 -
198 198  * Logistics and Supply Chain Management
199 -
200 200  * Smart Metering
201 -
202 202  * Smart Agriculture
203 -
204 204  * Smart Cities
205 -
206 206  * Smart Factory
207 207  
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
115 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
116 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,130 +223,224 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
129 += 2. Assembling the Device =
226 226  
227 -= 2. Power ON Device =
131 +== 2.1 What is included in the package? ==
228 228  
133 +The package includes the following items:
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
135 +* 1 x LT-22222-L I/O Controller
136 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
137 +* 1 x bracket for DIN rail mounting
138 +* 1 x programming cable
233 233  
234 -(((
235 -PWR will on when device is properly powered.
140 +Attach the LoRaWAN antenna to the antenna connector, **ANT**,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
237 -
238 -)))
142 +== 2.2 Terminals ==
239 239  
144 +Upper screw terminal block (from left to right):
145 +
146 +(% style="width:634px" %)
147 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
148 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
149 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
150 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
151 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
152 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
153 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
154 +
155 +Lower screw terminal block (from left to right):
156 +
157 +(% style="width:633px" %)
158 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
159 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
160 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
161 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
162 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
163 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
164 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
165 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
166 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
167 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
168 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
169 +
170 +== 2.3 Powering the LT-22222-L ==
171 +
172 +The LT-22222-L I/O Controller can be powered by a **7–24V DC** power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
173 +
174 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
180 +== 3.1 How does it work? ==
246 246  
182 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
184 +After powering on, the **TX LED** will **fast-blink 5 times** which means the LT-22222-L will enter the **work mode** and start to **join** the LoRaWAN network. The **TX LED** will be on for **5 seconds** after joining the network. When there is a **downlink** message from the server, the **RX LE**D will be on for **1 second**. When the device is sending an uplink message to the server, the **TX LED** will be on for **1 second**. See also LED status.
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
186 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
188 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
190 +The network diagram below shows how the LT-22222-L is connected to a typical LoRaWAN network.
258 258  
192 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
194 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
196 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
198 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
200 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
202 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
204 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
205 +* Create an application if you do not have one yet.
206 +* Register LT-22222-L with that application. Two registration options are available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
208 +==== ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
210 +==== 3.2.2.1 Using the LoRaWAN Device Repository ====
282 282  
283 -[[image:image-20230425173427-2.png]]
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
284 284  
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
287 287  
288 -**Add APP EUI in the application.**
221 +* Page continued...
222 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
223 +** Enter the **DevEUI** in the **DevEUI** field.
224 +** Enter the **AppKey** in the **AppKey** field.
225 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
226 +** Under **After registration**, select the **View registered end device** option.
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
228 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
291 291  
230 +==== ====
292 292  
293 -**Add APP KEY and DEV EUI**
232 +==== 3.2.2.2 Entering device information manually ====
294 294  
295 -[[image:1653298023685-319.png]]
234 +* On the **Register end device** page:
235 +** Select the **Enter end device specifies manually** option as the input method.
236 +** Select the **Frequency plan** that matches your device.
237 +** Select the **LoRaWAN version**.
238 +** Select the **Regional Parameters version**.
239 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
240 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
241 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
296 296  
243 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
297 297  
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
246 +* Page continued...
247 +** Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
248 +** Enter **DevEUI** in the **DevEUI** field.
249 +** Enter **AppKey** in the **AppKey** field.
250 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
251 +** Under **After registration**, select the **View registered end device** option.
252 +** Click the **Register end device** button.
301 301  
302 -
303 -)))
254 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
304 304  
305 -[[image:1653298044601-602.png||height="405" width="709"]]
306 306  
257 +You will be navigated to the **Device overview** page.
307 307  
308 -== 3.3 Uplink Payload ==
309 309  
260 +[[image:lt-22222-device-overview.png||height="625" width="1000"]]
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
263 +==== 3.2.2.3 Joining ====
264 +
265 +Click on **Live data** in the left navigation. The Live data panel for your application will display.
266 +
267 +Power on your LT-22222-L. It will begin joining The Things Stack LoRaWAN network server. In the **Live data** panel, you can see the **join-request** and **join-accept** messages exchanged between the device and the network server. Once successfully joined, the device will send its first **uplink data message** to the application it belongs to (in this example, **dragino-docs**).
268 +
269 +
270 +[[image:lt-22222-join-network.png||height="625" width="1000"]]
271 +
272 +
273 +By default, you will receive an uplink data message every 10 minutes.
274 +
275 +Click on one of a **Forward uplink data messages **to see its payload content. The payload content is encapsulated within the decode_payload {} JSON object.
276 +
277 +[[image:lt-22222-ul-payload-decoded.png]]
278 +
279 +
280 +If you can't see the decoded payload, it is because you haven't added the uplink formatter code. To add the uplink formatter code, select **End devices** > **LT-22222-L** > **Payload formatters** > **Uplink**. Then  select **Use Device repository formatters** for the **Formatter type** dropdown. Click the **Save changes** button to apply the changes.
281 +
282 +[[image:lt-22222-ul-payload-fmt.png||height="686" width="1000"]]
283 +
284 +
285 +== 3.3 Work Modes and their Uplink Payload formats ==
286 +
287 +
288 +The LT-22222-L has 5 **work modes**. It also has an interrupt/trigger mode for different types of applications that can be used together with any work mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
289 +
290 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2ACI + 2AVI + DI + DO + RO
291 +
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
293 +
315 315  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
295 +
316 316  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
297 +
317 317  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
299 +
318 318  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
319 319  
302 +The uplink messages are sent over LoRaWAN FPort 2. By default, an uplink message is sent every 10 minutes.
303 +
320 320  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
321 321  
322 -
323 323  (((
324 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
325 -)))
307 +This is the default mode.
326 326  
327 -[[image:image-20220523174024-3.png]]
309 +The uplink payload is 11 bytes long. (% style="display:none" wfd-invisible="true" %)
328 328  
311 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
312 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
313 +|Value|(((
314 +AVI1 voltage
315 +)))|(((
316 +AVI2 voltage
317 +)))|(((
318 +ACI1 Current
319 +)))|(((
320 +ACI2 Current
321 +)))|**DIDORO***|(((
322 +Reserve
323 +)))|MOD
324 +)))
325 +
329 329  (((
330 -
327 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, and its size is1 byte long as shown below.
331 331  
332 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
330 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
331 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
333 333  )))
334 334  
335 -[[image:image-20220523174254-4.png]]
334 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
335 +* DI is for digital input. DIx=1: HIGH or FLOATING, DIx=0: LOW.
336 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
336 336  
337 -* RO is for relay. ROx=1 : close,ROx=0 always open.
338 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
339 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
338 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
340 340  
341 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
340 +For example, if the payload is: [[image:image-20220523175847-2.png]]
342 342  
343 -For example if payload is: [[image:image-20220523175847-2.png]]
344 344  
343 +**The interface values can be calculated as follows:  **
345 345  
346 -**The value for the interface is **
345 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347 347  
348 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
349 -
350 350  AVI2 channel voltage is 0x04AC/1000=1.196V
351 351  
352 352  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -353,96 +353,92 @@
353 353  
354 354  ACI2 channel current is 0x1300/1000=4.864mA
355 355  
356 -The last byte 0xAA= 10101010(B) means
353 +The last byte 0xAA= **10101010**(b) means,
357 357  
358 -* [1] RO1 relay channel is close and the RO1 LED is ON.
359 -* [0] RO2 relay channel is open and RO2 LED is OFF;
355 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
356 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
357 +* **[1] DI3 - not used for LT-22222-L.**
358 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
359 +* [1] DI1 channel input state:
360 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
361 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
362 +** DI1 LED is ON in both cases.
363 +* **[0] DO3 - not used for LT-22222-L.**
364 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
365 +* [0] DO1 channel output state:
366 +** DO1 is FLOATING when there is no load between DO1 and V+.
