Last modified by Mengting Qiu on 2025/06/04 18:42

From version 117.1
edited by Bei Jinggeng
on 2023/04/26 16:20
Change comment: There is no comment for this version
To version 163.1
edited by Dilisi S
on 2024/11/06 04:29
Change comment: minor edits set 1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LT-22222-L LoRa IO Controller User Manual
1 +LT-22222-L -- LoRa IO Controller User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Bei
1 +XWiki.pradeeka
Content
... ... @@ -3,6 +3,10 @@
3 3  
4 4  
5 5  
6 +
7 +
8 +
9 +
6 6  **Table of Contents:**
7 7  
8 8  {{toc/}}
... ... @@ -13,38 +13,32 @@
13 13  
14 14  
15 15  
16 -= 1.Introduction =
20 += 1. Introduction =
17 17  
18 -== 1.1 What is LT Series I/O Controller ==
22 +== 1.1 What is the LT-22222-L I/O Controller? ==
19 19  
20 20  (((
21 -
22 -
23 23  (((
24 -The Dragino (% style="color:blue" %)**LT series I/O Modules**(%%) are Long Range LoRaWAN I/O Controller. It contains different I/O Interfaces such as:** (% style="color:blue" %)analog current Input, analog voltage input(%%)**(% style="color:blue" %), **relay output**, **digital input**(%%) and (% style="color:blue" %)**digital output**(%%) etc. The LT I/O Modules are designed to simplify the installation of I/O monitoring.
25 -)))
26 -)))
26 +The Dragino (% style="color:blue" %)**LT-22222-L I/O Controller**(%%) is an advanced LoRaWAN device designed to provide seamless wireless long-range connectivity with various I/O options, including analog current and voltage inputs, digital inputs and outputs, and relay outputs.
27 27  
28 -(((
29 -The LT I/O Controllers allows the user to send data and reach extremely long ranges. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 +The LT-22222-L I/O Controller simplifies and enhances I/O monitoring and controlling. It is ideal for professional applications in wireless sensor networks, including irrigation systems, smart metering, smart cities, building automation, and more. These controllers are designed for easy, cost-effective deployment using LoRa wireless technology.
30 30  )))
31 -
32 -(((
33 -The LT I/O Controllers is aiming to provide an (% style="color:blue" %)**easy and low cost installation** (%%)by using LoRa wireless technology.
34 34  )))
35 35  
36 36  (((
37 -The use environment includes:
33 +With the LT-22222-L I/O Controller, users can transmit data over ultra-long distances with low power consumption using LoRa, a spread-spectrum modulation technique derived from chirp spread spectrum (CSS) technology that operates on license-free ISM bands.
38 38  )))
39 39  
40 -(((
41 -1) If user's area has LoRaWAN service coverage, they can just install the I/O controller and configure it to connect the LoRaWAN provider via wireless.
42 -)))
36 +> The LT Series I/O Controllers are designed for easy, low-cost installation on LoRaWAN networks.
43 43  
44 44  (((
45 -2) User can set up a LoRaWAN gateway locally and configure the controller to connect to the gateway via wireless.
39 +You can connect the LT-22222-L I/O Controller to a LoRaWAN network service provider in several ways:
46 46  
47 -
41 +* If there is public LoRaWAN network coverage in the area where you plan to install the device (e.g., The Things Network), you can select a network and register the LT-22222-L I/O controller with it.
42 +* If there is no public LoRaWAN coverage in your area, you can set up a LoRaWAN gateway, or multiple gateways, and connect them to a LoRaWAN network server to create adequate coverage. Then, register the LT-22222-L I/O controller with this network.
43 +* Set up your own private LoRaWAN network.
44 +
45 +> You can use a LoRaWAN gateway, such as the Dragino LG308, to expand or create LoRaWAN coverage in your area.
48 48  )))
49 49  
50 50  (((
... ... @@ -53,164 +53,71 @@
53 53  
54 54  )))
55 55  
56 -== 1.2  Specifications ==
54 +== 1.2 Specifications ==
57 57  
58 -(((
59 -
60 -
61 61  (% style="color:#037691" %)**Hardware System:**
62 -)))
63 63  
64 -* (((
65 -STM32L072xxxx MCU
66 -)))
67 -* (((
68 -SX1276/78 Wireless Chip 
69 -)))
70 -* (((
71 -(((
72 -Power Consumption:
73 -)))
58 +* STM32L072xxxx MCU
59 +* SX1276/78 Wireless Chip 
60 +* Power Consumption:
61 +** Idle: 4mA@12v
62 +** 20dB Transmit: 34mA@12v
63 +* Operating Temperature: -40 ~~ 85 Degrees, No Dew
74 74  
75 -* (((
76 -Idle: 4mA@12v
77 -)))
78 -* (((
79 -20dB Transmit: 34mA@12v
80 -)))
81 -)))
82 -
83 -(((
84 -
85 -
86 86  (% style="color:#037691" %)**Interface for Model: LT22222-L:**
87 -)))
88 88  
89 -* (((
90 -2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
91 -)))
92 -* (((
93 -2 x Digital Output (NPN output. Max pull up voltage 36V,450mA)
94 -)))
95 -* (((
96 -2 x Relay Output (5A@250VAC / 30VDC)
97 -)))
98 -* (((
99 -2 x 0~~20mA Analog Input (res:0.01mA)
100 -)))
101 -* (((
102 -2 x 0~~30V Analog Input (res:0.01v)
103 -)))
104 -* (((
105 -Power Input 7~~ 24V DC. 
106 -)))
67 +* 2 x Digital dual direction Input (Detect High/Low signal, Max: 50v, or 220v with optional external resistor)
68 +* 2 x Digital Output (NPN output. Max pull-up voltage 36V,450mA)
69 +* 2 x Relay Output (5A@250VAC / 30VDC)
70 +* 2 x 0~~20mA Analog Input (res:0.01mA)
71 +* 2 x 0~~30V Analog Input (res:0.01v)
72 +* Power Input 7~~ 24V DC. 
107 107  
108 -(((
109 -
110 -
111 111  (% style="color:#037691" %)**LoRa Spec:**
112 -)))
113 113  
114 -* (((
115 -(((
116 -Frequency Range:
117 -)))
76 +* Frequency Range:
77 +** Band 1 (HF): 862 ~~ 1020 Mhz
78 +** Band 2 (LF): 410 ~~ 528 Mhz
79 +* 168 dB maximum link budget.
80 +* +20 dBm - 100 mW constant RF output vs.
81 +* +14 dBm high-efficiency PA.
82 +* Programmable bit rate up to 300 kbps.
83 +* High sensitivity: down to -148 dBm.
84 +* Bullet-proof front end: IIP3 = -12.5 dBm.
85 +* Excellent blocking immunity.
86 +* Low RX current of 10.3 mA, 200 nA register retention.
87 +* Fully integrated synthesizer with a resolution of 61 Hz.
88 +* FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
89 +* Built-in bit synchronizer for clock recovery.
90 +* Preamble detection.
91 +* 127 dB Dynamic Range RSSI.
92 +* Automatic RF Sense and CAD with ultra-fast AFC.
93 +* Packet engine up to 256 bytes with CRC.
118 118  
119 -* (((
120 -Band 1 (HF): 862 ~~ 1020 Mhz
121 -)))
122 -* (((
123 -Band 2 (LF): 410 ~~ 528 Mhz
124 -)))
125 -)))
126 -* (((
127 -168 dB maximum link budget.
128 -)))
129 -* (((
130 -+20 dBm - 100 mW constant RF output vs.
131 -)))
132 -* (((
133 -+14 dBm high efficiency PA.
134 -)))
135 -* (((
136 -Programmable bit rate up to 300 kbps.
137 -)))
138 -* (((
139 -High sensitivity: down to -148 dBm.
140 -)))
141 -* (((
142 -Bullet-proof front end: IIP3 = -12.5 dBm.
143 -)))
144 -* (((
145 -Excellent blocking immunity.
146 -)))
147 -* (((
148 -Low RX current of 10.3 mA, 200 nA register retention.
149 -)))
150 -* (((
151 -Fully integrated synthesizer with a resolution of 61 Hz.
152 -)))
153 -* (((
154 -FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
155 -)))
156 -* (((
157 -Built-in bit synchronizer for clock recovery.
158 -)))
159 -* (((
160 -Preamble detection.
161 -)))
162 -* (((
163 -127 dB Dynamic Range RSSI.
164 -)))
165 -* (((
166 -Automatic RF Sense and CAD with ultra-fast AFC.
167 -)))
168 -* (((
169 -Packet engine up to 256 bytes with CRC.
170 -
171 -
172 -
173 -)))
174 -
175 175  == 1.3 Features ==
176 176  
177 -
178 178  * LoRaWAN Class A & Class C protocol
179 -
180 180  * Optional Customized LoRa Protocol
181 -
182 182  * Frequency Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/RU864/IN865/MA869
183 -
184 184  * AT Commands to change parameters
185 -
186 -* Remote configure parameters via LoRa Downlink
187 -
101 +* Remotely configure parameters via LoRaWAN Downlink
188 188  * Firmware upgradable via program port
189 -
190 190  * Counting
191 191  
105 +== 1.4 Applications ==
192 192  
193 -== 1.4  Applications ==
194 -
195 -
196 196  * Smart Buildings & Home Automation
197 -
198 198  * Logistics and Supply Chain Management
199 -
200 200  * Smart Metering
201 -
202 202  * Smart Agriculture
203 -
204 204  * Smart Cities
205 -
206 206  * Smart Factory
207 207  
208 -
209 209  == 1.5 Hardware Variants ==
210 210  
211 211  
212 -(% border="1" style="background-color:#f2f2f2; width:500px" %)
213 -|(% style="background-color:#d9e2f3; color:#0070c0; width:103px" %)**Model**|(% style="background-color:#d9e2f3; color:#0070c0; width:131px" %)**Photo**|(% style="background-color:#d9e2f3; color:#0070c0; width:334px" %)**Description**
117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:500px" %)
118 +|(% style="background-color:#4f81bd; color:white; width:103px" %)**Model**|(% style="background-color:#4f81bd; color:white; width:131px" %)**Photo**|(% style="background-color:#4f81bd; color:white; width:266px" %)**Description**
214 214  |(% style="width:103px" %)**LT22222-L**|(% style="width:131px" %)(((
215 215  (% style="text-align:center" %)
216 216  [[image:image-20230424115112-1.png||height="106" width="58"]]
... ... @@ -223,98 +223,149 @@
223 223  * 1 x Counting Port
224 224  )))
225 225  
131 += 2. Assembling the Device =
226 226  
227 -= 2. Power ON Device =
133 +== 2.1 What is included in the package? ==
228 228  
135 +The package includes the following items:
229 229  
230 -(((
231 -The LT controller can be powered by 7 ~~ 24V DC power source. Connect VIN to Power Input V+ and GND to power input V- to power the LT controller.
232 -)))
137 +* 1 x LT-22222-L I/O Controller
138 +* 1 x LoRaWAN antenna matched to the frequency of the LT-22222-L
139 +* 1 x bracket for wall mounting
140 +* 1 x programming cable
233 233  
234 -(((
235 -PWR will on when device is properly powered.
142 +Attach the LoRaWAN antenna to the antenna connector, ANT,** **located on the top right side of the device, next to the upper terminal block. Secure the antenna by tightening it clockwise.
236 236  
237 -
238 -)))
144 +== 2.2 Terminals ==
239 239  
146 +Upper screw terminal block (from left to right):
147 +
148 +(% style="width:634px" %)
149 +|=(% style="width: 295px;" %)Terminal|=(% style="width: 338px;" %)Function
150 +|(% style="width:295px" %)GND|(% style="width:338px" %)Ground
151 +|(% style="width:295px" %)VIN|(% style="width:338px" %)Input Voltage
152 +|(% style="width:295px" %)AVI2|(% style="width:338px" %)Analog Voltage Input Terminal 2
153 +|(% style="width:295px" %)AVI1|(% style="width:338px" %)Analog Voltage Input Terminal 1
154 +|(% style="width:295px" %)ACI2|(% style="width:338px" %)Analog Current Input Terminal 2
155 +|(% style="width:295px" %)ACI1|(% style="width:338px" %)Analog Current Input Terminal 1
156 +
157 +Lower screw terminal block (from left to right):
158 +
159 +(% style="width:633px" %)
160 +|=(% style="width: 296px;" %)Terminal|=(% style="width: 334px;" %)Function
161 +|(% style="width:296px" %)RO1-2|(% style="width:334px" %)Relay Output 1
162 +|(% style="width:296px" %)RO1-1|(% style="width:334px" %)Relay Output 1
163 +|(% style="width:296px" %)RO2-2|(% style="width:334px" %)Relay Output 2
164 +|(% style="width:296px" %)RO2-1|(% style="width:334px" %)Relay Output 2
165 +|(% style="width:296px" %)DI2+|(% style="width:334px" %)Digital Input 2
166 +|(% style="width:296px" %)DI2-|(% style="width:334px" %)Digital Input 2
167 +|(% style="width:296px" %)DI1+|(% style="width:334px" %)Digital Input 1
168 +|(% style="width:296px" %)DI1-|(% style="width:334px" %)Digital Input 1
169 +|(% style="width:296px" %)DO2|(% style="width:334px" %)Digital Output 2
170 +|(% style="width:296px" %)DO1|(% style="width:334px" %)Digital Output 1
171 +
172 +== 2.3 Powering the LT-22222-L  ==
173 +
174 +The LT-22222-L I/O Controller can be powered by a 7–24V DC power source. Connect the power supply’s positive wire to the VIN and the negative wire to the GND screw terminals. The power indicator (PWR) LED will turn on when the device is properly powered.
175 +
176 +
240 240  [[image:1653297104069-180.png]]
241 241  
242 242  
243 243  = 3. Operation Mode =
244 244  
245 -== 3.1 How it works? ==
182 +== 3.1 How does it work? ==
246 246  
184 +By default, the LT-22222-L is configured to operate in LoRaWAN Class C mode. It supports OTAA (Over-the-Air Activation), the most secure method for activating a device with a LoRaWAN network server. The LT-22222-L comes with device registration information that allows you to register it with a LoRaWAN network, enabling the device to perform OTAA activation with the network server upon initial power-up and after any subsequent reboots.
247 247  
248 -(((
249 -The LT is configured as LoRaWAN OTAA Class C mode by default. It has OTAA keys to join network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the network server and power on the LT. It will auto join the network via OTAA. For LT-22222-L, the LED will show the Join status: After power on (% style="color:green" %)**TX LED**(%%) will fast blink 5 times, LT-22222-L will enter working mode and start to JOIN LoRaWAN network. (% style="color:green" %)**TX LED**(%%) will be on for 5 seconds after joined in network. When there is message from server, the RX LED will be on for 1 second. 
250 -)))
186 +For LT-22222-L, the LED will show the Join status: After powering on, the TX LED will fast-blink 5 times which means the LT-22222-L will enter the working mode and start to JOIN the LoRaWAN network. The TX LED will be on for 5 seconds after joining the network. When there is a message from the server, the RX LED will be on for 1 second. 
251 251  
252 -(((
253 -In case user can't set the OTAA keys in the network server and has to use the existing keys from server. User can [[use AT Command>>||anchor="H4.UseATCommand"]] to set the keys in the devices.
254 -)))
188 +In case you can't set the root key and other identifiers in the network server and must use them from the server, you can use [[AT Commands>>||anchor="H4.UseATCommand"]] to configure them on the device.
255 255  
190 +== 3.2 Registering with a LoRaWAN network server ==
256 256  
257 -== 3.2 Example to join LoRaWAN network ==
192 +The diagram below shows how the LT-22222-L connects to a typical LoRaWAN network.
258 258  
194 +[[image:image-20220523172350-1.png||height="266" width="864"]]
259 259  
260 -(((
261 -This chapter shows an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use our LG308 as LoRaWAN gateway here. 
196 +=== 3.2.1 Prerequisites ===
262 262  
263 -
264 -)))
198 +Make sure you have the device registration information such as DevEUI, AppEUI, and AppKey with you. The registration information can be found on a sticker that can be found inside the package. Please keep the **registration information** sticker in a safe place for future reference.
265 265  
266 -[[image:image-20220523172350-1.png||height="266" width="864"]]
200 +[[image:image-20230425173427-2.png||height="246" width="530"]]
267 267  
202 +The following subsections explain how to register the LT-22222-L with different LoRaWAN network server providers.
268 268  
269 -(((
270 -The LG308 is already set to connect to [[TTN network >>url:https://www.thethingsnetwork.org/]]. So what we need to do now is only configure register this device to TTN:
204 +=== 3.2.2 The Things Stack Sandbox (TTSS) ===
271 271  
272 -
273 -)))
206 +* Log in to your [[The Things Stack Sandbox>>https://eu1.cloud.thethings.network]] account.
207 +* Create an application if you do not have one yet.
208 +* Register LT-22222-L with that application. Two registration options are available:
274 274  
275 -(((
276 -(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LT IO controller.
277 -)))
210 +==== Using the LoRaWAN Device Repository: ====
278 278  
279 -(((
280 -Each LT is shipped with a sticker with the default device EUI as below:
281 -)))
212 +* Go to your application and click on the **Register end device** button.
213 +* On the **Register end device** page:
214 +** Select the option **Select the end device in the LoRaWAN Device Repository**.
215 +** Choose the **End device brand**, **Model**, **Hardware version**, **Firmware version**, and **Profile (Region)**.
216 +** Select the **Frequency plan** that matches your device.
282 282  
283 -[[image:image-20230425173427-2.png]]
218 +[[image:lt-22222-l-dev-repo-reg-p1.png||height="625" width="1000"]]
284 284  
220 +*
221 +** Enter the **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
222 +** Enter the **DevEUI** in the **DevEUI** field.
223 +** Enter the **AppKey** in the **AppKey** field.
224 +** In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
225 +** Under **After registration**, select the **View registered end device** option.
285 285  
286 -Input these keys in the LoRaWAN Server portal. Below is TTN screen shot:
227 +[[image:lt-22222-l-dev-repo-reg-p2.png||height="625" width="1000"]]
287 287  
288 -**Add APP EUI in the application.**
229 +==== Entering device information manually: ====
289 289  
290 -[[image:1653297955910-247.png||height="321" width="716"]]
231 +* On the **Register end device** page:
232 +** Select the **Enter end device specifies manually** option as the input method.
233 +** Select the **Frequency plan** that matches your device.
234 +** Select the **LoRaWAN version**.
235 +** Select the **Regional Parameters version**.
236 +** Click **Show advanced activation, LoRaWAN class and cluster settings** link to expand the section.
237 +** Select **Over the air activation (OTAA)** option under the **Activation mode**
238 +** Select **Class C (Continuous)** from the **Additional LoRaWAN class capabilities**.
291 291  
240 +[[image:lt-22222-l-manually-p1.png||height="625" width="1000"]]
292 292  
293 -**Add APP KEY and DEV EUI**
294 294  
295 -[[image:1653298023685-319.png]]
243 +* Enter **AppEUI** in the **JoinEUI** field and click the **Confirm** button.
244 +* Enter **DevEUI** in the **DevEUI** field.
245 +* Enter **AppKey** in the **AppKey** field.
246 +* In the **End device ID** field, enter a unique name within this application for your LT-22222-N.
247 +* Under **After registration**, select the **View registered end device** option.
296 296  
249 +[[image:lt-22222-l-manually-p2.png||height="625" width="1000"]]
297 297  
298 298  
299 -(((
300 -(% style="color:blue" %)**Step 2**(%%): Power on LT and it will auto join to the TTN network. After join success, it will start to upload message to TTN and user can see in the panel.
252 +==== Joining ====
301 301  
302 -
303 -)))
254 +Click on **Live Data** in the left navigation. Then, power on the device, and it will join The Things Stack Sandbox. You can see the join request, join accept, followed by uplink messages form the device showing in the Live Data panel.
304 304  
305 305  [[image:1653298044601-602.png||height="405" width="709"]]
306 306  
307 307  
308 -== 3.3 Uplink Payload ==
259 +== 3.3 Uplink Payload formats ==
309 309  
310 310  
311 -There are five working modes + one interrupt mode on LT for different type application:
262 +The LT-22222-L has 5 working modes. It also has an interrupt/trigger mode for different types of applications that can be used together with any working mode as an additional feature. The default mode is MOD1 and you can switch between these modes using AT commands.
312 312  
313 -* (% style="color:blue" %)**MOD1**(%%): (default setting): 2 x ACI + 2AVI + DI + DO + RO
264 +* (% style="color:blue" %)**MOD1**(%%): (default mode/factory set): 2 x ACI + 2AVI + DI + DO + RO
265 +
314 314  * (% style="color:blue" %)**MOD2**(%%): Double DI Counting + DO + RO
267 +
315 315  * (% style="color:blue" %)**MOD3**(%%): Single DI Counting + 2 x ACI + DO + RO
269 +
316 316  * (% style="color:blue" %)**MOD4**(%%): Single DI Counting + 1 x Voltage Counting + DO + RO
271 +
317 317  * (% style="color:blue" %)**MOD5**(%%): Single DI Counting + 2 x AVI + 1 x ACI + DO + RO
273 +
318 318  * (% style="color:blue" %)**ADDMOD6**(%%): Trigger Mode, Optional, used together with MOD1 ~~ MOD5
319 319  
320 320  === 3.3.1 AT+MOD~=1, 2ACI+2AVI ===
... ... @@ -321,32 +321,44 @@
321 321  
322 322  
323 323  (((
324 -The uplink payload includes totally 9 bytes. Uplink packets use FPORT=2 and every 10 minutes send one uplink by default.