367 +** DO1 is HIGH when there is a load between DO1 and V+.
368 +** DO1 LED is OFF in both cases.
360 360  
361 -**LT22222-L:**
362 -
363 -* [1] DI2 channel is high input and DI2 LED is ON;
364 -* [0] DI1 channel is low input;
365 -
366 -* [0] DO3 channel output state
367 -** DO3 is float in case no load between DO3 and V+.;
368 -** DO3 is high in case there is load between DO3 and V+.
369 -** DO3 LED is off in both case
370 -* [1] DO2 channel output is low and DO2 LED is ON.
371 -* [0] DO1 channel output state
372 -** DO1 is float in case no load between DO1 and V+.;
373 -** DO1 is high in case there is load between DO1 and V+.
374 -** DO1 LED is off in both case
375 -
376 376  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377 377  
378 378  
379 379  (((
380 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
374 +**For LT-22222-L**: In this mode, **DI1 and DI2** are used as counting pins.
381 381  )))
382 382  
383 383  (((
384 -Total : 11 bytes payload
378 +The uplink payload is 11 bytes long.
379 +
380 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
381 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
382 +|Value|COUNT1|COUNT2 |DIDORO*|(((
383 +Reserve
384 +)))|MOD
385 385  )))
386 386  
387 -[[image:image-20220523180452-3.png]]
387 +(((
388 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, FIRST, Reserve, Reserve, DO3, DO2 and DO1, and its size is 1 byte long as shown below.
388 388  
390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
391 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
392 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
389 389  
390 -(((
391 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
394 +* RO is for the relay. ROx=1: CLOSED, ROx=0 always OPEN.
392 392  )))
393 393  
394 -[[image:image-20220523180506-4.png]]
397 +* FIRST: Indicates that this is the first packet after joining the network.
398 +* DO is for reverse digital output. DOx=1: LOW, DOx=0: HIGH or FLOATING.
395 395  
396 -* RO is for relay. ROx=1 : close,ROx=0 always open.
397 -* FIRST: Indicate this is the first packet after join network.
398 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399 -
400 400  (((
401 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 -)))
401 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
403 403  
404 -(((
405 405  
404 +)))
406 406  
407 -**To use counting mode, please run:**
406 +(((
407 +**To activate this mode, run the following AT commands:**
408 408  )))
409 409  
410 +(((
410 410  (% class="box infomessage" %)
411 411  (((
412 -(((
413 -(((
414 414  **AT+MOD=2**
415 -)))
416 416  
417 -(((
418 418  **ATZ**
419 419  )))
420 420  )))
421 -)))
422 422  
423 423  (((
424 424  
425 425  
426 426  (% style="color:#4f81bd" %)**AT Commands for counting:**
427 -
428 -
429 429  )))
430 430  
431 431  (((
432 432  **For LT22222-L:**
433 433  
428 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
434 434  
435 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
430 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
436 436  
437 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
432 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
438 438  
439 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
434 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
440 440  
441 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
436 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
442 442  
443 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
444 -
445 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
438 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
446 446  )))
447 447  
448 448  
... ... @@ -449,46 +449,50 @@
449 449  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
450 450  
451 451  
452 -**LT22222-L**: This mode the DI1 is used as a counting pin.
445 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
453 453  
454 -[[image:image-20220523181246-5.png]]
447 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
448 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
449 +|Value|COUNT1|(((
450 +ACI1 Current
451 +)))|(((
452 +ACI2 Current
453 +)))|DIDORO*|Reserve|MOD
455 455  
456 456  (((
457 -
456 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
458 458  
459 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
459 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
460 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
460 460  )))
461 461  
462 -[[image:image-20220523181301-6.png]]
463 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
464 +* FIRST: Indicates that this is the first packet after joining the network.
465 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
463 463  
464 -* RO is for relay. ROx=1 : close,ROx=0 always open.
465 -* FIRST: Indicate this is the first packet after join network.
466 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
467 -
468 468  (((
469 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
468 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
470 470  )))
471 471  
472 472  
473 473  (((
474 -**To use counting mode, please run:**
473 +**To activate this mode, run the following AT commands:**
475 475  )))
476 476  
476 +(((
477 477  (% class="box infomessage" %)
478 478  (((
479 -(((
480 -(((
481 481  **AT+MOD=3**
482 -)))
483 483  
484 -(((
485 485  **ATZ**
486 486  )))
487 487  )))
488 -)))
489 489  
490 490  (((
491 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
486 +AT Commands for counting:
487 +
488 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
492 492  )))
493 493  
494 494  
... ... @@ -496,67 +496,64 @@
496 496  
497 497  
498 498  (((
499 -**LT22222-L**: This mode the DI1 is used as a counting pin.
496 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
500 500  )))
501 501  
502 502  (((
503 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
500 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
501 +
502 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
503 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
504 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
505 +Reserve
506 +)))|MOD
504 504  )))
505 505  
506 -[[image:image-20220523181903-8.png]]
507 -
508 -
509 509  (((
510 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
510 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
511 +
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
513 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
514 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
511 511  )))
512 512  
513 -[[image:image-20220523181727-7.png]]
517 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
518 +* FIRST: Indicates that this is the first packet after joining the network.
519 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
514 514  
515 -* RO is for relay. ROx=1 : close,ROx=0 always open.
516 -* FIRST: Indicate this is the first packet after join network.
517 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
518 -
519 519  (((
520 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
521 -)))
522 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
522 522  
523 -(((
524 524  
525 +)))
525 525  
526 -**To use this mode, please run:**
527 +(((
528 +**To activate this mode, run the following AT commands:**
527 527  )))
528 528  
531 +(((
529 529  (% class="box infomessage" %)
530 530  (((
531 -(((
532 -(((
533 533  **AT+MOD=4**
534 -)))
535 535  
536 -(((
537 537  **ATZ**
538 538  )))
539 539  )))
540 -)))
541 541  
542 -
543 543  (((
544 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
541 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
545 545  )))
546 546  
547 547  (((
548 -
545 +**In addition to that, below are the commands for AVI1 Counting:**
549 549  
550 -**Plus below command for AVI1 Counting:**
547 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
551 551  
552 -
553 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
554 -
555 555  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
556 556  
557 557  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
558 558  
559 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
553 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560 560  )))
561 561  
562 562  
... ... @@ -563,47 +563,53 @@
563 563  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
564 564  
565 565  
566 -**LT22222-L**: This mode the DI1 is used as a counting pin.
560 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
567 567  
568 -[[image:image-20220523182334-9.png]]
562 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
563 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
564 +|Value|(((
565 +AVI1 voltage
566 +)))|(((
567 +AVI2 voltage
568 +)))|(((
569 +ACI1 Current
570 +)))|COUNT1|DIDORO*|(((
571 +Reserve
572 +)))|MOD
569 569  
570 570  (((
571 -
575 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
572 572  
573 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
577 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
578 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
579 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
574 574  )))
575 575  
576 -* RO is for relay. ROx=1 : closeROx=0 always open.
577 -* FIRST: Indicate this is the first packet after join network.
582 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
583 +* FIRST: Indicates that this is the first packet after joining the network.
578 578  * (((
579 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
585 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
580 580  )))
581 581  
582 582  (((
583 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
589 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
584 584  )))
585 585  
586 586  (((
587 -
588 -
589 -**To use this mode, please run:**
593 +**To activate this mode, run the following AT commands:**
590 590  )))
591 591  
596 +(((
592 592  (% class="box infomessage" %)
593 593  (((
594 -(((
595 -(((
596 596  **AT+MOD=5**
597 -)))
598 598  
599 -(((
600 600  **ATZ**
601 601  )))
602 602  )))
603 -)))
604 604  
605 605  (((
606 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
606 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
607 607  )))
608 608  
609 609  
... ... @@ -610,49 +610,46 @@
610 610  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
611 611  
612 612  
613 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
613 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
614 614  
615 -For example, if user has configured below commands:
615 +For example, if you configured the following commands:
616 616  
617 617  * **AT+MOD=1 ** **~-~->**  The normal working mode
618 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
618 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
619 619  
620 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
620 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
621 621  
622 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
623 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
622 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
623 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
624 624  
625 625  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
626 626  
627 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
627 627  
628 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
629 -
630 630  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
631 631  
632 632  
633 633  **Example:**
634 634  
635 -AT+AVLIM=3000,6000,0,2000   (If AVI1 voltage lower than 3v or higher than 6v. or AV2 voltage is higher than 2v, LT will trigger Uplink)
634 +AT+AVLIM=3000,6000,0,2000   (triggers an uplink if AVI1 voltage is lower than 3V or higher than 6V, or if AV2 voltage is higher than 2V)
636 636  
637 -AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
636 +AT+AVLIM=5000,0,0,0   (triggers an uplink if AVI1 voltage lower than 5V. Use 0 for parameters that are not in use)
638 638  
639 639  
639 +(% style="color:#4f81bd" %)**Trigger based on current**:
640 640  
641 -(% style="color:#4f81bd" %)**Trigger base on current**:
642 -
643 643  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
644 644  
645 645  
646 646  **Example:**
647 647  
648 -AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
646 +AT+ACLIM=10000,15000,0,0   (triggers an uplink if ACI1 voltage is lower than 10mA or higher than 15mA)
649 649  
650 650  
649 +(% style="color:#4f81bd" %)**Trigger based on DI status**:
651 651  
652 -(% style="color:#4f81bd" %)**Trigger base on DI status**:
651 +DI status triggers Flag.
653 653  
654 -DI status trigger Flag.
655 -
656 656  Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >
657 657  
658 658  
... ... @@ -661,71 +661,116 @@
661 661  AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
662 662  
663 663  
664 -(% style="color:#037691" %)**Downlink Command to set Trigger Condition:**
661 +(% style="color:#037691" %)**LoRaWAN Downlink Commands for Setting the Trigger Conditions:**
665 665  
666 666  Type Code: 0xAA. Downlink command same as AT Command **AT+AVLIM, AT+ACLIM**
667 667  
668 668  Format: AA xx yy1 yy1 yy2 yy2 yy3 yy3 yy4 yy4
669 669  
670 - AA: Code for this downlink Command:
667 + AA: Type Code for this downlink Command:
671 671  
672 - xx: 0: Limit for AV1 and AV2;  1: limit for AC1 and AC2 ; 2 DI1, DI2 trigger enable/disable
669 + xx: **0**: Limit for AV1 and AV2; **1**: limit for AC1 and AC2; **2**: DI1and DI2 trigger enable/disable.
673 673  
674 - yy1 yy1: AC1 or AV1 low limit or DI1/DI2 trigger status.
671 + yy1 yy1: AC1 or AV1 LOW limit or DI1/DI2 trigger status.
675 675  
676 - yy2 yy2: AC1 or AV1 high limit.
673 + yy2 yy2: AC1 or AV1 HIGH limit.
677 677  
678 - yy3 yy3: AC2 or AV2 low limit.
675 + yy3 yy3: AC2 or AV2 LOW limit.
679 679  
680 - Yy4 yy4: AC2 or AV2 high limit.
677 + Yy4 yy4: AC2 or AV2 HIGH limit.
681 681  
682 682  
683 -**Example1**: AA 00 13 88 00 00 00 00 00 00
680 +**Example 1**: AA 00 13 88 00 00 00 00 00 00
684 684  
685 -Same as AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
682 +Same as AT+AVLIM=5000,0,0,0 (triggers an uplink if AVI1 voltage is lower than 5V. Use 0s for parameters that are not in use)
686 686  
687 687  
688 -**Example2**: AA 02 01 00
685 +**Example 2**: AA 02 01 00
689 689  
690 -Same as AT+ DTRI =1,0  (Enable DI1 trigger / disable DI2 trigger)
687 +Same as AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
691 691  
692 692  
693 -
694 694  (% style="color:#4f81bd" %)**Trigger Settings Payload Explanation:**
695 695  
696 -MOD6 Payload : total 11 bytes payload
692 +MOD6 Payload: total of 11 bytes
697 697  
698 -[[image:image-20220524085923-1.png]]
694 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
695 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
696 +|Value|(((
697 +TRI_A FLAG
698 +)))|(((
699 +TRI_A Status
700 +)))|(((
701 +TRI_DI FLAG+STA
702 +)))|Reserve|Enable/Disable MOD6|(((
703 +MOD(6)
704 +)))
699 699  
706 +(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if the trigger is set for this part. Totally 1 byte as below
700 700  
701 -(% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
708 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
709 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
710 +|(((
711 +AV1_LOW
712 +)))|(((
713 +AV1_HIGH
714 +)))|(((
715 +AV2_LOW
716 +)))|(((
717 +AV2_HIGH
718 +)))|(((
719 +AC1_LOW
720 +)))|(((
721 +AC1_HIGH
722 +)))|(((
723 +AC2_LOW
724 +)))|(((
725 +AC2_HIGH
726 +)))
702 702  
703 -[[image:image-20220524090106-2.png]]
728 +* Each bit shows if the corresponding trigger has been configured.
704 704  
705 -* Each bits shows if the corresponding trigger has been configured.
706 -
707 707  **Example:**
708 708  
709 -10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
732 +10100000: Means the system has configure to use the trigger: AV1_LOW and AV2_LOW
710 710  
711 711  
735 +(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1 byte as below
712 712  
713 -(% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
737 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
738 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
739 +|(((
740 +AV1_LOW
741 +)))|(((
742 +AV1_HIGH
743 +)))|(((
744 +AV2_LOW
745 +)))|(((
746 +AV2_HIGH
747 +)))|(((
748 +AC1_LOW
749 +)))|(((
750 +AC1_HIGH
751 +)))|(((
752 +AC2_LOW
753 +)))|(((
754 +AC2_HIGH
755 +)))
714 714  
715 -[[image:image-20220524090249-3.png]]
757 +* Each bit shows which status has been triggered on this uplink.
716 716  
717 -* Each bits shows which status has been trigger on this uplink.
718 -
719 719  **Example:**
720 720  
721 -10000000: Means this packet is trigger by AC1_LOW. Means voltage too low.
761 +10000000: Means this uplink is triggered by AV1_LOW. That means the voltage is too low.
722 722  
723 723  
724 724  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
725 725  
726 -[[image:image-20220524090456-4.png]]
766 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
767 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
768 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
727 727  
728 -* Each bits shows which status has been trigger on this uplink.
770 +* Each bits shows which status has been triggered on this uplink.
729 729  
730 730  **Example:**
731 731  
... ... @@ -752,11 +752,11 @@
752 752  )))
753 753  
754 754  
755 -== 3.4 ​Configure LT via AT or Downlink ==
797 +== 3.4 ​Configure LT via AT Commands or Downlinks ==
756 756  
757 757  
758 758  (((
759 -User can configure LT I/O Controller via AT Commands or LoRaWAN Downlink Commands
801 +User can configure LT I/O Controller via AT Commands or LoRaWAN Downlinks.
760 760  )))
761 761  
762 762  (((
... ... @@ -771,9 +771,8 @@
771 771  
772 772  === 3.4.1 Common Commands ===
773 773  
774 -
775 775  (((
776 -They should be available for each of Dragino Sensors, such as: change uplink interval, reset device. For firmware v1.5.4, user can find what common commands it supports: [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]]
817 +These commands should be available for all Dragino sensors, such as changing the uplink interval or resetting the device. For firmware v1.5.4, you can find the supported common commands under [[End Device AT Commands and Downlink Command>>doc:Main.End Device AT Commands and Downlink Command.WebHome]].
777 777  )))
778 778  
779 779  
... ... @@ -781,38 +781,37 @@
781 781  
782 782  ==== 3.4.2.1 Set Transmit Interval ====
783 783  
825 +Sets the uplink interval of the device. The default uplink transmission interval is 10 minutes.