280 +The uplink payload is 11 bytes long. Uplink packets are sent over LoRaWAN FPort=2. By default, one uplink is sent every 10 minutes. (% style="display:none" wfd-invisible="true" %)
281 +
282 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
283 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
284 +|Value|(((
285 +AVI1 voltage
286 +)))|(((
287 +AVI2 voltage
288 +)))|(((
289 +ACI1 Current
290 +)))|(((
291 +ACI2 Current
292 +)))|DIDORO*|(((
293 +Reserve
294 +)))|MOD
325 325  )))
326 326  
327 -[[image:image-20220523174024-3.png]]
328 -
329 329  (((
330 -
298 +(% style="color:#4f81bd" %)*** DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
331 331  
332 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
301 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
302 +|RO1|RO2|--DI3--|DI2|DI1|--DO3--|DO2|DO1
333 333  )))
334 334  
335 -[[image:image-20220523174254-4.png]]
305 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
306 +* DI is for digital input. DIx=1: high or floating, DIx=0: low.
307 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
336 336  
337 -* RO is for relay. ROx=1 : close,ROx=0 always open.
338 -* DI is for digital input. DIx=1: high or float, DIx=0: low.
339 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
309 +(% style="color:red" %)**Note: DI3 and DO3 bits are not valid for LT-22222-L**
340 340  
341 -(% style="color:red" %)**Note: DI3 and DO3 bit are not valid for LT-22222-L**
311 +For example, if the payload is: [[image:image-20220523175847-2.png]]
342 342  
343 -For example if payload is: [[image:image-20220523175847-2.png]]
344 344  
314 +**The interface values can be calculated as follows:  **
345 345  
346 -**The value for the interface is **
316 +AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
347 347  
348 -AVI1 channel voltage is 0x04AB/1000=1195(DEC)/1000=1.195V
349 -
350 350  AVI2 channel voltage is 0x04AC/1000=1.196V
351 351  
352 352  ACI1 channel current is 0x1310/1000=4.880mA
... ... @@ -353,96 +353,92 @@
353 353  
354 354  ACI2 channel current is 0x1300/1000=4.864mA
355 355  
356 -The last byte 0xAA= 10101010(B) means
324 +The last byte 0xAA= **10101010**(b) means,
357 357  
358 -* [1] RO1 relay channel is close and the RO1 LED is ON.
359 -* [0] RO2 relay channel is open and RO2 LED is OFF;
326 +* [1] The RO1 relay channel is CLOSED, and the RO1 LED is ON.
327 +* [0] The RO2 relay channel is OPEN, and the RO2 LED is OFF.
328 +* [1] DI3 - not used for LT-22222-L.
329 +* [0] DI2 channel input is LOW, and the DI2 LED is OFF.
330 +* [1] DI1 channel input state:
331 +** DI1 is FLOATING when no sensor is connected between DI1+ and DI1-.
332 +** DI1 is HIGH when a sensor is connected between DI1- and DI1+ and the sensor is ACTIVE.
333 +** DI1 LED is ON in both cases.
334 +* [0] DO3 - not used for LT-22222-L.
335 +* [1] DO2 channel output is LOW, and the DO2 LED is ON.
336 +* [0] DO1 channel output state:
337 +** DO1 is FLOATING when there is no load between DO1 and V+.
338 +** DO1 is HIGH when there is a load between DO1 and V+.
339 +** DO1 LED is OFF in both cases.
360 360  
361 -**LT22222-L:**
362 -
363 -* [1] DI2 channel is high input and DI2 LED is ON;
364 -* [0] DI1 channel is low input;
365 -
366 -* [0] DO3 channel output state
367 -** DO3 is float in case no load between DO3 and V+.;
368 -** DO3 is high in case there is load between DO3 and V+.
369 -** DO3 LED is off in both case
370 -* [1] DO2 channel output is low and DO2 LED is ON.
371 -* [0] DO1 channel output state
372 -** DO1 is float in case no load between DO1 and V+.;
373 -** DO1 is high in case there is load between DO1 and V+.
374 -** DO1 LED is off in both case
375 -
376 376  === 3.3.2 AT+MOD~=2, (Double DI Counting) ===
377 377  
378 378  
379 379  (((
380 -**For LT-22222-L**: this mode the **DI1 and DI2** are used as counting pins.
345 +**For LT-22222-L**: In this mode, the **DI1 and DI2** are used as counting pins.
381 381  )))
382 382  
383 383  (((
384 -Total : 11 bytes payload
349 +The uplink payload is 11 bytes long.
350 +
351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
352 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
353 +|Value|COUNT1|COUNT2 |DIDORO*|(((
354 +Reserve
355 +)))|MOD
385 385  )))
386 386  
387 -[[image:image-20220523180452-3.png]]
358 +(((
359 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
388 388  
361 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
362 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
363 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
389 389  
390 -(((
391 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DO3, DO2 and DO1. Totally 1bytes as below
365 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
392 392  )))
393 393  
394 -[[image:image-20220523180506-4.png]]
368 +* FIRST: Indicates that this is the first packet after joining the network.
369 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
395 395  
396 -* RO is for relay. ROx=1 : close,ROx=0 always open.
397 -* FIRST: Indicate this is the first packet after join network.
398 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
399 -
400 400  (((
401 -(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
402 -)))
372 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L**
403 403  
404 -(((
405 405  
375 +)))
406 406  
407 -**To use counting mode, please run:**
377 +(((
378 +**To activate this mode, run the following AT commands:**
408 408  )))
409 409  
381 +(((
410 410  (% class="box infomessage" %)
411 411  (((
412 -(((
413 -(((
414 414  **AT+MOD=2**
415 -)))
416 416  
417 -(((
418 418  **ATZ**
419 419  )))
420 420  )))
421 -)))
422 422  
423 423  (((
424 424  
425 425  
426 426  (% style="color:#4f81bd" %)**AT Commands for counting:**
427 -
428 -
429 429  )))
430 430  
431 431  (((
432 432  **For LT22222-L:**
433 433  
399 +(% style="color:blue" %)**AT+TRIG1=0,100**(%%)** (sets the DI1 port to trigger on a LOW level. The valid signal duration is 100ms) **
434 434  
435 -(% style="color:blue" %)**AT+TRIG1=0,100**(%%)**  (set DI1 port to trigger on low level, valid signal is 100ms) **
401 +(% style="color:blue" %)**AT+TRIG1=1,100**(%%)** (sets the DI1 port to trigger on a HIGH level. The valid signal duration is 100ms) **
436 436  
437 -(% style="color:blue" %)**AT+TRIG1=1,100**(%%)**  (set DI1 port to trigger on high level, valid signal is 100ms ) **
403 +(% style="color:blue" %)**AT+TRIG2=0,100**(%%)** (sets the DI2 port to trigger on a LOW level. The valid signal duration is 100ms) **
438 438  
439 -(% style="color:blue" %)**AT+TRIG2=0,100**(%%)**  (set DI2 port to trigger on low level, valid signal is 100ms) **
405 +(% style="color:blue" %)**AT+TRIG2=1,100**(%%)** (sets the DI2 port to trigger on a HIGH level. The valid signal duration is 100ms) **
440 440  
441 -(% style="color:blue" %)**AT+TRIG2=1,100**(%%)**  (set DI2 port to trigger on high level, valid signal is 100ms ) **
407 +(% style="color:blue" %)**AT+SETCNT=1,60**(%%)** (sets the COUNT1 value to 60)**
442 442  
443 -(% style="color:blue" %)**AT+SETCNT=1,60**(%%)**   (Set COUNT1 value to 60)**
444 -
445 -(% style="color:blue" %)**AT+SETCNT=2,60**(%%)**   (Set COUNT2 value to 60)**
409 +(% style="color:blue" %)**AT+SETCNT=2,60 **(%%)**(sets the COUNT2 value to 60)**
446 446  )))
447 447  
448 448  
... ... @@ -449,46 +449,50 @@
449 449  === 3.3.3 AT+MOD~=3, Single DI Counting + 2 x ACI ===
450 450  
451 451  
452 -**LT22222-L**: This mode the DI1 is used as a counting pin.
416 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
453 453  
454 -[[image:image-20220523181246-5.png]]
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
419 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
420 +|Value|COUNT1|(((
421 +ACI1 Current
422 +)))|(((
423 +ACI2 Current
424 +)))|DIDORO*|Reserve|MOD
455 455  
456 456  (((
457 -
427 +(% style="color:#4f81bd" %)***DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
458 458  
459 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
429 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
430 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
431 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
460 460  )))
461 461  
462 -[[image:image-20220523181301-6.png]]
434 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
435 +* FIRST: Indicates that this is the first packet after joining the network.
436 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
463 463  
464 -* RO is for relay. ROx=1 : close,ROx=0 always open.
465 -* FIRST: Indicate this is the first packet after join network.
466 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
467 -
468 468  (((
469 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
439 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
470 470  )))
471 471  
472 472  
473 473  (((
474 -**To use counting mode, please run:**
444 +**To activate this mode, run the following AT commands:**
475 475  )))
476 476  
447 +(((
477 477  (% class="box infomessage" %)
478 478  (((
479 -(((
480 -(((
481 481  **AT+MOD=3**
482 -)))
483 483  
484 -(((
485 485  **ATZ**
486 486  )))
487 487  )))
488 -)))
489 489  
490 490  (((
491 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
457 +AT Commands for counting:
458 +
459 +The AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
492 492  )))
493 493  
494 494  
... ... @@ -496,67 +496,64 @@
496 496  
497 497  
498 498  (((
499 -**LT22222-L**: This mode the DI1 is used as a counting pin.
467 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
500 500  )))
501 501  
502 502  (((
503 -The AVI1 is also used for counting. AVI1 is used to monitor the voltage. It will check the voltage **every 60s**, if voltage is higher or lower than VOLMAX mV, the AVI1 Counting increase 1, so AVI1 counting can be used to measure a machine working hour.
471 +The AVI1 is also used for counting. It monitors the voltage and checks it every **60 seconds**. If the voltage is higher or lower than VOLMAX mV, the AVI1 count increases by 1, allowing AVI1 counting to be used to measure a machine's working hours.
472 +
473 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
474 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**4**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
475 +|Value|COUNT1|AVI1 Counting|DIDORO*|(((
476 +Reserve
477 +)))|MOD
504 504  )))
505 505  
506 -[[image:image-20220523181903-8.png]]
507 -
508 -
509 509  (((
510 -(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
481 +(% style="color:#4f81bd" %)**DIDORO **(%%)is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
482 +
483 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
484 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
485 +|RO1|RO2|FIRST|Reserve|Reserve|--DO3--|DO2|DO1
511 511  )))
512 512  
513 -[[image:image-20220523181727-7.png]]
488 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
489 +* FIRST: Indicates that this is the first packet after joining the network.
490 +* DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
514 514  
515 -* RO is for relay. ROx=1 : close,ROx=0 always open.
516 -* FIRST: Indicate this is the first packet after join network.