784 784  
785 -Set device uplink interval.
827 +* (% style="color:#037691" %)**AT command:**
786 786  
787 -* (% style="color:#037691" %)**AT Command:**
829 +(% style="color:blue" %)**AT+TDC=N**
788 788  
789 -(% style="color:blue" %)**AT+TDC=N **
831 +where N is the time in milliseconds.
790 790  
833 +**Example: **AT+TDC=30000. This will set the uplink interval to 30 seconds
791 791  
792 -**Example: **AT+TDC=30000. Means set interval to 30 seconds
793 793  
836 +* (% style="color:#037691" %)**Downlink payload (prefix 0x01):**
794 794  
795 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x01):**
796 -
797 797  (% style="color:blue" %)**0x01 aa bb cc  **(%%)** ~/~/ Same as AT+TDC=0x(aa bb cc)**
798 798  
799 799  
800 800  
801 -==== 3.4.2.2 Set Work Mode (AT+MOD) ====
842 +==== 3.4.2.2 Set the Work Mode (AT+MOD) ====
802 802  
803 803  
804 -Set work mode.
845 +Sets the work mode.
805 805  
806 -* (% style="color:#037691" %)**AT Command:**
847 +* (% style="color:#037691" %)**AT command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
807 807  
808 -(% style="color:blue" %)**AT+MOD=N  **
849 +Where N is the work mode.
809 809  
851 +**Example**: AT+MOD=2. This will set the work mode to Double DI counting mode.
810 810  
811 -**Example**: AT+MOD=2. Set work mode to Double DI counting mode
812 812  
854 +* (% style="color:#037691" %)**Downlink payload (prefix 0x0A):**
813 813  
814 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
815 -
816 816  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
817 817  
818 818  
... ... @@ -820,34 +820,30 @@
820 820  ==== 3.4.2.3 Poll an uplink ====
821 821  
822 822  
823 -* (% style="color:#037691" %)**AT Command:**
863 +Asks the device to send an uplink.
824 824  
825 -There is no AT Command to poll uplink
865 +* (% style="color:#037691" %)**AT command:**(%%) There is no AT Command to poll uplink
826 826  
867 +* (% style="color:#037691" %)**Downlink payload (prefix 0x08):**
827 827  
828 -* (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
829 -
830 830  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
831 831  
832 -
833 833  **Example**: 0x08FF, ask device to send an Uplink
834 834  
835 835  
836 836  
837 -==== 3.4.2.4 Enable Trigger Mode ====
875 +==== 3.4.2.4 Enable/Disable Trigger Mode ====
838 838  
839 839  
840 -Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
878 +Enable or disable the trigger mode (see also [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]).
841 841  
842 -* (% style="color:#037691" %)**AT Command:**
880 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
843 843  
844 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
882 +(% style="color:red" %)**1:** (%%)Enable the trigger mode
845 845  
846 -(% style="color:red" %)**1:** (%%)Enable Trigger Mode
884 +(% style="color:red" %)**0: **(%%)Disable the trigger mode
847 847  
848 -(% style="color:red" %)**0: **(%%)Disable Trigger Mode
849 849  
850 -
851 851  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A 06):**
852 852  
853 853  (% style="color:blue" %)**0x0A 06 aa    **(%%) ~/~/ Same as AT+ADDMOD6=aa
... ... @@ -857,16 +857,15 @@
857 857  ==== 3.4.2.5 Poll trigger settings ====
858 858  
859 859  
860 -Poll trigger settings,
896 +Polls the trigger settings
861 861  
862 862  * (% style="color:#037691" %)**AT Command:**
863 863  
864 864  There is no AT Command for this feature.
865 865  
866 -
867 867  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
868 868  
869 -(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
904 +(% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll the trigger settings. Device will uplink trigger settings once receive this command
870 870  
871 871  
872 872  
... ... @@ -873,17 +873,13 @@
873 873  ==== 3.4.2.6 Enable / Disable DI1/DI2/DI3 as trigger ====
874 874  
875 875  
876 -Enable Disable DI1/DI2/DI2 as trigger,
911 +Enable or Disable DI1/DI2/DI2 as trigger,
877 877  
878 -* (% style="color:#037691" %)**AT Command:**
913 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
879 879  
880 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
915 +**Example:** AT+ DTRI =1,0 (Enable DI1 trigger / disable DI2 trigger)
881 881  
882 882  
883 -**Example:**
884 -
885 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
886 -
887 887  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
888 888  
889 889  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -895,20 +895,15 @@
895 895  
896 896  Set DI1 or DI3(for LT-33222-L) trigger.
897 897  
898 -* (% style="color:#037691" %)**AT Command:**
929 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
899 899  
900 -(% style="color:blue" %)**AT+TRIG1=a,b**
901 -
902 902  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
903 903  
904 904  (% style="color:red" %)**b :** (%%)delay timing.
905 905  
935 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
906 906  
907 -**Example:**
908 908  
909 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
910 -
911 -
912 912  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
913 913  
914 914  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -918,22 +918,17 @@
918 918  ==== 3.4.2.8 Trigger2 – Set DI2 as trigger ====
919 919  
920 920  
921 -Set DI2 trigger.
947 +Sets DI2 trigger.
922 922  
923 -* (% style="color:#037691" %)**AT Command:**
949 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
924 924  
925 -(% style="color:blue" %)**AT+TRIG2=a,b**
951 +(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge (for MOD=1).
926 926  
927 -(% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
928 -
929 929  (% style="color:red" %)**b :** (%%)delay timing.
930 930  
955 +**Example:** AT+TRIG2=0,100 (set DI1 port to trigger on low level, valid signal is 100ms )
931 931  
932 -**Example:**
933 933  
934 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
935 -
936 -
937 937  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
938 938  
939 939  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -945,11 +945,8 @@
945 945  
946 946  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
947 947  
948 -* (% style="color:#037691" %)**AT Command**
969 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
949 949  
950 -(% style="color:blue" %)**AT+ACLIM**
951 -
952 -
953 953  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
954 954  
955 955  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -961,11 +961,8 @@
961 961  
962 962  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
963 963  
964 -* (% style="color:#037691" %)**AT Command**
982 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
965 965  
966 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
967 -
968 -
969 969  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
970 970  
971 971  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -975,20 +975,15 @@
975 975  ==== 3.4.2.11 Trigger – Set minimum interval ====
976 976  
977 977  
978 -Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
993 +Sets AV and AC trigger minimum interval. Device won't response to the second trigger within this set time after the first trigger.
979 979  
980 -* (% style="color:#037691" %)**AT Command**
995 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
981 981  
982 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
983 -
984 -
985 985  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
986 986  
987 987  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
988 988  
989 989  (((
990 -
991 -
992 992  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
993 993  )))
994 994  
... ... @@ -1003,8 +1003,9 @@
1003 1003  
1004 1004  
1005 1005  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1006 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1007 1007  
1017 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1018 +
1008 1008  (((
1009 1009  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1010 1010  )))
... ... @@ -1011,10 +1011,14 @@
1011 1011  
1012 1012  (((
1013 1013  01: Low,  00: High ,  11: No action
1025 +
1026 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1027 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
1028 +|02  01  00  11|Low|High|No Action
1029 +|02  00  11  01|High|No Action|Low
1030 +|02  11  01  00|No Action|Low|High
1014 1014  )))
1015 1015  
1016 -[[image:image-20220524092754-5.png]]
1017 -
1018 1018  (((
1019 1019  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1020 1020  )))
... ... @@ -1051,24 +1051,31 @@
1051 1051  
1052 1052  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1053 1053  
1054 -[[image:image-20220524093238-6.png]]
1069 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1070 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1071 +|0x01|DO1 set to low
1072 +|0x00|DO1 set to high
1073 +|0x11|DO1 NO Action
1055 1055  
1056 -
1057 1057  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1058 1058  
1059 -[[image:image-20220524093328-7.png]]
1077 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1078 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1079 +|0x01|DO2 set to low
1080 +|0x00|DO2 set to high
1081 +|0x11|DO2 NO Action
1060 1060  
1061 -
1062 1062  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1063 1063  
1064 -[[image:image-20220524093351-8.png]]
1085 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1086 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1087 +|0x01|DO3 set to low
1088 +|0x00|DO3 set to high
1089 +|0x11|DO3 NO Action
1065 1065  
1091 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1066 1066  
1067 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1068 1068  
1069 - Latching time. Unit: ms
1070 -
1071 -
1072 1072  (% style="color:red" %)**Note: **
1073 1073  
1074 1074   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1075,7 +1075,6 @@
1075 1075  
1076 1076   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1077 1077  
1078 -
1079 1079  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1080 1080  
1081 1081  
... ... @@ -1099,7 +1099,7 @@
1099 1099  
1100 1100  
1101 1101  
1102 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1123 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1103 1103  
1104 1104  
1105 1105  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1117,11 +1117,18 @@
1117 1117  )))
1118 1118  
1119 1119  (((
1120 -01: Close ,  00: Open , 11: No action
1121 -)))
1141 +00: Closed ,  01: Open , 11: No action
1122 1122  
1123 -(((
1124 -[[image:image-20230426161322-1.png]]
1143 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1144 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1145 +|03  00  11|Open|No Action
1146 +|03  01  11|Close|No Action
1147 +|03  11  00|No Action|Open
1148 +|03  11  01|No Action|Close
1149 +|03  00  00|Open|Open
1150 +|03  01  01|Close|Close
1151 +|03  01  00|Close|Open
1152 +|03  00  01|Open|Close
1125 1125  )))
1126 1126  
1127 1127  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1195,11 +1195,8 @@
1195 1195  
1196 1196  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197 1197  
1198 -* (% style="color:#037691" %)**AT Command:**
1226 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199 1199  
1200 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1201 -
1202 -
1203 1203  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1204 1204  
1205 1205  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1209,10 +1209,8 @@
1209 1209  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1210 1210  
1211 1211  
1212 -* (% style="color:#037691" %)**AT Command:**
1237 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1213 1213  
1214 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1215 -
1216 1216  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1217 1217  
1218 1218  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1229,11 +1229,8 @@
1229 1229  
1230 1230  Clear counting for counting mode
1231 1231  
1232 -* (% style="color:#037691" %)**AT Command:**
1255 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1233 1233  
1234 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1235 -
1236 -
1237 1237  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1238 1238  
1239 1239  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1240,7 +1240,7 @@
1240 1240  
1241 1241  
1242 1242  
1243 -==== 3.4.2.19 Counting ~-~- Change counting mode save time ====
1263 +==== 3.4.2.19 Counting ~-~- Change counting mode to save time ====
1244 1244  
1245 1245  
1246 1246  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1361,75 +1361,144 @@
1361 1361  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1362 1362  
1363 1363  
1364 -== 3.5 Integrate with Mydevice ==
1384 +== 3.5 Integrating with ThingsEye.io ==
1365 1365  
1386 +The Things Stack applications can be integrated with ThingsEye.io. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1366 1366  
1367 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1388 +=== 3.5.1 Configuring MQTT Connection Information with The Things Stack Sandbox ===
1368 1368  
1369 -(((
1370 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1371 -)))
1390 +We use The Things Stack Sandbox for demonstating the configuration but  other
1372 1372  
1373 -(((
1374 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1392 +* In **The Things Stack Sandbox**, select your application under **Applications**.
1393 +* Select **MQTT** under **Integrations**.
1394 +* In the **Connection information **section, for **Username**, The Things Stack displays an auto-generated username. You can use it or provide a new one.
1395 +* For the **Password**, click the **Generate new API key** button to generate a password. You can see it by clicking on the **eye** button. The API key works as the password.
1375 1375  
1376 -
1377 -)))
1397 +NOTE. The username and  password (API key) you created here are required in the next section.
1378 1378  
1379 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1399 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1380 1380  
1401 +=== 3.5.2 Configuring ThingsEye.io ===
1381 1381  
1403 +This section guides you on how to create an integration in ThingsEye to connect with The Things Stack MQTT server.
1382 1382  
1383 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1405 +* Login to your [[ThingsEye.io >>https://thingseye.io]]account.
1406 +* Under the **Integrations center**, click **Integrations**.
1407 +* Click the **Add integration** button (the button with the **+** symbol).
1384 1384  
1409 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1385 1385  
1386 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1387 1387  
1388 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1412 +On the **Add integration** window, configure the following:
1389 1389  
1390 -Search under The things network
1414 +**Basic settings:**
1391 1391  
1392 -[[image:1653356838789-523.png||height="337" width="740"]]
1416 +* Select **The Things Stack Community** from the **Integration type** list.
1417 +* Enter a suitable name for your integration in the **Name **text** **box or keep the default name.
1418 +* Ensure the following options are turned on.
1419 +** Enable integration
1420 +** Debug mode
1421 +** Allow create devices or assets
1422 +* Click the **Next** button. you will be navigated to the **Uplink data converter** tab.
1393 1393  
1424 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1394 1394  
1395 1395  
1396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1427 +**Uplink data converter:**
1397 1397  
1398 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1429 +* Click the **Create new** button if it is not selected by default.
1430 +* Enter a suitable name for the uplink data converter in the **Name **text** **box or keep the default name.
1431 +* Click the **JavaScript** button.
1432 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo uplink decoder function can be found [[here>>https://raw.githubusercontent.com/ThingsEye-io/te-platform/refs/heads/main/Data%20Converters/The_Things_Network_MQTT_Uplink_Converter.js]].
1433 +* Click the **Next** button. You will be navigated to the **Downlink data converter **tab.
1399 1399  
1435 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1400 1400  
1401 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1402 1402  
1438 +**Downlink data converter (this is an optional step):**
1403 1403  
1404 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1440 +* Click the **Create new** button if it is not selected by default.
1441 +* Enter a suitable name for the downlink data converter in the **Name **text** **box or keep the default name
1442 +* Click the **JavaScript** button.
1443 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo downlink decoder function can be found here.
1444 +* Click the **Next** button. You will be navigated to the **Connection** tab.
1405 1405  
1446 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1406 1406  
1407 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1408 1408  
1449 +**Connection:**
1409 1409  
1410 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1451 +* Choose **Region** from the **Host type**.
1452 +* Enter the **cluster** of your **The Things Stack** in the **Region** textbox. You can find the cluster in the url (e.g., https:~/~/**eu1**.cloud.thethings.network/...).
1453 +* Enter the **Username** and **Password** of the MQTT integration in the **Credentials** section. The username and password can be found on the MQTT integration page of your The Things Stack account (see Configuring MQTT Connection information with The Things Stack Sandbox).
1454 +* Click the **Check connection** button to test the connection. If the connection is successful, you will see the message saying **Connected**.
1411 1411  
1456 +[[image:message-1.png]]
1412 1412  
1413 -== 3.6 Interface Detail ==
1414 1414  
1459 +* Click the **Add** button.
1460 +
1461 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1462 +
1463 +
1464 +Your integration has been added to the** Integrations** list and will be displayed on the **Integrations** page. Check whether the status is shown as **Active**. If not, review your configuration settings.
1465 +
1466 +
1467 +[[image:thingseye.io_integrationsCenter_integrations.png||height="686" width="1000"]]
1468 +
1469 +
1470 +**Viewing integration details**:
1471 +
1472 +Click on your integration from the list. The Integration details window will appear with the Details tab selected. The Details tab shows all the settings you have provided for this integration.
1473 +
1474 +[[image:integration-details.png||height="686" width="1000"]]
1475 +
1476 +
1477 +If you want to edit the settings you have provided, click on the **Toggle edit mode** button. Once you have done click on the **Apply changes **button.