517 -* DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
518 -
519 519  (((
520 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
521 -)))
493 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
522 522  
523 -(((
524 524  
496 +)))
525 525  
526 -**To use this mode, please run:**
498 +(((
499 +**To activate this mode, run the following AT commands:**
527 527  )))
528 528  
502 +(((
529 529  (% class="box infomessage" %)
530 530  (((
531 -(((
532 -(((
533 533  **AT+MOD=4**
534 -)))
535 535  
536 -(((
537 537  **ATZ**
538 538  )))
539 539  )))
540 -)))
541 541  
542 -
543 543  (((
544 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
512 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
545 545  )))
546 546  
547 547  (((
548 -
516 +**In addition to that, below are the commands for AVI1 Counting:**
549 549  
550 -**Plus below command for AVI1 Counting:**
518 +(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (Sets AVI Count to 60)**
551 551  
552 -
553 -(% style="color:blue" %)**AT+SETCNT=3,60**(%%)**  (set AVI Count to 60)**
554 -
555 555  (% style="color:blue" %)**AT+VOLMAX=20000**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
556 556  
557 557  (% style="color:blue" %)**AT+VOLMAX=20000,0**(%%)**  (If AVI1 voltage lower than VOLMAX (20000mV =20v), counter increase 1)**
558 558  
559 -(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higer than VOLMAX (20000mV =20v), counter increase 1)**
524 +(% style="color:blue" %)**AT+VOLMAX=20000,1**(%%)**  (If AVI1 voltage higher than VOLMAX (20000mV =20v), counter increase 1)**
560 560  )))
561 561  
562 562  
... ... @@ -563,47 +563,53 @@
563 563  === 3.3.5 AT+MOD~=5, Single DI Counting + 2 x AVI + 1 x ACI ===
564 564  
565 565  
566 -**LT22222-L**: This mode the DI1 is used as a counting pin.
531 +**LT22222-L**: In this mode, the DI1 is used as a counting pin.
567 567  
568 -[[image:image-20220523182334-9.png]]
533 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
534 +|(% style="background-color:#4f81bd; color:white" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**2**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**|(% style="background-color:#4f81bd; color:white" %)**1**
535 +|Value|(((
536 +AVI1 voltage
537 +)))|(((
538 +AVI2 voltage
539 +)))|(((
540 +ACI1 Current
541 +)))|COUNT1|DIDORO*|(((
542 +Reserve
543 +)))|MOD
569 569  
570 570  (((
571 -
546 +(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination of RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1, for a total of 1 byte, as shown below.
572 572  
573 -(% style="color:#4f81bd" %)**DIDORO**(%%) is a combination for RO1, RO2, DI3, DI2, DI1, DO3, DO2 and DO1. Totally 1bytes as below
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
549 +|**bit 7**|**bit 6**|**bit 5**|**bit 4**|**bit 3**|**bit 2**|**bit 1**|**bit 0**
550 +|RO1|RO2|FIRST|Reserve|Reserve|DO3|DO2|DO1
574 574  )))
575 575  
576 -* RO is for relay. ROx=1 : closeROx=0 always open.
577 -* FIRST: Indicate this is the first packet after join network.
553 +* RO is for the relay. ROx=1: closed, ROx=0 always open.
554 +* FIRST: Indicates that this is the first packet after joining the network.
578 578  * (((
579 -DO is for reverse digital output. DOx=1: output low, DOx=0: high or float.
556 +DO is for reverse digital output. DOx=1: output low, DOx=0: high or floating.
580 580  )))
581 581  
582 582  (((
583 -(% style="color:red" %)**Note: DO3 is not valid for LT-22222-L.**
560 +(% style="color:red" %)**Note: DO3 bit is not valid for LT-22222-L.**
584 584  )))
585 585  
586 586  (((
587 -
588 -
589 -**To use this mode, please run:**
564 +**To activate this mode, run the following AT commands:**
590 590  )))
591 591  
567 +(((
592 592  (% class="box infomessage" %)
593 593  (((
594 -(((
595 -(((
596 596  **AT+MOD=5**
597 -)))
598 598  
599 -(((
600 600  **ATZ**
601 601  )))
602 602  )))
603 -)))
604 604  
605 605  (((
606 -Other AT Commands for counting are similar to [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]].
577 +Other AT Commands for counting are similar to the [[MOD2 Counting Command>>||anchor="H3.3.2AT2BMOD3D22C28DoubleDICounting29"]]s.
607 607  )))
608 608  
609 609  
... ... @@ -610,23 +610,23 @@
610 610  === 3.3.6 AT+ADDMOD~=6. (Trigger Mode, Optional) ===
611 611  
612 612  
613 -(% style="color:#4f81bd" %)**This mode is an optional mode for trigger purpose. It can run together with other mode.**
584 +(% style="color:#4f81bd" %)**This mode is optional and intended for trigger purposes. It can operate together with other modes.**
614 614  
615 -For example, if user has configured below commands:
586 +For example, if you configured the following commands:
616 616  
617 617  * **AT+MOD=1 ** **~-~->**  The normal working mode
618 -* **AT+ADDMOD6=1**   **~-~->**  Enable trigger
589 +* **AT+ADDMOD6=1**   **~-~->**  Enable trigger mode
619 619  
620 -LT will keep monitoring AV1/AV2/AC1/AC2 every 5 seconds; LT will send uplink packets in two cases:
591 +The LT-22222-L will continuously monitor AV1, AV2, AC1, and AC2 every 5 seconds. LT will send uplink packets in two cases:
621 621  
622 -1. Periodically uplink (Base on TDC time). Payload is same as the normal MOD (MOD 1 for above command). This uplink uses LoRaWAN (% style="color:#4f81bd" %)**unconfirmed**(%%) data type
623 -1. Trigger uplink when meet the trigger condition. LT will sent two packets in this case, the first uplink use payload specify in this mod (mod=6), the second packets use the normal mod payload(MOD=1 for above settings). Both Uplinks use LoRaWAN (% style="color:#4f81bd" %)**CONFIRMED data type.**
593 +1. Periodically uplink (Based on TDC time). The payload is the same as in normal mode (MOD=1 for the commands above). These are (% style="color:#4f81bd" %)**unconfirmed**(%%) uplinks.
594 +1. Trigger uplink when the trigger condition is met. LT will send two packets in this case. The first uplink uses the payload specified in trigger mode (MOD=6). The second packet usethe normal mode payload (MOD=1 as set above). Both are (% style="color:#4f81bd" %)**CONFIRMED uplinks.**
624 624  
596 +
625 625  (% style="color:#037691" %)**AT Command to set Trigger Condition**:
626 626  
599 +(% style="color:#4f81bd" %)**Trigger based on voltage**:
627 627  
628 -(% style="color:#4f81bd" %)**Trigger base on voltage**:
629 -
630 630  Format: AT+AVLIM=<AV1_LIMIT_LOW>,< AV1_LIMIT_HIGH>,<AV2_LIMIT_LOW>,< AV2_LIMIT_HIGH>
631 631  
632 632  
... ... @@ -637,9 +637,8 @@
637 637  AT+AVLIM=5000,0,0,0   (If AVI1 voltage lower than 5V , trigger uplink, 0 means ignore)
638 638  
639 639  
611 +(% style="color:#4f81bd" %)**Trigger based on current**:
640 640  
641 -(% style="color:#4f81bd" %)**Trigger base on current**:
642 -
643 643  Format: AT+ACLIM=<AC1_LIMIT_LOW>,< AC1_LIMIT_HIGH>,<AC2_LIMIT_LOW>,< AC2_LIMIT_HIGH>
644 644  
645 645  
... ... @@ -648,7 +648,6 @@
648 648  AT+ACLIM=10000,15000,0,0   (If ACI1 voltage lower than 10mA or higher than 15mA, trigger an uplink)
649 649  
650 650  
651 -
652 652  (% style="color:#4f81bd" %)**Trigger base on DI status**:
653 653  
654 654  DI status trigger Flag.
... ... @@ -695,12 +695,39 @@
695 695  
696 696  MOD6 Payload : total 11 bytes payload
697 697  
698 -[[image:image-20220524085923-1.png]]
667 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
668 +|(% style="background-color:#4f81bd; color:white; width:60px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:69px" %)**1**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:49px" %)**6**|(% style="background-color:#4f81bd; color:white; width:109px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**1**
669 +|Value|(((
670 +TRI_A FLAG
671 +)))|(((
672 +TRI_A Status
673 +)))|(((
674 +TRI_DI FLAG+STA
675 +)))|Reserve|Enable/Disable MOD6|(((
676 +MOD(6)
677 +)))
699 699  
700 -
701 701  (% style="color:#4f81bd" %)**TRI FLAG1**(%%) is a combination to show if trigger is set for this part. Totally 1byte as below
702 702  
703 -[[image:image-20220524090106-2.png]]
681 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
682 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
683 +|(((
684 +AV1_LOW
685 +)))|(((
686 +AV1_HIGH
687 +)))|(((
688 +AV2_LOW
689 +)))|(((
690 +AV2_HIGH
691 +)))|(((
692 +AC1_LOW
693 +)))|(((
694 +AC1_HIGH
695 +)))|(((
696 +AC2_LOW
697 +)))|(((
698 +AC2_HIGH
699 +)))
704 704  
705 705  * Each bits shows if the corresponding trigger has been configured.
706 706  
... ... @@ -709,10 +709,27 @@
709 709  10100000: Means the system has configure to use the trigger: AC1_LOW and AV2_LOW
710 710  
711 711  
712 -
713 713  (% style="color:#4f81bd" %)**TRI Status1**(%%) is a combination to show which condition is trigger. Totally 1byte as below
714 714  
715 -[[image:image-20220524090249-3.png]]
710 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
711 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
712 +|(((
713 +AV1_LOW
714 +)))|(((
715 +AV1_HIGH
716 +)))|(((
717 +AV2_LOW
718 +)))|(((
719 +AV2_HIGH
720 +)))|(((
721 +AC1_LOW
722 +)))|(((
723 +AC1_HIGH
724 +)))|(((
725 +AC2_LOW
726 +)))|(((
727 +AC2_HIGH
728 +)))
716 716  
717 717  * Each bits shows which status has been trigger on this uplink.
718 718  
... ... @@ -723,7 +723,9 @@
723 723  
724 724  (% style="color:#4f81bd" %)**TRI_DI FLAG+STA **(%%)is a combination to show which condition is trigger. Totally 1byte as below
725 725  
726 -[[image:image-20220524090456-4.png]]
739 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
740 +|**bit7**|**bit6**|**bit5**|**bit4**|**bit3**|**bit2**|**bit1**|**bit0**
741 +|N/A|N/A|N/A|N/A|DI2_STATUS|DI2_FLAG|DI1_STATUS|DI1_FLAG
727 727  
728 728  * Each bits shows which status has been trigger on this uplink.
729 729  
... ... @@ -803,14 +803,10 @@
803 803  
804 804  Set work mode.
805 805  
806 -* (% style="color:#037691" %)**AT Command:**
821 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+MOD=N  **
807 807  
808 -(% style="color:blue" %)**AT+MOD=N  **
809 -
810 -
811 811  **Example**: AT+MOD=2. Set work mode to Double DI counting mode
812 812  
813 -
814 814  * (% style="color:#037691" %)**Downlink Payload (prefix 0x0A):**
815 815  
816 816  (% style="color:blue" %)**0x0A aa  **(%%)** ** ~/~/ Same as AT+MOD=aa
... ... @@ -820,16 +820,12 @@
820 820  ==== 3.4.2.3 Poll an uplink ====
821 821  
822 822  
823 -* (% style="color:#037691" %)**AT Command:**
834 +* (% style="color:#037691" %)**AT Command:**(%%) There is no AT Command to poll uplink
824 824  
825 -There is no AT Command to poll uplink
826 -
827 -
828 828  * (% style="color:#037691" %)**Downlink Payload (prefix 0x08):**
829 829  
830 830  (% style="color:blue" %)**0x08 FF  **(%%)** **~/~/ Poll an uplink
831 831  
832 -
833 833  **Example**: 0x08FF, ask device to send an Uplink
834 834  
835 835  
... ... @@ -839,10 +839,8 @@
839 839  
840 840  Use of trigger mode, please check [[ADDMOD6>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
841 841  
842 -* (% style="color:#037691" %)**AT Command:**
849 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ADDMOD6=1 or 0**
843 843  
844 -(% style="color:blue" %)**AT+ADDMOD6=1 or 0**
845 -
846 846  (% style="color:red" %)**1:** (%%)Enable Trigger Mode
847 847  
848 848  (% style="color:red" %)**0: **(%%)Disable Trigger Mode
... ... @@ -857,13 +857,12 @@
857 857  ==== 3.4.2.5 Poll trigger settings ====
858 858  
859 859  
860 -Poll trigger settings,
865 +Poll trigger settings
861 861  
862 862  * (% style="color:#037691" %)**AT Command:**
863 863  
864 864  There is no AT Command for this feature.
865 865  
866 -
867 867  * (% style="color:#037691" %)**Downlink Payload (prefix 0x AB 06):**
868 868  
869 869  (% style="color:blue" %)**0xAB 06  ** (%%) ~/~/ Poll trigger settings, device will uplink trigger settings once receive this command
... ... @@ -875,15 +875,11 @@
875 875  
876 876  Enable Disable DI1/DI2/DI2 as trigger,
877 877  
878 -* (% style="color:#037691" %)**AT Command:**
882 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
879 879  
880 -(% style="color:blue" %)**Format: AT+DTRI=<DI1_TIRGGER_FlAG>,< DI2_TIRGGER_FlAG >**
884 +**Example:** AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
881 881  
882 882  
883 -**Example:**
884 -
885 -AT+ DTRI =1,0   (Enable DI1 trigger / disable DI2 trigger)
886 -
887 887  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 02):**
888 888  
889 889  (% style="color:blue" %)**0xAA 02 aa bb   ** (%%) ~/~/ Same as AT+DTRI=aa,bb
... ... @@ -895,20 +895,15 @@
895 895  
896 896  Set DI1 or DI3(for LT-33222-L) trigger.
897 897  
898 -* (% style="color:#037691" %)**AT Command:**
898 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG1=a,b**
899 899  
900 -(% style="color:blue" %)**AT+TRIG1=a,b**
901 -
902 902  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
903 903  
904 904  (% style="color:red" %)**b :** (%%)delay timing.
905 905  
904 +**Example:** AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
906 906  
907 -**Example:**
908 908  
909 -AT+TRIG1=1,100(set DI1 port to trigger on high level, valid signal is 100ms )
910 -
911 -
912 912  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 01 ):**
913 913  
914 914  (% style="color:blue" %)**0x09 01 aa bb cc    ** (%%) ~/~/ same as AT+TRIG1=aa,0x(bb cc)
... ... @@ -920,20 +920,15 @@
920 920  
921 921  Set DI2 trigger.
922 922  
923 -* (% style="color:#037691" %)**AT Command:**
918 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+TRIG2=a,b**
924 924  
925 -(% style="color:blue" %)**AT+TRIG2=a,b**
926 -
927 927  (% style="color:red" %)**a :** (%%)Interrupt mode. 0: falling edge; 1: rising edge, 2: falling and raising edge(for MOD=1).
928 928  
929 929  (% style="color:red" %)**b :** (%%)delay timing.
930 930  
924 +**Example:** AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
931 931  
932 -**Example:**
933 933  
934 -AT+TRIG2=0,100(set DI1 port to trigger on low level, valid signal is 100ms )
935 -
936 -
937 937  * (% style="color:#037691" %)**Downlink Payload (prefix 0x09 02 ):**
938 938  
939 939  (% style="color:blue" %)**0x09 02 aa bb cc   ** (%%)~/~/ same as AT+TRIG2=aa,0x(bb cc)
... ... @@ -945,11 +945,8 @@
945 945  
946 946  Set current trigger , base on AC port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
947 947  
948 -* (% style="color:#037691" %)**AT Command**
938 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+ACLIM**
949 949  
950 -(% style="color:blue" %)**AT+ACLIM**
951 -
952 -
953 953  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 01 )**
954 954  
955 955  (% style="color:blue" %)**0x AA 01 aa bb cc dd ee ff gg hh        ** (%%) ~/~/ same as AT+ACLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -961,11 +961,8 @@
961 961  
962 962  Set current trigger , base on AV port. See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
963 963  
964 -* (% style="color:#037691" %)**AT Command**
951 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
965 965  
966 -(% style="color:blue" %)**AT+AVLIM    **(%%)** See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]**
967 -
968 -
969 969  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAA 00 )**
970 970  
971 971  (% style="color:blue" %)**0x AA 00 aa bb cc dd ee ff gg hh    ** (%%) ~/~/ same as AT+AVLIM See [[trigger mode>>||anchor="H3.3.6AT2BADDMOD3D6.28TriggerMode2COptional29"]]
... ... @@ -977,18 +977,13 @@
977 977  
978 978  Set AV and AC trigger minimum interval, system won't response to the second trigger within this set time after the first trigger.
979 979  
980 -* (% style="color:#037691" %)**AT Command**
964 +* (% style="color:#037691" %)**AT Command**(%%): (% style="color:blue" %)**AT+ATDC=5        ** ~/~/ (%%)Device won't response the second trigger within 5 minute after the first trigger.
981 981  
982 -(% style="color:blue" %)**AT+ATDC=5        ** (%%)Device won't response the second trigger within 5 minute after the first trigger.
983 -
984 -
985 985  * (% style="color:#037691" %)**Downlink Payload (prefix 0xAC )**
986 986  
987 987  (% style="color:blue" %)**0x AC aa bb   **(%%) ~/~/ same as AT+ATDC=0x(aa bb)   . Unit (min)
988 988  
989 989  (((
990 -
991 -
992 992  (% style="color:red" %)**Note: ATDC setting must be more than 5min**
993 993  )))
994 994  
... ... @@ -1003,8 +1003,9 @@
1003 1003  
1004 1004  
1005 1005  * (% style="color:#037691" %)**Downlink Payload (prefix 0x02)**
1006 -* (% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
1007 1007  
986 +(% style="color:blue" %)**0x02 aa bb cc     ** (%%)~/~/ Set DO1/DO2/DO3 output
987 +
1008 1008  (((
1009 1009  If payload = 0x02010001, while there is load between V+ and DOx, it means set DO1 to low, DO2 to high and DO3 to low.
1010 1010  )))
... ... @@ -1011,10 +1011,14 @@
1011 1011  
1012 1012  (((
1013 1013  01: Low,  00: High ,  11: No action
994 +
995 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
996 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**DO1**|(% style="background-color:#4f81bd; color:white" %)**DO2**|(% style="background-color:#4f81bd; color:white" %)**DO3**
997 +|02  01  00  11|Low|High|No Action
998 +|02  00  11  01|High|No Action|Low
999 +|02  11  01  00|No Action|Low|High
1014 1014  )))
1015 1015  
1016 -[[image:image-20220524092754-5.png]]
1017 -
1018 1018  (((
1019 1019  (% style="color:red" %)**Note: For LT-22222-L, there is no DO3, the last byte can use any value.**
1020 1020  )))
... ... @@ -1051,24 +1051,31 @@
1051 1051  
1052 1052  (% style="color:#4f81bd" %)**Third Byte**(%%): Control Method and Ports status:
1053 1053  
1054 -[[image:image-20220524093238-6.png]]
1038 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1039 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1040 +|0x01|DO1 set to low
1041 +|0x00|DO1 set to high
1042 +|0x11|DO1 NO Action
1055 1055  
1056 -
1057 1057  (% style="color:#4f81bd" %)**Fourth Byte**(%%): Control Method and Ports status:
1058 1058  
1059 -[[image:image-20220524093328-7.png]]
1046 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1047 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1048 +|0x01|DO2 set to low
1049 +|0x00|DO2 set to high
1050 +|0x11|DO2 NO Action
1060 1060  
1061 -
1062 1062  (% style="color:#4f81bd" %)**Fifth Byte**(%%): Control Method and Ports status:
1063 1063  
1064 -[[image:image-20220524093351-8.png]]
1054 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:300px" %)
1055 +|(% style="background-color:#4f81bd; color:white" %)**Second Byte**|(% style="background-color:#4f81bd; color:white" %)**Status**
1056 +|0x01|DO3 set to low
1057 +|0x00|DO3 set to high
1058 +|0x11|DO3 NO Action
1065 1065  
1060 +(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:(%%) Latching time. Unit: ms
1066 1066  
1067 -(% style="color:#4f81bd" %)**Sixth and Seventh and Eighth and Ninth Byte**:
1068 1068  
1069 - Latching time. Unit: ms
1070 -
1071 -
1072 1072  (% style="color:red" %)**Note: **
1073 1073  
1074 1074   Since Firmware v1.6.0, the latch time support 4 bytes and 2 bytes
... ... @@ -1075,7 +1075,6 @@
1075 1075  
1076 1076   Before Firmwre v1.6.0 the latch time only suport 2 bytes.