1478 +
1479 +Note: See also ThingsEye documentation.
1480 +
1481 +
1482 +**Viewing events:**
1483 +
1484 +This tab  displays all the uplink messages from the LT-22222-L.
1485 +
1486 +* Click on the **Events **tab.
1487 +* Select **Debug **from the **Event type** dropdown.
1488 +* Select the** time frame** from the **time window**.
1489 +
1490 +[insert image]
1491 +
1492 +- To view the JSON payload of a message, click on the three dots (...) in the Message column of the desired message.
1493 +
1494 +[insert image]
1495 +
1496 +
1497 +**Deleting the integration**:
1498 +
1499 +If you want to delete this integration, click the **Delete integratio**n button.
1500 +
1501 +
1502 +== 3.6 Interface Details ==
1503 +
1415 1415  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1416 1416  
1417 1417  
1418 -Support NPN Type sensor
1507 +Support NPN-type sensor
1419 1419  
1420 1420  [[image:1653356991268-289.png]]
1421 1421  
1422 1422  
1423 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1512 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 1424  
1425 1425  
1426 1426  (((
1427 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1516 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 1428  )))
1429 1429  
1430 1430  (((
1431 1431  (((
1432 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1521 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 1433  
1434 1434  
1435 1435  )))
... ... @@ -1439,7 +1439,7 @@
1439 1439  
1440 1440  (((
1441 1441  (((
1442 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1531 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 1443  )))
1444 1444  )))
1445 1445  
... ... @@ -1448,22 +1448,22 @@
1448 1448  )))
1449 1449  
1450 1450  (((
1451 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1540 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 1452  )))
1453 1453  
1454 1454  (((
1455 -This type of sensor will output a low signal GND when active.
1544 +This type of sensor outputs a low (GND) signal when active.
1456 1456  )))
1457 1457  
1458 1458  * (((
1459 -Connect sensor's output to DI1-
1548 +Connect the sensor's output to DI1-
1460 1460  )))
1461 1461  * (((
1462 -Connect sensor's VCC to DI1+.
1551 +Connect the sensor's VCC to DI1+.
1463 1463  )))
1464 1464  
1465 1465  (((
1466 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1555 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 1467  )))
1468 1468  
1469 1469  (((
... ... @@ -1471,7 +1471,7 @@
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1563 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 1475  )))
1476 1476  
1477 1477  (((
... ... @@ -1479,22 +1479,22 @@
1479 1479  )))
1480 1480  
1481 1481  (((
1482 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1571 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 1483  )))
1484 1484  
1485 1485  (((
1486 -This type of sensor will output a high signal (example 24v) when active.
1575 +This type of sensor outputs a high signal (e.g., 24V) when active.
1487 1487  )))
1488 1488  
1489 1489  * (((
1490 -Connect sensor's output to DI1+
1579 +Connect the sensor's output to DI1+
1491 1491  )))
1492 1492  * (((
1493 -Connect sensor's GND DI1-.
1582 +Connect the sensor's GND DI1-.
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1586 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 1498  )))
1499 1499  
1500 1500  (((
... ... @@ -1502,7 +1502,7 @@
1502 1502  )))
1503 1503  
1504 1504  (((
1505 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1594 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 1506  )))
1507 1507  
1508 1508  (((
... ... @@ -1510,22 +1510,22 @@
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1602 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 1514  )))
1515 1515  
1516 1516  (((
1517 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1606 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 1518  )))
1519 1519  
1520 1520  * (((
1521 -Connect sensor's output to DI1+ with a serial 50K resistor
1610 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 1522  )))
1523 1523  * (((
1524 -Connect sensor's GND DI1-.
1613 +Connect the sensor's GND DI1-.
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1617 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 1529  )))
1530 1530  
1531 1531  (((
... ... @@ -1533,24 +1533,37 @@
1533 1533  )))
1534 1534  
1535 1535  (((
1536 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1625 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 1537  )))
1538 1538  
1539 1539  
1540 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1629 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 1541  
1631 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1542 1542  
1543 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1633 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1544 1544  
1545 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1635 +[[image:image-20230616235145-1.png]]
1546 1546  
1637 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1638 +
1639 +[[image:image-20240219115718-1.png]]
1640 +
1641 +
1642 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1643 +
1644 +
1645 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1646 +
1647 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1648 +
1547 1547  [[image:1653357531600-905.png]]
1548 1548  
1549 1549  
1550 -=== 3.6.4 Analog Input Interface ===
1652 +=== 3.6.4 Analog Input Interfaces ===
1551 1551  
1552 1552  
1553 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1655 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1554 1554  
1555 1555  
1556 1556  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1557,20 +1557,19 @@
1557 1557  
1558 1558  [[image:1653357592296-182.png]]
1559 1559  
1560 -Example to connect a 4~~20mA sensor
1662 +Example: Connecting a 4~~20mA sensor
1561 1561  
1562 -We take the wind speed sensor as an example for reference only.
1664 +We will use the wind speed sensor as an example for reference only.
1563 1563  
1564 1564  
1565 1565  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1566 1566  
1567 -(% style="color:red" %)**Red:  12~~24v**
1669 +(% style="color:red" %)**Red:  12~~24V**
1568 1568  
1569 1569  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1570 1570  
1571 1571  **Black:  GND**
1572 1572  
1573 -
1574 1574  **Connection diagram:**
1575 1575  
1576 1576  [[image:1653357640609-758.png]]
... ... @@ -1578,13 +1578,29 @@
1578 1578  [[image:1653357648330-671.png||height="155" width="733"]]
1579 1579  
1580 1580  
1682 +Example: Connecting to a regulated power supply to measure voltage
1683 +
1684 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1685 +
1686 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1687 +
1688 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1689 +
1690 +
1691 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1692 +
1693 +(% style="color:red" %)**Red:  12~~24v**
1694 +
1695 +**Black:  GND**
1696 +
1697 +
1581 1581  === 3.6.5 Relay Output ===
1582 1582  
1583 1583  
1584 1584  (((
1585 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1702 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1586 1586  
1587 -**Note**: RO pins go to Open(NO) when device is power off.
1704 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1588 1588  )))
1589 1589  
1590 1590  [[image:image-20220524100215-9.png]]
... ... @@ -1596,20 +1596,41 @@
1596 1596  == 3.7 LEDs Indicators ==
1597 1597  
1598 1598  
1599 -[[image:image-20220524100748-11.png]]
1716 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1717 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1718 +|**PWR**|Always on if there is power
1719 +|**TX**|(((
1720 +(((
1721 +Device boot: TX blinks 5 times.
1722 +)))
1600 1600  
1724 +(((
1725 +Successful join network: TX ON for 5 seconds.
1726 +)))
1601 1601  
1602 -= 4. Use AT Command =
1728 +(((
1729 +Transmit a LoRa packet: TX blinks once
1730 +)))
1731 +)))
1732 +|**RX**|RX blinks once when receiving a packet.