1077 1077  
1078 -
1079 1079  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
1080 1080  
1081 1081  
... ... @@ -1099,7 +1099,7 @@
1099 1099  
1100 1100  
1101 1101  
1102 -==== 3.4.2. 14 Relay ~-~- Control Relay Output RO1/RO2 ====
1092 +==== 3.4.2.14 Relay ~-~- Control Relay Output RO1/RO2 ====
1103 1103  
1104 1104  
1105 1105  * (% style="color:#037691" %)**AT Command:**
... ... @@ -1117,11 +1117,18 @@
1117 1117  )))
1118 1118  
1119 1119  (((
1120 -01: Close ,  00: Open , 11: No action
1121 -)))
1110 +00: Close ,  01: Open , 11: No action
1122 1122  
1123 -(((
1124 -[[image:image-20230426161322-1.png]]
1112 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:320px" %)
1113 +|(% style="background-color:#4f81bd; color:white" %)**Downlink Code**|(% style="background-color:#4f81bd; color:white" %)**RO1**|(% style="background-color:#4f81bd; color:white" %)**RO2**
1114 +|03  00  11|Open|No Action
1115 +|03  01  11|Close|No Action
1116 +|03  11  00|No Action|Open
1117 +|03  11  01|No Action|Close
1118 +|03  00  00|Open|Open
1119 +|03  01  01|Close|Close
1120 +|03  01  00|Close|Open
1121 +|03  00  01|Open|Close
1125 1125  )))
1126 1126  
1127 1127  (% style="color:red" %)**Device will upload a packet if downlink code executes successfully.**
... ... @@ -1195,11 +1195,8 @@
1195 1195  
1196 1196  When voltage exceed the threshold, count. Feature see [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1197 1197  
1198 -* (% style="color:#037691" %)**AT Command:**
1195 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1199 1199  
1200 -(% style="color:blue" %)**AT+VOLMAX   ** (%%)~/~/ See [[MOD4>>||anchor="H3.3.4AT2BMOD3D42CSingleDICounting2B1xVoltageCounting"]]
1201 -
1202 -
1203 1203  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA5):**
1204 1204  
1205 1205  (% style="color:blue" %)**0xA5 aa bb cc   ** (%%)~/~/ Same as AT+VOLMAX=(aa bb),cc
... ... @@ -1209,10 +1209,8 @@
1209 1209  ==== 3.4.2.17 Counting ~-~- Pre-configure the Count Number ====
1210 1210  
1211 1211  
1212 -* (% style="color:#037691" %)**AT Command:**
1206 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1213 1213  
1214 -(% style="color:blue" %)**AT+SETCNT=aa,(bb cc dd ee) **
1215 -
1216 1216  (% style="color:red" %)**aa:**(%%) 1: Set count1; 2: Set count2; 3: Set AV1 count
1217 1217  
1218 1218  (% style="color:red" %)**bb cc dd ee: **(%%)number to be set
... ... @@ -1229,11 +1229,8 @@
1229 1229  
1230 1230  Clear counting for counting mode
1231 1231  
1232 -* (% style="color:#037691" %)**AT Command:**
1224 +* (% style="color:#037691" %)**AT Command:**(%%) (% style="color:blue" %)**AT+CLRCOUNT         **(%%) ~/~/ clear all counting
1233 1233  
1234 -(% style="color:blue" %)**AT+CLRCOUNT **(%%) ~/~/ clear all counting
1235 -
1236 -
1237 1237  * (% style="color:#037691" %)**Downlink Payload (prefix 0xA6):**
1238 1238  
1239 1239  (% style="color:blue" %)**0x A6 01    ** (%%)~/~/ clear all counting
... ... @@ -1361,75 +1361,91 @@
1361 1361  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823173929-8.png?width=1205&height=76&rev=1.1||alt="image-20220823173929-8.png"]]
1362 1362  
1363 1363  
1364 -== 3.5 Integrate with Mydevice ==
1353 +== 3.5 Integrating with ThingsEye.io ==
1365 1365  
1355 +If you are using one of The Things Stack plans, you can integrate ThingsEye.io with your application. Once integrated, ThingsEye.io works as an MQTT client for The Things Stack MQTT broker, allowing it to subscribe to upstream traffic and publish downlink traffic.
1366 1366  
1367 -Mydevices provides a human friendly interface to show the sensor data, once we have data in TTN, we can use Mydevices to connect to TTN and see the data in Mydevices. Below are the steps:
1357 +=== 3.5.1 Configuring The Things Stack Sandbox ===
1368 1368  
1369 -(((
1370 -(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time.
1371 -)))
1359 +* Go to your Application and select MQTT under Integrations.
1360 +* In the Connection credentials section, under Username, The Thins Stack displays an auto-generated username. You can use it or provide a new one.
1361 +* For the Password, click the Generate new API key button to generate a password. You can see it by clicking on the eye button.
1372 1372  
1373 -(((
1374 -(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to Mydevices you will need to add integration. To add the Mydevices integration, perform the following steps:
1363 +[[image:tts-mqtt-integration.png||height="625" width="1000"]]
1375 1375  
1376 -
1377 -)))
1365 +=== 3.5.2 Configuring ThingsEye.io ===
1378 1378  
1379 -[[image:image-20220719105525-1.png||height="377" width="677"]]
1367 +* Login to your thingsEye.io account.
1368 +* Under the Integrations center, click Integrations.
1369 +* Click the Add integration button (the button with the + symbol).
1380 1380  
1371 +[[image:thingseye-io-step-1.png||height="625" width="1000"]]
1381 1381  
1382 1382  
1383 -[[image:image-20220719110247-2.png||height="388" width="683"]]
1374 +On the Add integration page configure the following:
1384 1384  
1376 +Basic settings:
1385 1385  
1386 -(% style="color:blue" %)**Step 3**(%%): Create an account or log in Mydevices.
1378 +* Select The Things Stack Community from the Integration type list.
1379 +* Enter a suitable name for your integration in the Name box or keep the default name.
1380 +* Click the Next button.
1387 1387  
1388 -(% style="color:blue" %)**Step 4**(%%): Search LT-22222-L(for both LT-22222-L / LT-33222-L) and add DevEUI.(% style="display:none" %)
1382 +[[image:thingseye-io-step-2.png||height="625" width="1000"]]
1389 1389  
1390 -Search under The things network
1384 +Uplink Data converter:
1391 1391  
1392 -[[image:1653356838789-523.png||height="337" width="740"]]
1386 +* Click the Create New button if it is not selected by default.
1387 +* Click the JavaScript button.
1388 +* Paste the uplink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1389 +* Click the Next button.
1393 1393  
1391 +[[image:thingseye-io-step-3.png||height="625" width="1000"]]
1394 1394  
1393 +Downlink Data converter (this is an optional step):
1395 1395  
1396 -After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
1395 +* Click the Create new button if it is not selected by default.
1396 +* Click the JavaScript button.
1397 +* Paste the downlink decoder function into the text area (first, delete the default code). The demo decoder function can be found here.
1398 +* Click the Next button.
1397 1397  
1398 -[[image:image-20220524094909-1.png||height="335" width="729"]]
1400 +[[image:thingseye-io-step-4.png||height="625" width="1000"]]
1399 1399  
1402 +Connection:
1400 1400  
1401 -[[image:image-20220524094909-2.png||height="337" width="729"]]
1404 +* Choose Region from the Host type.
1405 +* Enter the cluster of your The Things Stack in the Region textbox.
1406 +* Enter the Username and Password in the Credentials section. Use the same username and password you created with the MQTT page of The Things Stack.
1407 +* Click Check connection to test the connection. If the connection is successful, you can see the message saying Connected.
1408 +* Click the Add button.
1402 1402  
1410 +[[image:thingseye-io-step-5.png||height="625" width="1000"]]
1403 1403  
1404 -[[image:image-20220524094909-3.png||height="338" width="727"]]
1405 1405  
1413 +Your integration is added to the integrations list and it will display on the Integrations page.
1406 1406  
1407 -[[image:image-20220524094909-4.png||height="339" width="728"]](% style="display:none" %)
1415 +[[image:thingseye-io-step-6.png||height="625" width="1000"]]
1408 1408  
1409 1409  
1410 -[[image:image-20220524094909-5.png||height="341" width="734"]]
1418 +== 3.6 Interface Details ==
1411 1411  
1412 -
1413 -== 3.6 Interface Detail ==
1414 -
1415 1415  === 3.6.1 Digital Input Port: DI1/DI2 /DI3 ( For LT-33222-L, low active ) ===
1416 1416  
1417 1417  
1418 -Support NPN Type sensor
1423 +Support NPN-type sensor
1419 1419  
1420 1420  [[image:1653356991268-289.png]]
1421 1421  
1422 1422  
1423 -=== 3.6.2 Digital Input Port: DI1/DI2 ( For LT-22222-L) ===
1428 +=== 3.6.2 Digital Input Ports: DI1/DI2 ( For LT-22222-L) ===
1424 1424  
1425 1425  
1426 1426  (((
1427 -The DI port of LT-22222-L can support NPN or PNP output sensor.
1432 +The DI ports of the LT-22222-L can support **NPN**, **PNP**, or **dry contact** output sensors.
1428 1428  )))
1429 1429  
1430 1430  (((
1431 1431  (((
1432 -Internal circuit as below, the NEC2501 is a photocoupler, the Active current (from NEC2501 pin 1 to pin 2 is 1ma and the max current is 50mA. When there is active current pass NEC2501 pin1 to pin2. The DI will be active high.
1437 +The part of the internal circuit of the LT-22222-L shown below includes the NEC2501 photocoupler. The active current from NEC2501 pin 1 to pin 2 is 1 mA, with a maximum allowable current of 50 mA. When active current flows from NEC2501 pin 1 to pin 2, the DI becomes active HIGH and the DI LED status changes.
1433 1433  
1434 1434  
1435 1435  )))
... ... @@ -1439,7 +1439,7 @@
1439 1439  
1440 1440  (((
1441 1441  (((
1442 -When use need to connect a device to the DI port, both DI1+ and DI1- must be connected.
1447 +(% style="color:#000000; font-family:Arial,sans-serif; font-size:11pt; font-style:normal; font-variant-alternates:normal; font-variant-east-asian:normal; font-variant-ligatures:normal; font-variant-numeric:normal; font-variant-position:normal; font-weight:400; text-decoration:none; white-space:pre-wrap" %)When connecting a device to the DI port, both DI1+ and DI1- must be connected.
1443 1443  )))
1444 1444  )))
1445 1445  
... ... @@ -1448,22 +1448,22 @@
1448 1448  )))
1449 1449  
1450 1450  (((
1451 -(% style="color:blue" %)**Example1**(%%): Connect to a Low active sensor.
1456 +(% style="color:#0000ff" %)**Example 1**(%%): Connecting to a low-active sensor.
1452 1452  )))
1453 1453  
1454 1454  (((
1455 -This type of sensor will output a low signal GND when active.
1460 +This type of sensor outputs a low (GND) signal when active.
1456 1456  )))
1457 1457  
1458 1458  * (((
1459 -Connect sensor's output to DI1-
1464 +Connect the sensor's output to DI1-
1460 1460  )))
1461 1461  * (((
1462 -Connect sensor's VCC to DI1+.
1467 +Connect the sensor's VCC to DI1+.
1463 1463  )))
1464 1464  
1465 1465  (((
1466 -So when sensor active, the current between NEC2501 pin1 and pin2 is
1471 +When the sensor is active, the current between NEC2501 pin 1 and pin 2 will be
1467 1467  )))
1468 1468  
1469 1469  (((
... ... @@ -1471,7 +1471,7 @@
1471 1471  )))
1472 1472  
1473 1473  (((
1474 -If** DI1+ **= **12v**, the [[image:1653968155772-850.png||height="23" width="19"]]= 12mA , So the LT-22222-L will be able to detect this active signal.
1479 +For example, if** DI1+ **= **12V**, the resulting current is [[image:1653968155772-850.png||height="23" width="19"]]= 12mA. Therefore, the LT-22222-L will be able to detect this active signal.