1733 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1734 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1735 +|**DI1**|(((
1736 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1737 +)))
1738 +|**DI2**|(((
1739 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1740 +)))
1741 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1742 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1603 1603  
1604 -== 4.1 Access AT Command ==
1744 += 4. Using AT Command =
1605 1605  
1746 +== 4.1 Connecting the LT-22222-L to a computer ==
1606 1606  
1607 -(((
1608 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1609 -)))
1610 1610  
1611 1611  (((
1612 -
1750 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1613 1613  )))
1614 1614  
1615 1615  [[image:1653358238933-385.png]]
... ... @@ -1616,7 +1616,7 @@
1616 1616  
1617 1617  
1618 1618  (((
1619 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1757 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool **(%%)(such as [[PuTTY>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]] or [[SecureCRT>>https://www.vandyke.com/cgi-bin/releases.php?product=securecrt]]) to a baud rate o(% style="color:green" %)**9600**(%%) to access the serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1620 1620  )))
1621 1621  
1622 1622  [[image:1653358355238-883.png]]
... ... @@ -1623,10 +1623,12 @@
1623 1623  
1624 1624  
1625 1625  (((
1626 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1764 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1627 1627  )))
1628 1628  
1629 1629  (((
1768 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1769 +
1630 1630  AT+<CMD>?        : Help on <CMD>
1631 1631  )))
1632 1632  
... ... @@ -1930,8 +1930,6 @@
1930 1930  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1931 1931  
1932 1932  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1933 -
1934 -
1935 1935  )))
1936 1936  
1937 1937  (((
... ... @@ -1938,9 +1938,6 @@
1938 1938  [[image:1653359097980-169.png||height="188" width="729"]]
1939 1939  )))
1940 1940  
1941 -(((
1942 -
1943 -)))
1944 1944  
1945 1945  === 4.2.3 Change to Class A ===
1946 1946  
... ... @@ -1948,44 +1948,57 @@
1948 1948  (((
1949 1949  (% style="color:blue" %)**If sensor JOINED:**
1950 1950  
1951 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1952 -ATZ**
2086 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2087 +
2088 +(% style="background-color:#dcdcdc" %)**ATZ**
1953 1953  )))
1954 1954  
1955 1955  
1956 1956  = 5. Case Study =
1957 1957  
1958 -== 5.1 Counting how many objects pass in Flow Line ==
2094 +== 5.1 Counting how many objects pass through the flow Line ==
1959 1959  
1960 1960  
1961 -Reference Link: [[How to set up to count objects pass in flow line>>How to set up to count objects pass in flow line]]?
2097 +Reference Link: [[How to set up to setup counting for objects passing through the flow line>>How to set up to count objects pass in flow line]]?
1962 1962  
1963 1963  
1964 1964  = 6. FAQ =
1965 1965  
1966 -== 6.1 How to upgrade the image? ==
2102 +== 6.1 How to update the firmware? ==
1967 1967  
1968 1968  
1969 -The LT LoRaWAN Controller is shipped with a 3.5mm cable, the cable is used to upload image to LT to:
2105 +Dragino frequently releases firmware updates for the LT-22222-L.
1970 1970  
2107 +Updating your LT-22222-L with the latest firmware version helps to:
2108 +
1971 1971  * Support new features
1972 -* For bug fix
1973 -* Change LoRaWAN bands.
2110 +* Fix bugs
2111 +* Change LoRaWAN frequency bands
1974 1974  
1975 -Below shows the hardware connection for how to upload an image to the LT:
2113 +You will need the following things before proceeding:
1976 1976  
2115 +* 3.5mm programming cable (included with the LT-22222-L as an additional accessory)
2116 +* USB to TTL adapter
2117 +* Download and install the [[STM32 Flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]]. (replaced by STM32CubeProgrammer)
2118 +* Download the latest firmware image from [[LT-22222-L firmware image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]]. Check the file name of the firmware to find the correct region.
2119 +
2120 +{{info}}
2121 +As of this writing, the latest firmware version available for the LT-22222-L is v1.6.1.
2122 +{{/info}}
2123 +
2124 +Below is the hardware setup for uploading a firmware image to the LT-22222-L:
2125 +
2126 +
1977 1977  [[image:1653359603330-121.png]]
1978 1978  
1979 1979  
1980 -(((
1981 -(% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1982 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
1983 -(% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1984 -
2130 +Start the STM32 Flash Loader and choose the correct COM port to update.
1985 1985  
1986 1986  (((
2133 +(((
1987 1987  (% style="color:blue" %)**For LT-22222-L**(%%):
1988 -Hold down the PRO button and then momentarily press the RST reset button and the (% style="color:red" %)**DO1 led**(%%) will change from OFF to ON. When (% style="color:red" %)**DO1 LED**(%%) is on, it means the device is in download mode.
2135 +
2136 +Hold down the **PRO** button, then briefly press the **RST** button. The **DO1** LED will change from OFF to ON. When the **DO1** LED is ON, it indicates that the device is in firmware download mode.
1989 1989  )))
1990 1990  
1991 1991  
... ... @@ -2000,15 +2000,14 @@
2000 2000  [[image:image-20220524104033-15.png]]
2001 2001  
2002 2002  
2003 -(% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2151 +(% style="color:red" %)**Note**(%%): If you have lost the programming cable, you can make one from a 3.5mm cable. The pin mapping is as follows:
2004 2004  
2005 -
2006 2006  [[image:1653360054704-518.png||height="186" width="745"]]
2007 2007  
2008 2008  
2009 2009  (((
2010 2010  (((
2011 -== 6.2 How to change the LoRa Frequency Bands/Region? ==
2158 +== 6.2 How to change the LoRaWAN frequency band/region? ==
2012 2012  
2013 2013  
2014 2014  )))
... ... @@ -2015,13 +2015,13 @@
2015 2015  )))
2016 2016  
2017 2017  (((
2018 -User can follow the introduction for [[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When download the images, choose the required image file for download.
2165 +You can follow the introductions o[[how to upgrade image>>||anchor="H5.1Howtoupgradetheimage3F"]]. When downloading, select the required image file.
2019 2019  )))
2020 2020  
2021 2021  (((
2022 2022  
2023 2023  
2024 -== 6.3 How to set up LT to work with Single Channel Gateway such as LG01/LG02? ==
2171 +== 6.3 How to setup LT to work with a Single Channel Gateway, such as LG01/LG02? ==
2025 2025  
2026 2026  
2027 2027  )))
... ... @@ -2028,13 +2028,13 @@
2028 2028  
2029 2029  (((
2030 2030  (((
2031 -In this case, users need to set LT-33222-L to work in ABP mode & transmit in only one frequency.
2178 +In this case, you need to set the LT-33222-L to work in ABP mode and transmit on only one frequency.
2032 2032  )))
2033 2033  )))
2034 2034  
2035 2035  (((
2036 2036  (((
2037 -Assume we have a LG02 working in the frequency 868400000 now , below is the step.
2184 +Assume you have an LG02 working on the frequency 868400000. Below are the steps.
2038 2038  
2039 2039  
2040 2040  )))
... ... @@ -2041,7 +2041,7 @@
2041 2041  )))
2042 2042  
2043 2043  (((
2044 -(% style="color:blue" %)**Step1**(%%):  Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.
2191 +(% style="color:#0000ff" %)**Step 1**(%%):  Log in to The Things Stack SANDBOX, create an ABP device in the application, and input the Network Session key (NwkSKey), App session key (AppSKey) of the device.
2045 2045  
2046 2046  
2047 2047  )))
... ... @@ -2066,13 +2066,21 @@
2066 2066  
2067 2067  (((
2068 2068  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2216 +
2069 2069  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2218 +
2070 2070  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2220 +
2071 2071  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2222 +
2072 2072  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2224 +
2073 2073  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2226 +
2074 2074  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2228 +
2075 2075  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2230 +
2076 2076  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2077 2077  )))
2078 2078  
... ... @@ -2084,55 +2084,62 @@
2084 2084  [[image:1653360498588-932.png||height="485" width="726"]]
2085 2085  
2086 2086  
2087 -== 6.4 Can I see counting event in Serial? ==
2242 +== 6.4 How to change the uplink interval? ==
2088 2088  
2089 2089  
2090 -(((
2091 -User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2245 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2092 2092  
2093 2093  
2094 -== 6.5 Can i use point to point communication for LT-22222-L? ==
2248 +== 6.5 Can I see the counting event in the serial output? ==
2095 2095  
2096 2096  
2097 -Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
2251 +(((
2252 +You can run the AT command AT+DEBUG to view the counting event in the serial output. If the firmware is too old and doesn’t support AT+DEBUG, update to the latest firmware first.
2098 2098  
2099 -
2254 +
2255 +== 6.6 Can I use point-to-point communication with LT-22222-L? ==
2256 +
2257 +
2258 +Yes, you can. Please refer to the [[Point-to-Point Communication of LT-22222-L>>https://wiki.dragino.com/xwiki/bin/view/Main/%20Point%20to%20Point%20Communication%20of%20LT-22222-L/]] page. The firmware that supports point-to-point communication can be found [[here>>https://github.com/dragino/LT-22222-L/releases]].
2100 2100  )))
2101 2101  
2102 2102  (((
2103 -== 6.Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2262 +== 6.7 Why does the relay output default to an open relay after the LT-22222-L is powered off? ==
2104 2104  
2105 2105  
2106 -If the device is not shut down, but directly powered off.
2265 +* If the device is not properly shut down and is directly powered off.
2266 +* It will default to a power-off state.
2267 +* In modes 2 to 5, the DO/RO status and pulse count are saved to flash memory.
2268 +* After a restart, the status before the power failure will be read from flash.
2107 2107  
2108 -It will default that this is a power-off state.
2109 2109  
2110 -In modes 2 to 5, DO RO status and pulse count are saved in flash.
2271 +== 6.8 Can I setup LT-22222-L as a NC (Normally Closed) relay? ==
2111 2111  
2112 -After restart, the status before power failure will be read from flash.
2113 2113  
2274 +The LT-22222-L's built-in relay is Normally Open (NO). You can use an external relay to achieve a Normally Closed (NC) configuration. The circuit diagram is shown below:
2114 2114  
2115 -== 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2116 2116  
2277 +[[image:image-20221006170630-1.png||height="610" width="945"]]
2117 2117  
2118 -LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
2119 2119  
2280 +== 6.9 Can the LT-22222-L save the RO state? ==
2120 2120  
2121 -[[image:image-20221006170630-1.png||height="610" width="945"]]
2122 2122  
2283 +The firmware version must be at least 1.6.0.
2123 2123  
2124 -== 6.8 Can LT22222-L save RO state? ==
2125 2125  
2286 +== 6.10 Why does the LT-22222-L always report 15.585V when measuring the AVI? ==
2126 2126  
2127 -Firmware version needs to be no less than 1.6.0.
2128 2128  
2289 +It is likely that the GND is not connected during the measurement, or that the wire connected to the GND is loose.
2129 2129  
2130 -= 7. Trouble Shooting =
2291 +
2292 += 7. Troubleshooting =
2131 2131  )))
2132 2132  
2133 2133  (((
2134 2134  (((
2135 -== 7.1 Downlink doesn't work, how to solve it? ==
2297 +== 7.1 Downlink isn't working. How can I solve this? ==
2136 2136  
2137 2137  
2138 2138  )))
... ... @@ -2139,68 +2139,75 @@
2139 2139  )))
2140 2140  
2141 2141  (((
2142 -Please see this link for how to debug: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2304 +Please refer to this link for debugging instructions: [[LoRaWAN Communication Debug>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H5.1Howitwork"]]
2143 2143  )))
2144 2144  
2145 2145  (((
2146 2146  
2147 2147  
2148 -== 7.2 Have trouble to upload image. ==
2310 +== 7.2 Having trouble uploading an image? ==
2149 2149  
2150 2150  
2151 2151  )))
2152 2152  
2153 2153  (((
2154 -See this link for trouble shooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2316 +Please refer to this link for troubleshooting: [[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
2155 2155  )))
2156 2156  
2157 2157  (((
2158 2158  
2159 2159  
2160 -== 7.3 Why I can't join TTN in US915 /AU915 bands? ==
2322 +== 7.3 Why can't I join TTN in the US915 /AU915 bands? ==
2161 2161  
2162 2162  
2163 2163  )))
2164 2164  
2165 2165  (((
2166 -It might be about the channels mapping. [[Please see this link for detail>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2328 +It might be related to the channel mapping. [[Please refer to this link for details.>>https://github.com/dragino/LT-22222-L/releases||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]]
2167 2167  )))
2168 2168  
2169 2169  
2170 -= 8. Order Info =
2332 +== 7.4 Why can the LT-22222-L perform Uplink normally, but cannot receive Downlink? ==
2171 2171  
2172 2172  
2335 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue.
2336 +Use this command to synchronize their counts: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2337 +
2338 +
2339 += 8. Ordering information =
2340 +
2341 +
2173 2173  (% style="color:#4f81bd" %)**LT-22222-L-XXX:**
2174 2174  
2175 2175  (% style="color:#4f81bd" %)**XXX:**
2176 2176  
2177 -* (% style="color:red" %)**EU433**(%%):  LT with frequency bands EU433
2178 -* (% style="color:red" %)**EU868**(%%):  LT with frequency bands EU868
2179 -* (% style="color:red" %)**KR920**(%%):  LT with frequency bands KR920
2180 -* (% style="color:red" %)**CN470**(%%):  LT with frequency bands CN470
2181 -* (% style="color:red" %)**AS923**(%%):  LT with frequency bands AS923
2182 -* (% style="color:red" %)**AU915**(%%):  LT with frequency bands AU915
2183 -* (% style="color:red" %)**US915**(%%):  LT with frequency bands US915
2184 -* (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2185 -* (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2346 +* (% style="color:red" %)**EU433**(%%): LT with frequency bands EU433
2347 +* (% style="color:red" %)**EU868**(%%): LT with frequency bands EU868
2348 +* (% style="color:red" %)**KR920**(%%): LT with frequency bands KR920
2349 +* (% style="color:red" %)**CN470**(%%): LT with frequency bands CN470
2350 +* (% style="color:red" %)**AS923**(%%): LT with frequency bands AS923
2351 +* (% style="color:red" %)**AU915**(%%): LT with frequency bands AU915
2352 +* (% style="color:red" %)**US915**(%%): LT with frequency bands US915
2353 +* (% style="color:red" %)**IN865**(%%): LT with frequency bands IN865
2354 +* (% style="color:red" %)**CN779**(%%): LT with frequency bands CN779
2186 2186  
2187 2187  
2188 -= 9. Packing Info =
2357 += 9. Packing information =
2189 2189  
2190 2190  
2191 -**Package Includes**:
2360 +**Package includes**:
2192 2192  
2193 2193  * LT-22222-L I/O Controller x 1
2194 2194  * Stick Antenna for LoRa RF part x 1
2195 2195  * Bracket for controller x1
2196 -* Program cable x 1
2365 +* 3.5mm Programming cable x 1
2197 2197  
2198 2198  **Dimension and weight**:
2199 2199  
2200 2200  * Device Size: 13.5 x 7 x 3 cm
2201 -* Device Weight: 105g
2370 +* Device Weight: 105 g
2202 2202  * Package Size / pcs : 14.5 x 8 x 5 cm
2203 -* Weight / pcs : 170g
2372 +* Weight / pcs : 170 g
2204 2204  
2205 2205  
2206 2206  = 10. Support =
... ... @@ -2207,12 +2207,11 @@
2207 2207  
2208 2208  
2209 2209  * (((
2210 -Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2379 +Support is available Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different time zones, we cannot offer live support. However, your questions will be answered as soon as possible within the aforementioned schedule.
2211 2211  )))
2212 2212  * (((
2213 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2382 +Please provide as much information as possible regarding your inquiry (e.g., product models, a detailed description of the problem, steps to replicate it, etc.) and send an email to [[support@dragino.cc>>mailto:support@dragino.cc]]
2214 2214  
2215 -
2216 2216  
2217 2217  )))
2218 2218  
... ... @@ -2222,4 +2222,3 @@
2222 2222  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2223 2223  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2224 2224  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2225 -
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
integration-details.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +463.9 KB
Content
lt-22222-device-overview.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +497.2 KB
Content
lt-22222-join-network.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +340.6 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
lt-22222-ul-payload-decoded.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +48.7 KB
Content
lt-22222-ul-payload-fmt.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +438.6 KB
Content
message-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +20.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
thingseye.io_integrationsCenter_integrations-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +469.3 KB
Content
thingseye.io_integrationsCenter_integrations.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +302.3 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content