1475 1475  )))
1476 1476  
1477 1477  (((
... ... @@ -1479,22 +1479,22 @@
1479 1479  )))
1480 1480  
1481 1481  (((
1482 -(% style="color:blue" %)**Example2**(%%): Connect to a High active sensor.
1487 +(% style="color:#0000ff" %)**Example 2**(%%): Connecting to a high-active sensor.
1483 1483  )))
1484 1484  
1485 1485  (((
1486 -This type of sensor will output a high signal (example 24v) when active.
1491 +This type of sensor outputs a high signal (e.g., 24V) when active.
1487 1487  )))
1488 1488  
1489 1489  * (((
1490 -Connect sensor's output to DI1+
1495 +Connect the sensor's output to DI1+
1491 1491  )))
1492 1492  * (((
1493 -Connect sensor's GND DI1-.
1498 +Connect the sensor's GND DI1-.
1494 1494  )))
1495 1495  
1496 1496  (((
1497 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1502 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1498 1498  )))
1499 1499  
1500 1500  (((
... ... @@ -1502,7 +1502,7 @@
1502 1502  )))
1503 1503  
1504 1504  (((
1505 -If **DI1+ = 24v**, the[[image:1653968155772-850.png||height="23" width="19"]] 24mA , So the LT-22222-L will be able to detect this high active signal.
1510 +If **DI1+ = 24V**, the resulting current[[image:1653968155772-850.png||height="23" width="19"]] is 24mA, Therefore, the LT-22222-L will detect this high-active signal.
1506 1506  )))
1507 1507  
1508 1508  (((
... ... @@ -1510,22 +1510,22 @@
1510 1510  )))
1511 1511  
1512 1512  (((
1513 -(% style="color:blue" %)**Example3**(%%): Connect to a 220v high active sensor.
1518 +(% style="color:#0000ff" %)**Example 3**(%%): Connecting to a 220V high-active sensor.
1514 1514  )))
1515 1515  
1516 1516  (((
1517 -Assume user want to monitor an active signal higher than 220v, to make sure not burn the photocoupler  
1522 +Assume that you want to monitor an active signal higher than 220V without damaging the photocoupler  
1518 1518  )))
1519 1519  
1520 1520  * (((
1521 -Connect sensor's output to DI1+ with a serial 50K resistor
1526 +Connect the sensor's output to DI1+ with a 50K resistor in series.
1522 1522  )))
1523 1523  * (((
1524 -Connect sensor's GND DI1-.
1529 +Connect the sensor's GND DI1-.
1525 1525  )))
1526 1526  
1527 1527  (((
1528 -So when sensor active, the current between NEC2501 pin1 and pin2 is:
1533 +When the sensor is active, the current between NEC2501 pin1 and pin2 will be:
1529 1529  )))
1530 1530  
1531 1531  (((
... ... @@ -1533,24 +1533,37 @@
1533 1533  )))
1534 1534  
1535 1535  (((
1536 -If sensor output is 220v, the [[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K.  = 4.3mA , So the LT-22222-L will be able to detect this high active signal safely.
1541 +If the sensor output is 220V, the[[image:1653968155772-850.png||height="23" width="19"]](% id="cke_bm_243359S" style="display:none" wfd-invisible="true" %)[[image:image-20220524095628-8.png]](%%) = DI1+ / 51K  = 4.3mA. Therefore, the LT-22222-L will be able to safely detect this high-active signal.
1537 1537  )))
1538 1538  
1539 1539  
1540 -=== 3.6.3 Digital Output Port: DO1/DO2 /DO3 ===
1545 +(% style="color:blue" %)**Example4**(%%): Connecting to Dry Contact sensor
1541 1541  
1547 +From the DI port circuit above, you can see that activating the photocoupler requires a voltage difference between the DI+ and DI- ports. However, the Dry Contact sensor is a passive component and cannot provide this voltage difference.
1542 1542  
1543 -(% style="color:blue" %)**NPN output**(%%): GND or Float. Max voltage can apply to output pin is 36v.
1549 +To detect a Dry Contact, you can supply a power source to one pin of the Dry Contact. Below is a reference circuit diagram.
1544 1544  
1545 -(% style="color:red" %)**Note: DO pins go to float when device is power off.**
1551 +[[image:image-20230616235145-1.png]]
1546 1546  
1553 +(% style="color:blue" %)**Example5**(%%): Connecting to an Open Collector
1554 +
1555 +[[image:image-20240219115718-1.png]]
1556 +
1557 +
1558 +=== 3.6.3 Digital Output Ports: DO1/DO2 /DO3 ===
1559 +
1560 +
1561 +(% style="color:blue" %)**NPN output**(%%): GND or Float. The maximum voltage that can be applied to the output pin is 36V.
1562 +
1563 +(% style="color:red" %)**Note: The DO pins will float when the device is powered off.**
1564 +
1547 1547  [[image:1653357531600-905.png]]
1548 1548  
1549 1549  
1550 -=== 3.6.4 Analog Input Interface ===
1568 +=== 3.6.4 Analog Input Interfaces ===
1551 1551  
1552 1552  
1553 -The analog input interface is as below. The LT will measure the IN2 voltage so to calculate the current pass the Load. The formula is:
1571 +The analog input interface is shown below. The LT-22222-L will measure the IN2 voltage to calculate the current passing through the load. The formula is:
1554 1554  
1555 1555  
1556 1556  (% style="color:blue" %)**AC2 = (IN2 voltage )/12**
... ... @@ -1557,20 +1557,19 @@
1557 1557  
1558 1558  [[image:1653357592296-182.png]]
1559 1559  
1560 -Example to connect a 4~~20mA sensor
1578 +Example: Connecting a 4~~20mA sensor
1561 1561  
1562 -We take the wind speed sensor as an example for reference only.
1580 +We will use the wind speed sensor as an example for reference only.
1563 1563  
1564 1564  
1565 1565  (% style="color:blue" %)**Specifications of the wind speed sensor:**
1566 1566  
1567 -(% style="color:red" %)**Red:  12~~24v**
1585 +(% style="color:red" %)**Red:  12~~24V**
1568 1568  
1569 1569  (% style="color:#ffc000" %)**Yellow:  4~~20mA**
1570 1570  
1571 1571  **Black:  GND**
1572 1572  
1573 -
1574 1574  **Connection diagram:**
1575 1575  
1576 1576  [[image:1653357640609-758.png]]
... ... @@ -1578,13 +1578,29 @@
1578 1578  [[image:1653357648330-671.png||height="155" width="733"]]
1579 1579  
1580 1580  
1598 +Example: Connecting to a regulated power supply to measure voltage
1599 +
1600 +[[image:image-20230608101532-1.png||height="606" width="447"]]
1601 +
1602 +[[image:image-20230608101608-2.jpeg||height="379" width="284"]]
1603 +
1604 +[[image:image-20230608101722-3.png||height="102" width="1139"]]
1605 +
1606 +
1607 +(% style="color:blue; font-weight:bold" %)**Specifications of the regulated power supply**(% style="color:blue" %)**:**
1608 +
1609 +(% style="color:red" %)**Red:  12~~24v**
1610 +
1611 +**Black:  GND**
1612 +
1613 +
1581 1581  === 3.6.5 Relay Output ===
1582 1582  
1583 1583  
1584 1584  (((
1585 -The LT serial controller has two relay interfaces; each interface uses two pins of the screw terminal. User can connect other device's Power Line to in serial of RO1_1 and RO_2. Such as below:
1618 +The LT-22222-L has two relay interfaces, RO1 and RO2, each using two pins of the screw terminal (ROx-1 and ROx-2 where x is the port number, 1 or 2). You can connect a device's power line in series with one of the relay interfaces (e.g., RO1-1 and RO1-2 screw terminals). See the example below:
1586 1586  
1587 -**Note**: RO pins go to Open(NO) when device is power off.
1620 +**Note**: The ROx pins will be in the Open (NO) state when the LT-22222-L is powered off.
1588 1588  )))
1589 1589  
1590 1590  [[image:image-20220524100215-9.png]]
... ... @@ -1596,20 +1596,41 @@
1596 1596  == 3.7 LEDs Indicators ==
1597 1597  
1598 1598  
1599 -[[image:image-20220524100748-11.png]]
1632 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1633 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**LEDs**|(% style="background-color:#4f81bd; color:white; width:460px" %)**Feature**
1634 +|**PWR**|Always on if there is power
1635 +|**TX**|(((
1636 +(((
1637 +Device boot: TX blinks 5 times.
1638 +)))
1600 1600  
1640 +(((
1641 +Successful join network: TX ON for 5 seconds.
1642 +)))
1601 1601  
1602 -= 4. Use AT Command =
1644 +(((
1645 +Transmit a LoRa packet: TX blinks once
1646 +)))
1647 +)))
1648 +|**RX**|RX blinks once when receiving a packet.
1649 +|**DO1**|For LT-22222-L: ON when DO1 is low, OFF when DO1 is high
1650 +|**DO2**|For LT-22222-L: ON when DO2 is low, OFF when DO2 is high
1651 +|**DI1**|(((
1652 +For LT-22222-L: ON when DI1 is high, OFF when DI1 is low
1653 +)))
1654 +|**DI2**|(((
1655 +For LT-22222-L: ON when DI2 is high, OFF when DI2 is low
1656 +)))
1657 +|**RO1**|For LT-22222-L: ON when RO1 is closed, OFF when RO1 is open
1658 +|**RO2**|For LT-22222-L: ON when RO2 is closed, OFF when RO2 is open
1603 1603  
1604 -== 4.1 Access AT Command ==
1660 += 4. Using AT Command =
1605 1605  
1662 +== 4.1 Connecting the LT-22222-L to a computer ==
1606 1606  
1607 -(((
1608 -LT supports AT Command set. User can use a USB to TTL adapter plus the 3.5mm Program Cable to connect to LT for using AT command, as below.
1609 -)))
1610 1610  
1611 1611  (((
1612 -
1666 +The LT-22222-L supports programming using AT Commands. You can use a USB-to-TTL adapter along with a 3.5mm Program Cable to connect the LT-22222-L to a computer, as shown below.
1613 1613  )))
1614 1614  
1615 1615  [[image:1653358238933-385.png]]
... ... @@ -1616,7 +1616,7 @@
1616 1616  
1617 1617  
1618 1618  (((
1619 -In PC, User needs to set (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) baud rate to (% style="color:green" %)**9600**(%%) to access to access serial console for LT. The AT commands are disable by default and need to enter password (default:(% style="color:green" %)**123456**)(%%) to active it. As shown below:
1673 +On the PC, the user needs to set the (% style="color:#4f81bd" %)**serial tool**(%%)(such as [[putty>>url:https://www.chiark.greenend.org.uk/~~sgtatham/putty/latest.html]], SecureCRT) to a baud rate o(% style="color:green" %)**9600**(%%) to access to access serial console of LT-22222-L. The AT commands are disabled by default, and a password (default:(% style="color:green" %)**123456**)(%%) must be entered to active them, as shown below:
1620 1620  )))
1621 1621  
1622 1622  [[image:1653358355238-883.png]]
... ... @@ -1623,10 +1623,12 @@
1623 1623  
1624 1624  
1625 1625  (((
1626 -More detail AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1680 +You can find more details in the [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LT_LoRa_IO_Controller/LT33222-L/]]
1627 1627  )))
1628 1628  
1629 1629  (((
1684 +The following table lists all the AT commands related to the LT-22222-L, except for those used for switching between modes.
1685 +
1630 1630  AT+<CMD>?        : Help on <CMD>
1631 1631  )))
1632 1632  
... ... @@ -1930,8 +1930,6 @@
1930 1930  dir=LoRa_Gateway/&file=LoRaWAN%201.0.3%20Regional%20Parameters.xlsx]] to see what DR means.**
1931 1931  
1932 1932  **4. The command AT+RX2FQ and AT+RX2DR is to let downlink work. to set the correct parameters, user can check the actually downlink parameters to be used. As below. Which shows the RX2FQ should use 868400000 and RX2DR should be 5.**
1933 -
1934 -
1935 1935  )))
1936 1936  
1937 1937  (((
... ... @@ -1938,9 +1938,6 @@
1938 1938  [[image:1653359097980-169.png||height="188" width="729"]]
1939 1939  )))
1940 1940  
1941 -(((
1942 -
1943 -)))
1944 1944  
1945 1945  === 4.2.3 Change to Class A ===
1946 1946  
... ... @@ -1948,8 +1948,9 @@
1948 1948  (((
1949 1949  (% style="color:blue" %)**If sensor JOINED:**
1950 1950  
1951 -(% style="background-color:#dcdcdc" %)**AT+CLASS=A
1952 -ATZ**
2002 +(% style="background-color:#dcdcdc" %)**AT+CLASS=A**
2003 +
2004 +(% style="background-color:#dcdcdc" %)**ATZ**
1953 1953  )))
1954 1954  
1955 1955  
... ... @@ -1972,7 +1972,7 @@
1972 1972  * For bug fix
1973 1973  * Change LoRaWAN bands.
1974 1974  
1975 -Below shows the hardware connection for how to upload an image to the LT:
2027 +Below is the hardware connection for how to upload an image to the LT:
1976 1976  
1977 1977  [[image:1653359603330-121.png]]
1978 1978  
... ... @@ -1979,7 +1979,7 @@
1979 1979  
1980 1980  (((
1981 1981  (% style="color:blue" %)**Step1**(%%)**:** Download [[flash loader>>url:https://www.st.com/content/st_com/en/products/development-tools/software-development-tools/stm32-software-development-tools/stm32-programmers/flasher-stm32.html]].
1982 -(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>url:https://www.dropbox.com/sh/g99v0fxcltn9r1y/AADKXQ2v5ZT-S3sxdmbvE7UAa/LT-22222-L/image?dl=0&subfolder_nav_tracking=1]].
2034 +(% style="color:blue" %)**Step2**(%%)**:** Download the [[LT Image files>>https://www.dropbox.com/sh/g99v0fxcltn9r1y/AACrbrDN0AqLHbBat0ViWx5Da/LT-22222-L/Firmware?dl=0&subfolder_nav_tracking=1]].
1983 1983  (% style="color:blue" %)**Step3**(%%)**:** Open flashloader; choose the correct COM port to update.
1984 1984  
1985 1985  
... ... @@ -2002,7 +2002,6 @@
2002 2002  
2003 2003  (% style="color:red" %)**Notice**(%%): In case user has lost the program cable. User can hand made one from a 3.5mm cable. The pin mapping is:
2004 2004  
2005 -
2006 2006  [[image:1653360054704-518.png||height="186" width="745"]]
2007 2007  
2008 2008  
... ... @@ -2066,13 +2066,21 @@
2066 2066  
2067 2067  (((
2068 2068  (% style="background-color:#dcdcdc" %)**123456** (%%) :  Enter Password to have AT access.
2120 +
2069 2069  (% style="background-color:#dcdcdc" %)**AT+FDR**(%%)  :  Reset Parameters to Factory Default, Keys Reserve
2122 +
2070 2070  (% style="background-color:#dcdcdc" %)**AT+NJM=0** (%%) :  Set to ABP mode
2124 +
2071 2071  (% style="background-color:#dcdcdc" %)**AT+ADR=0** (%%) :  Set the Adaptive Data Rate Off
2126 +
2072 2072  (% style="background-color:#dcdcdc" %)**AT+DR=5** (%%) :  Set Data Rate (Set AT+DR=3 for 915 band)
2128 +
2073 2073  (% style="background-color:#dcdcdc" %)**AT+TDC=60000 **(%%) :  Set transmit interval to 60 seconds
2130 +
2074 2074  (% style="background-color:#dcdcdc" %)**AT+CHS=868400000**(%%) : Set transmit frequency to 868.4Mhz
2132 +
2075 2075  (% style="background-color:#dcdcdc" %)**AT+DADDR=26 01 1A F1**(%%)  :  Set Device Address to 26 01 1A F1
2134 +
2076 2076  (% style="background-color:#dcdcdc" %)**ATZ**        (%%) :  Reset MCU
2077 2077  )))
2078 2078  
... ... @@ -2084,14 +2084,20 @@
2084 2084  [[image:1653360498588-932.png||height="485" width="726"]]
2085 2085  
2086 2086  
2087 -== 6.4 Can I see counting event in Serial? ==
2146 +== 6.4 How to change the uplink interval? ==
2088 2088  
2089 2089  
2149 +Please see this link: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20set%20the%20transmit%20time%20interval/]]
2150 +
2151 +
2152 +== 6.5 Can I see counting event in Serial? ==
2153 +
2154 +
2090 2090  (((
2091 2091  User can run AT+DEBUG command to see the counting event in serial. If firmware too old and doesn't support AT+DEBUG. User can update to latest firmware first.
2092 2092  
2093 2093  
2094 -== 6.5 Can i use point to point communication for LT-22222-L? ==
2159 +== 6.6 Can i use point to point communication for LT-22222-L? ==
2095 2095  
2096 2096  
2097 2097  Yes, please refer [[Point to Point Communication>>doc:Main. Point to Point Communication of LT-22222-L.WebHome]]  ,this is [[firmware>>https://github.com/dragino/LT-22222-L/releases]].
... ... @@ -2100,7 +2100,7 @@
2100 2100  )))
2101 2101  
2102 2102  (((
2103 -== 6.Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2168 +== 6.7 Why does the relay output become the default and open relay after the lt22222 is powered off? ==
2104 2104  
2105 2105  
2106 2106  If the device is not shut down, but directly powered off.
... ... @@ -2112,7 +2112,7 @@
2112 2112  After restart, the status before power failure will be read from flash.
2113 2113  
2114 2114  
2115 -== 6.7 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2180 +== 6.8 Can i set up LT-22222-L as a NC(Normal Close) Relay? ==
2116 2116  
2117 2117  
2118 2118  LT-22222-L built-in relay is NO (Normal Open). User can use an external relay to achieve Normal Close purpose. Diagram as below:
... ... @@ -2121,12 +2121,18 @@
2121 2121  [[image:image-20221006170630-1.png||height="610" width="945"]]
2122 2122  
2123 2123  
2124 -== 6.Can LT22222-L save RO state? ==
2189 +== 6.9 Can LT22222-L save RO state? ==
2125 2125  
2126 2126  
2127 2127  Firmware version needs to be no less than 1.6.0.
2128 2128  
2129 2129  
2195 +== 6.10 Why does the LT22222 always report 15.585V when measuring AVI? ==
2196 +
2197 +
2198 +It is likely that the GND is not connected during the measurement, or the wire connected to the GND is loose.
2199 +
2200 +
2130 2130  = 7. Trouble Shooting =
2131 2131  )))
2132 2132  
... ... @@ -2167,6 +2167,13 @@
2167 2167  )))
2168 2168  
2169 2169  
2241 +== 7.4 Why can LT22222 perform Uplink normally, but cannot receive Downlink? ==
2242 +
2243 +
2244 +The FCD count of the gateway is inconsistent with the FCD count of the node, causing the downlink to remain in the queue state.
2245 +Use this command to bring their counts back together: [[Resets the downlink packet count>>||anchor="H3.4.2.23Resetsthedownlinkpacketcount"]]
2246 +
2247 +
2170 2170  = 8. Order Info =
2171 2171  
2172 2172  
... ... @@ -2184,7 +2184,6 @@
2184 2184  * (% style="color:red" %)**IN865**(%%):  LT with frequency bands IN865
2185 2185  * (% style="color:red" %)**CN779**(%%):  LT with frequency bands CN779
2186 2186  
2187 -
2188 2188  = 9. Packing Info =
2189 2189  
2190 2190  
... ... @@ -2202,7 +2202,6 @@
2202 2202  * Package Size / pcs : 14.5 x 8 x 5 cm
2203 2203  * Weight / pcs : 170g
2204 2204  
2205 -
2206 2206  = 10. Support =
2207 2207  
2208 2208  
... ... @@ -2210,7 +2210,7 @@
2210 2210  Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
2211 2211  )))
2212 2212  * (((
2213 -Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:file:///D:/市场资料/说明书/LoRa/LT系列/support@dragino.com]]
2289 +Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[Support@dragino.cc>>mailto:Support@dragino.cc]]
2214 2214  
2215 2215  
2216 2216  
... ... @@ -2222,4 +2222,3 @@
2222 2222  * LT-22222-L: [[http:~~/~~/www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html>>url:http://www.dragino.com/products/lora-lorawan-end-node/item/156-lt-22222-l.html]]
2223 2223  * [[Datasheet, Document Base>>https://www.dropbox.com/sh/gxxmgks42tqfr3a/AACEdsj_mqzeoTOXARRlwYZ2a?dl=0]]
2224 2224  * [[Hardware Source>>url:https://github.com/dragino/Lora/tree/master/LT/LT-33222-L/v1.0]]
2225 -
image-20230608101532-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +563.0 KB
Content
image-20230608101608-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +287.8 KB
Content
image-20230608101722-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Bei
Size
... ... @@ -1,0 +1,1 @@
1 +25.4 KB
Content
image-20230616235145-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +19.4 KB
Content
image-20240219115718-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +27.7 KB
Content
lt-22222-l-dev-repo-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.8 KB
Content
lt-22222-l-dev-repo-reg-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +391.7 KB
Content
lt-22222-l-dev-repo-reg-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +319.1 KB
Content
lt-22222-l-manually-p1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.6 KB
Content
lt-22222-l-manually-p2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +279.1 KB
Content
thingseye-io-step-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +191.8 KB
Content
thingseye-io-step-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +260.3 KB
Content
thingseye-io-step-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +336.6 KB
Content
thingseye-io-step-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +361.1 KB
Content
thingseye-io-step-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +292.1 KB
Content
thingseye-io-step-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +203.8 KB
Content
tts-mqtt-integration.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.pradeeka
Size
... ... @@ -1,0 +1,1 @@
1 +306.4 KB
Content